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hPMSCs protects against D-galactose- ")
induced oxidative damage of CD4" T cells ™
through activating Akt-mediated Nrf2
antioxidant signaling
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Abstract

Background: Mesenchymal stem cells (MSCs) were considered a regenerative therapeutic approach in both acute
and chronic diseases. However, whether MSCs regulate the antioxidant metabolism of CD4" T cells and weaken
immunosenescence remains unclear. Here, we reported the protective effects of hPMSCs in aging-related CD4* T
cell senescence and identified the underlying mechanisms using a b-gal-induced mouse aging model.

Methods: In vivo study, 40 male C57BL/6 mice (8 weeks) were randomly divided into four groups: control group, b-
gal group, hPMSC group, and PBS group. In in vitro experiment, human naive CD4" T (CD4CD45RA) cells were
prepared using a naive CD4™ T cell isolation kit 1| and pretreated with the Akt inhibitor LY294002 and Nrf2 inhibitor
ML385. Then, isolated naive CD4" T cell were co-cultured with hPMSCs for 72 h in the absence or presence of anti-
CD3/CD28 Dynabeads and IL-2 as a mitogenic stimulus. Intracellular ROS changes were detected by flow cytometry.
The activities of the antioxidant enzymes superoxide dismutase, glutathione peroxidase, and catalase were
measured by colorimetric analysis. The senescent T cells were detected SA-3-gal stain. The expression of aging-
related proteins was detected by Western blotting, RT-PCR, and confocal microscopy.

Results: We found that hPMSC treatment markedly decreased the ROS level, SA-B-gal-positive cells number,
senescence-associated secretory phenotype (IL-6 and OPN) expression, and aging-related protein (P16 and P21)
expression in senescent CD4™ T cells. Furthermore, hPMSC treatment effectively upregulated Nrf2 nuclear
translocation and the expression of downstream target genes (HO-1, CAT, GCLC, and NQO1) in senescent CD4* T
cells. Moreover, in vitro studies revealed that hPMSCs attenuated CD4* T cell senescence by upregulating the Akt/
GSK-3B/Fyn pathway to activate Nrf2 functions. Conversely, the antioxidant effects of hPMSCs were blocked by the
Akt inhibitor LY294002 and Nrf2 inhibitor ML385 in senescent CD4™ T cells.
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Conclusions: Our results indicate that hPMSCs attenuate p-gal-induced CD4™ T cell senescence by activating Nrf2-
mediated antioxidant defenses and that upregulation of Nrf2 by hPMSCs is regulated via the Akt/GSK-3(3/Fyn

pathway.
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Introduction

With the aging process, the immune system function grad-
ually declines, leading to alterations in innate and adaptive
immunity in older individuals, which is designated “immuno-
senescence” [1]. Immunosenescence affects function and
compartment of T cells, leading to age-related immune func-
tion decline and increases the susceptibility of elderly individ-
uals to cancers and infectious diseases [2]. It is evident that
aging decline alterations in CD4" T cell immunity was ac-
companied by aging [3]. CD4" T cell senescence is character-
ized by oncogene, reactive oxygen species (ROS) activation,
or tumor suppressor genes inactivation, leading to irrevers-
ible proliferation arrest [4, 5]. Therefore, improving the anti-
oxidant capacity of CD4" T cells and reducing oxidative
stress damage may delay the process of immune aging.

In aging, increasing oxidative stress was induced by
various metabolites, on the contrary, as the primary lines
of defense, the activity of antioxidant enzymes decreased.
Nuclear factor erythroid-2-related factor 2 (Nrf2) is a
crucial regulator of the cellular antioxidant system,
which regulates the expression of a variety of key anti-
oxidant enzymes [6—8]. There is evidence that activated
Nrf2 protection against the phenotypic changes and
mitochondrial function in memory T cells, relieve aged-
related oxidant injury [9]. Increasing evidence suggests
that Nrf2 pathway is essential in regulating the innate
immune system function [10]. Together, these data sug-
gest that interfering with Nrf2 antioxidant signal pro-
vides a rational approach to alleviate cellular immune
dysfunction during aging.

Mesenchymal stem (or stromal) cells (MSCs) was con-
sidered a regenerative therapeutic approach in both
acute and chronic diseases [11, 12]. Recently, it has been
found that MSCs possess potent immunomodulatory
and anti-inflammatory properties [13—15]. Interestingly,
a recent study indicated that treatment with MSCs in-
creased Nrf2 expression and activated the downstream
antioxidant HO-1, leading to inhibition of oxidative
stress, cell apoptosis and the inflammatory response in
lung tissue [16]. However, whether MSCs regulate the
antioxidant metabolism in senescent T cells via Nrf2-
mediated exogenous antioxidant defenses and its influ-
ence on aging-related T cell dysfunction remain to be
elucidated.

Our findings provided evidence that supports an im-
portant role for hPMSCs in attenuating D-galactose (D-

gal)-triggered CD4" T cell senescence by activating
Nrf2-mediated exogenous antioxidant defenses and re-
vealed the protective effect of hPMSCs in reducing oxi-
dative damage in senescent CD4" T cells, thereby
clinically alleviating immunosenescence.

Materials and methods

Reagents

RNA extraction kit was from Qiagen (Qiagen Inc., CA,
USA). DAPI (#4083) and antibodies against Nrf2
(#12721), Akt (#9272), HO-1 (#43966), CAT (#14097),
GSK-3B (#12456), NQO1 (#62262), P16 (#80772), P21
(#2947), p-Akt (#4060), p-GSK-3pB (#5558), Fyn (#4023),
Histon H3 (#4499), and B-actin (#4970) were obtained
from Cell Signalling Technology Corporation (MA,
USA). CD4" T Cell Isolation Kit II was obtained from
Miltenyi (Bergisch Gladbach, Germany). SA-B-Gal stain-
ing kit was obtained from Beyotime (Shanghai, China).
LY294002 (L9908) and ML385 (SML1833) were ob-
tained from Sigma-Aldrich (St. Louis., MO, USA).

Animal models
Male C57BL/6 mice (8 weeks) were obtained from Binz-
hou Medical University (Yantai, China). Mice were
housed in a standard environment with a regular light/
dark cycle and free access to water and chow diet. All
experimental procedures were approved by the Binzhou
Medical University Institutional Animal Care and Use
Committee and this study was conducted in accordance
with the National Laboratory Animal Care and Use re-
search committee guidelines (permit number, 2018-05).
The mice were randomly divided into four groups
(n=10 animals per group): (1) control group, treated
with saline (20 mL kg™ ' day ') as a vehicle for 7 weeks;
(2) p-gal group, treated with D-gal (200 mgkg™ ' day %)
for 7 weeks; and (3) mice were treated with D-gal (200
mg kg™ ' day ') for 7 weeks, followed by 1 x 10° hPMSCs
week ™', or (4) 150 uL PBS kg™ ' week™ ' intravenously on
the first day of weeks 5-7 (hPMSC group and PBS
group, respectively). hPMSCs (1 x 10° hPMSCs precipi-
tate in 150 uL PBS per mice) or an equal volume of PBS
(150 uL) were administered intravenously over a period
of 2 min via the tail vein. D-gal and saline were adminis-
tered intraperitoneally. Detailed animal experimental de-
signs are presented in Fig. 1a. CD4" T cells were isolated
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from single-cell suspensions of splenocytes using a mag-
netic cell separator as described previously [17].

Isolation of hPMSCs

hPMSCs were isolated from human term placentas of
donors as described previously [18]. The hPMSCs isola-
tion procedure was approved by the Research Ethics
Committee of the Yantai Yuhuangding Hospital. Isolated
hPMSCs were identified by detection of cell morphology
using microscopy and cell surface antigens CD34,
CD105, CD90, CD19, CD73, CD14, and HLA-DR using
flow cytometry (FCM). The FCM results indicated that
more than 95% of isolated hPMSCs expressed CD73,
CD90, and CD105 but not CD14, CD19, CD34, or HLA-
DR (Fig. S1D). These results are in accordance with the
well-established markers of hPMSCs. The hPMSCs dis-
played typical fibroblastic morphology (Fig. S1A). The
hPMSCs were cultured in adipogenic and osteogenic in-
duction medium to differentiate into adipocytes and

osteoblasts, respectively. Osteoblasts were verified by
Alizarin Red staining of intracellular calcium deposits
(Fig. S1B). Oil Red O staining of fat globules was per-
formed in adipocyte induction medium to verify the
presence of adipocytes (Fig. S1C).

Naive CD4* T cell isolation and co-culture with hPMSCs
Human naive CD4" T (CD4CD45RA) cells were pre-
pared using a naive CD4" T cell isolation kit II. CD4* T
cells were pretreated for 1h with the Akt inhibitor
LY294002 (30 uM) or Nrf2 inhibitor ML385 (10 uM). In
direct co-cultures, hPMSCs were added at a 1:10 ratio to
CD4" T cells (4 x 10°) in direct contact and cultured at
37°C in 5% CO, for 72 h in the absence or presence of
anti-CD3/CD28 Dynabeads (1 pg/ml) and IL-2 (2.5 ng/
ml) as a mitogenic stimulus. In transwell cultures,
hPMSCs (4 x 10°) were seeded in the upper chamber
whereas CD4" T cells (4 x 10°%) were seeded in the lower
chamber.
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Intracellular ROS detection

The intracellular production of ROS was assessed by 2,
7'-dichlorofluorescein diacetate (H2DCF-DA) (Sigma,
St. Louis, MO, USA) [19]. CD4" T cells that were not la-
beled with H2DCF-DA probe used as the negative con-
trol group. Briefly, collected CD4" T cells were washed
with PBS and then added H2DCF-DA (10 uM) and incu-
bated at 37 °C for 30 min. The levels of intracellular ROS
in CD4" T cells were analyzed by FCM after being
washed with PBS.

Antioxidant biomarkers detection

The activities of the antioxidant enzymes superoxide dis-
mutase (SOD), glutathione peroxidase (GSH-Px), and
catalase (CAT) in CD4" T cells were measured by colori-
metric analysis [20]. GSH-Px activity was detected using
the DTNB method [21], CAT activity was measured using
the ammonium molybdate method [22], and SOD activity
was measured using the xanthine-oxidase method [23].

SA-B-gal staining

SA-B-Gal activity in senescent T cells was tested as de-
scribed previously [24]. Briefly, T cells were fixed with
3% formaldehyde ether washed in PBS, and followed to
incubate overnight at 37 °C with SA-B-Gal staining solu-
tion. After washing with PBS, senescent cells were ob-
served under microscopy (Leica, Germany).

Western blot analysis

Western blot analyses were performed as previously de-
scribed [25]. In short, total proteins were electro-
transferred to PVDF membranes after being separated
by SDS-PAGE. Then, membranes were incubated with
indicated primary antibody overnight at 4 °C after being
blocked in 5% BSA dissolved in TBST for 2h at room
temperature, followed by incubation with appropriate
secondary antibody 2h at room temperature. ECL plus
detection reagents (Beyotime, Shanghai, China) was used
for visualized protein bands. The Image ] gel analysis
software was used for densitometric analysis.

RNA extraction and quantitative real-time PCR

The levels of mRNA were measured using quantitative
real-time PCR assay. Relative abundance of genes was
calculated using 27**“" formula, and B-actin as internal
control. Primers attached in the Additional file 1.

Immunofluorescence assay

CD4" T cells were fixed in 4% paraformaldehyde for 10
min after being washed with cold PBS. Then, cells were
permeabilized for 15 min using 1% Triton X-100. After
being washed with PBS, cells were incubation with pri-
mary antibody overnight. After being washed with PBS,
cells were incubation in fluorescence-tagged secondary
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antibody for 1h. Nuclei were counter-stained with
DAPI. Laser scanning confocal microscope (FV3000,
Olympus Corporation, Japan) was used for fluorescence
images capture.

Statistical analysis

Data represent as mean + SEM. Statistical significance is
determined by unpaired two-tailed Student’s t test (or
nonparametric test) and one-way analysis of variance
(ANOVA) followed by Tukey’s post hoc test. Signifi-
cance was defined as P < 0.05.

Results

hPMSC treatment attenuates p-gal-induced CD4" T cells
senescence in mice

The schematic of hPMSC treatment is shown in Fig. la.
We purified CD4" T cells using immunomagnetic beads
and detected ROS changes in CD4" T cells and the effect
of hPMSCs on senescence. The ROS level markedly in-
creased in CD4" T cells collected from D-gal group com-
pared with the control group, while hPMSC treatment
significantly decreased the generation of ROS in compari-
son with that of the PBS treatment group (Fig. 1b—d). In
addition, the activities of SOD, CAT, and GSH-Px de-
creased significantly in the D-gal group compared with the
control group, while hPMSC treatment greatly improved
the activities of SOD, CAT, and GSH-Px in comparison
with that of the PBS treatment group (Fig. le—g).

SA-B-gal is considered a key indicator of aging cells
[26, 27]. To explore CD4" T cell senescence in an aging
mouse model and the effect of hPMSCs on senescence,
we detected the positive rate of CD4" T cells using a
SA-B-gal kit. The number of SA-B-gal-positive CD4" T
cells markedly increased in the p-gal group in compari-
son with that of the control group. Conversely, the num-
ber of SA-B-gal-positive CD4" T cells was markedly
declined in hPMSCs group compared with that of PBS
treatment group (Fig. 1h, i).

Moreover, the expression of aging-related protein expres-
sion of P21 and P16 significantly increased in the D-gal group
compared with the control group, while hPMSC treatment
greatly declined the levels of P16 and P21 in comparison
with that of the PBS treatment group (Fig. 1j, k).

Secretion of proinflammatory factors is thought to be
a key feature of SASP phenotype, including IL-8, IL-6,
and proinflammatory chemokines [28], and increased ex-
pression osteopontin (OPN) was found in senescent
CD4" T cells [29]. The mRNA levels of IL-6 and OPN
was markedly increased in the D-gal group, while
hPMSC treatment greatly declined the levels of IL-6 and
OPN in comparison with that of the PBS treatment
group (Fig. 1I). These data indicated that hPMSC treat-
ment attenuates CD4" T cell senescence in a D-gal-in-
duced aging mouse model.
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hPMSCs promote the expression of Nrf2-mediated
antioxidant genes

Nrf2 plays an important role in regulating inflamma-
tion, senescence, and intracellular redox balance [30].
Here, we found no significant change in total Nrf2 pro-
tein and/or Nrf2 mRNA expression in CD4" T cells
under any treatment condition (Fig. 2a, b, d). However,
when treated with D-gal, the ratio of nuclear/cytoplasm
Nrf2 was markedly declined in CD4" T cells (Fig. 2a, c).
Conversely, hPMSC treatment markedly increased the
ratio of nuclear/cytoplasm Nrf2 in CD4" T cells com-
pared with those of the PBS treatment group (Fig. 2a,
c). These results suggested that hPMSC treatment
upregulates the nuclear transfer of Nrf2 rather than in-
crease the expression of total Nrf2. In addition, we
found that the protein and/or mRNA expression of the
Nrf2 target antioxidant genes NQO1, CAT, HO-1, and
GCLC was markedly lower in the Dp-gal group com-
pared with the control group (Fig. 2a, e—h). Conversely,
hPMSC treatment greatly increased the expression of
these proteins and/or mRNAs in comparison with that
of the PBS treatment group (Fig. 2a, e-h). These data
indicated that hPMSC treatment promoted the nuclear
transfer of Nrf2 and the expression of Nrf2 target anti-
oxidant genes.
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hPMSCs upregulate the expression of Nrf2 via the Akt/
GSK-3B/Fyn pathway

Previous studies indicated that the activation of Nrf2 is
regulated by adjusting Fyn-mediated degradation and
nuclear export of Nrf2 [31]. To investigate the mecha-
nisms by which hPMSC treatment activates Nrf2 tran-
scriptional functions in CD4" T cells, the total and
phosphorylated GSK-3f3, Akt, and nuclear Fyn levels was
measured. As shown in Fig. 3b—e, we found markedly
decreased phosphorylation of GSK-3p and Akt and in-
creased nucleus Fyn level in the p-gal group. hPMSC
treatment markedly raised the phosphorylation of GSK-
3p and Akt and decreased the level of Fyn in the nucleus
in comparison with those of the PBS group. These re-
sults were also supported by examining Nrf2 and Fyn
nuclear localization in the different groups (Fig. 3a).
These results suggest that hPMSCs attenuate CD4" T
cell senescence by upregulating Nrf2 functions via Akt/
GSK-3p/Fyn pathway.

hPMSCs alleviates CD4" T cell senescence in vitro

We next examined the protective effect of hPMSCs on
the aging process of CD4" T in vitro. A total of 4 x 10°
human naive CD4" T cells (CD4CD45RA cells) were iso-
lated and co-cultured with hPMSCs (4 x 10°) for 72 h in
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the presence of anti-CD3/CD28 Dynabeads and IL-2
as a mitogenic stimulus. As shown in Fig. 4a and b,
with the increase of culture time, the expression of
P16 and P21 raised in activated naive CD4" T cells.
However, the increase rate of P16 and P21 expres-
sion in activated naive CD4" T cells was significantly
reduced after hPMSC treatment. And the difference
of the P16 and P21 expression was increased between
hPMSC treatment and non-treatment groups with a
time-dependent manner. In addition, the expression
of P16 and P21 in CD4" T cells were also detected
after being co-cultured with hPMSCs at different ra-
tios (T cells only, hPMSCs: T cells =1:1, 1:10, 1:20,
and 1:50) to explore the dose-dependent effect of

hPMSC treatment. As shown in Fig. 4d and e, the ef-
fect of hPMSCs in alleviating CD4" T cells senes-
cence showed dose-dependence, and the therapeutic
effect was gradually weakened when the cells ratio
was more than 1:10. Furthermore, to explore the
anti-aging effect of hPMSCs on CD4" T cells was
cell-cell contact dependent or not. Here, we tested
the expression of P16 and P21 in CD4" T cells after
indirect (Transwell) or direct co-culture with
hPMSCs for 72h (Fig. 4f, g). As shown in Fig. 4h
and i, we found that hPMSCs attenuate CD4" T cells
senescence under both culture conditions. In
addition, the protective effect of contact co-culture
was better than that of indirect transwell co-culture.
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Inhibition of Akt/GSK-3B/Fyn pathway downregulates the
expression of Nrf2-regulated antioxidant genes in
senescent CD4™ T cells

We further confirmed whether the Akt/GSK-3f/Fyn path-
way was critical in the protective effects observed in senes-
cent CD4" T cells that were treated with hPMSCs. A total
of 4 x 10° human naive CD4" T cells (CD4CD45RA cells)
were isolated and pretreated for 1 h with the Akt inhibitor
LY294002 (30 uM). Then, hPMSCs were added at a 1:10
ratio to CD4" T cells and co-cultured for 72 h in the pres-
ence or absence of anti-CD3/CD28 Dynabeads and IL-2
as a mitogenic stimulus. The schematic showing the ex-
perimental design is shown in Fig. 5a. As shown in Fig.
5b—d, the ratio of nuclear/cytoplasm Nrf2 markedly im-
proved in activated CD4" T cells after being cultured for
72 h, while hPMSC treatment further improved the ratio
of nuclear/cytoplasm Nrf2 in activated CD4" T cells. Fur-
thermore, we found that the mRNA and/or protein ex-
pression of the Nrf2 target antioxidant genes NQO1, HO-
1, CAT, and GCLC were also markedly improved in acti-
vated CD4" T cells (Fig. 5f~m). hPMSC treatment further
increased the expression of these proteins and/or mRNAs
in activated CD4" T cells (Fig. 5f~m). Moreover, we found
markedly increased phosphorylation of GSK-33 and Akt

and decreased nucleus Fyn level in activated CD4" T cells
(Fig. 6b—e). hPMSC treatment significantly increased the
phosphorylation of GSK-3p and Akt and decreased the
nuclear Fyn level (Fig. 6b—e). These results were also sup-
ported by examining Nrf2 and Fyn nuclear localization in
the different groups (Fig. 6a).

Subsequently, we explored the impact of LY294002 on
the expression of Nrf2 and its downstream target genes
in the presence of hPMSCs. Significantly reduced nu-
clear Nrf2, NQO1, HO-1, CAT, and GCLC expression
was observed in hPMSC treated CD4" T cells after
LY294002 supplementation (Fig. 5b—m). These data re-
vealed that the effects of hPMSCs on Nrf2-mediated
antioxidant signal are downstream of the Akt/GSK-3[/
Fyn pathway in senescent CD4" T cells.

Inhibition of the Akt/GSK-3B/Fyn pathway impairs the
protective effects of hPMSCs on senescent CD4" T cells
To further elucidate the protective effects of hPMSCs on
senescent CD4" T cells by Akt-mediated Nrf2 antioxi-
dant signaling, we conducted SA-B-gal staining and de-
tected changes in ROS in CD4" T cells after co-culture
with hPMSCs. As shown in Fig. 7a—e, hPMSC treatment
significantly decreased the percentage of SA-p-gal-



Xiong et al. Stem Cell Research & Therapy (2020) 11:468

Page 8 of 13

P
o ML385
= 1Y294002
) Pre-incubation for 1h
® 8 © anti-CD3/CD28 Dynabeads
® @ “IL-2
4x10° naive CD4*T Cell
- h; t for detecti f
. &0 & Coa T colls sencscence
L oh 72h CD4'T Cell
4x10° hPMSCs Co culture
B C D E
o CD4* T cells 20 o o 25 TS 21 6 e M onaveCDs*T
aﬁgxﬂasugn PO O Z 20| o 1s] g T g ™ activated CD4'T
S o g g <™ O activated CD4*T+hPMSCs
(Iﬂ 0
LY294002 * g 218 z activated CD4*T+hPMSCs
N2 |~ gy — 97kDa  $1° 2. £ +LY294002
= o £
Histon H3 s s s s 17 kDa % 0.5 3 05 Z 05
= O
CNIM2 | e e e s | 97 kDa 0o €0 00l
NQOT  we wwe w w29 kDa
F 20 G 20 H 2.0 I 25 wx wx
HO-1 | wee e e -~ 28KkDa o e ===
CAT == - B0KDa g5 sl T e =L
8 8 B 3 15
GCLC == == mw w= 73kDa 210 210 10 3
B-actin 42 kD: 5 ) 5 g 1.0
’ P —
! a g 05 Tos O s O s
0.0 0.0 0.0 ma 0.0 o
J 20 K 2.0 L 1.5 e M 25 i
RIS T IS
<15 < 15 . - < <z.n e M
Z > - Z 10 Z
['4 4 4 15
Eao E 10 5 5
8 e} g 0.5 o o
Z 05 Tos O s
0.0 0.0 0.0 —r 0.0 -
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d The ratio of nuclear/cytoplasm Nrf2. e The mRNA expressions of Nrf2 in CD4" T cells. f-i The protein level of Nrf2 downstream target genes
GCLC, HO-1, CAT, and NQO1 in CD4™ T cells. j-m The mRNA expressions of GCLC, HO-1, CAT, and NQO1 in CD4* T cells. Data represent the
mean scores + SEM of at least three independent experiments. *p < 0.05, **p < 0.01

positive CD4" T cells and the level of ROS in activated
CD4" T cells. Although the antioxidant enzyme activity
of SOD, CAT, and GSH-Px were improved significantly
in CD4" T cells after being activated, hPMSC treatment
could further improve the antioxidant enzyme activity in
activated CD4" T cells (Fig. 7f-h). Furthermore, the sig-
nificantly decreased percentage of SA-B-gal-positive CD4"
T cells and ROS levels and significantly increased antioxi-
dant enzyme activity were abolished by LY294002 or
ML385 (Nrf2 inhibitor) supplementation. Moreover, the
hPMSC-mediated reduction in the expression of aging-
related mRNA and/or protein for IL-6, OPN, P16, and
P21 were also abrogated by LY294002 or ML385 supple-
mentation (Fig. 7i—k). These data revealed that the pro-
tective effects of hPMSCs on senescent CD4" T cells were
dependent on Akt-mediated Nrf2 antioxidant signaling.

Discussion

CD4" T cells play a central role in the persistence and
development of immune responses. Evidence indicates
that increased oxidative damage is related to the aging-
related decline in immune functions [4, 32]. Based on

the antioxidant and anti-aging effects stem cells have
been thought to be the source of seed cells for tissue en-
gineering and biological therapeutics [16, 33]. However,
there is no evidence showing the protective effect of
MSCs against aging-induced T cell dysfunction. There-
fore, the present study shows that (1) hPMSCs attenuate
CD4" T cell senescence with a time and dose-dependent
manner, (2) hPMSCs played a protective effect by upreg-
ulating Nrf2-mediated antioxidant signal in senescent
CD4" T cells, and (3) hPMSC treatment activate the
Akt/GSK-3B/Fyn pathway resulting in inhibition of Fyn-
mediated degradation of Nrf2, which improved the
nuclear translocation of Nrf2 and the expression of
downstream target antioxidant genes (GCLC, HO-1,
CAT, and NQO1) in senescent CD4" T cells.

The balance between ROS generation and antioxidant
capacity is necessary to ensures physiological levels of
intracellular ROS and T cell-mediated immune response.
Accordingly, excessive ROS generation in T cells will des-
troy the intracellular redox balance and leads to metabol-
ism disorder and immune response dysfunction [19, 34].
Here, we also observed markedly raised ROS level and
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decreased antioxidant enzyme activity of SOD, CAT, and
GSH-Px in the D-gal-treated group. Senescent cells cause
serious damage to the tissue microenvironment by secreting
senescence-associated secretory phenotype, which is charac-
terized by a markedly upregulating in the secretion of
proinflammatory cytokines, matrix remodeling factors, che-
mokines, and proangiogenic factors [35, 36]. In this study,
we also found markedly increased SASP expression (IL-6
and OPN) in senescent CD4" T cells. Furthermore, the levels
of P16 and P21 and SA-f-gal-positive cells increased mark-
edly in senescent CD4" T cells. Our data are consistent with
previous findings of the gradual accumulation of P16 and
P21 expression and increased activity of SA-B-gal during sev-
eral aging-associated diseases and physiological aging [37,
38]. Based on the antioxidant capacity, MSCs and the MSC
secretome derived from distinct tissue origins have been
tested for the treatment of many diseases. Yan et al. found
that hfPMSCs protected against H,O,-induced cell oxidative
damage and apoptosis by upregulating Nrf2/Keapl/ARE
antioxidant signaling [39]. Shalaby et al. reported that MSC
injection was effective in modulating oxidative stress in E.
coli-induced acute lung injury [40]. Here, we reported that
hPMSC treatment markedly decreased the levels of ROS,
SASP (IL-6 and OPN), aging-related protein (P16 and P21),
and the number of SA-B-gal-positive cells in senescent CD4"
T cells. These results indicated that hPMSCs attenuate age-
associated CD4" T cell senescence. As a critical redox sensor,
Nrf2 plays a vital role in antioxidant response in most tissue

cells [41]. Numerous studies have suggested that disrupted
activation of Nrf2 antioxidant signaling leading to decreased
endogenous antioxidant response during aging [37, 42, 43].
In this study, we found that aging accompanies markedly de-
creased nuclear accumulation of Nrf2 and decreased expres-
sion of downstream antioxidant target genes in CD4" T
cells. This may be an important reason for the markedly
decreased antioxidant enzyme activity and increased
level of intracellular ROS in CD4" T cells of the aging
group. Recent studies have found that MSCs exert anti-
oxidant effects by upregulating the Nrf2 pathway. Re-
cently report by Zhang et al. shown that MSCs alleviate
inflammatory responses and acute lung injury that are
induced by paraquat poisoning by upregulating Nrf2
and activating the downstream antioxidant HO-1 [16].
Ni et al. reported that bone marrow mesenchymal stem
cells (BMSCs) attenuated bleomycin-induced oxidative
damage via the activation of HO-1, y-GCS, and NQO1
expression and the Nrf2 pathway [44]. Here, we found
that hPMSC treatment effectively upregulated Nrf2 nu-
clear translocation and the expression of downstream
target genes (GCLC, HO-1, CAT, and NQO1) in CD4"
T cells. And the antioxidant enzyme activity of SOD,
CAT, and GSH-Px were also improved markedly in
senescent CD4" T cells after hPMSC treatment. Our re-
sults suggested the crucial protective effect of hPMSCs
in alleviating ROS-induced CD4" T cells dysfunction by
activating Nrf2 antioxidant signaling during aging.
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The mechanism of Nrf2 regulation has been widely
studied [45, 46]. Several recent studies have suggested
that the activation of Nrf2 was regulated by Akt/GSK-
3B/Fyn-mediated degradation and nuclear export of
Nrf2 [31, 47]. In this study, we detected significantly de-
creased activation of the Akt/GSK-3B/Fyn pathway in
senescent CD4" T cells. Similarly, a D-gal-induced de-
cline in Akt phosphorylation was also found in human
umbilical vein endothelial cells [48]. Recently, Li et al.
reported that human amniotic MSCs efficiently amelior-
ate heat stress-induced skin injury by inhibiting apop-
tosis in skin cells through activating the Akt signaling
pathway [49]. Based on these studies, we hypothesized
that Akt/GSK-3p/Fyn pathway is involved in hPMSC-
induced Nrf2 activation in senescent CD4" T cells. Con-
sistent with this hypothesis, we found that hPMSC

treatment not only increased Akt phosphorylation but
also inhibited GSK-3p activity, which decreased Fyn nu-
clear accumulation. Inactivation of Fyn kinase reinforces
cell antioxidant defense by abolishes ubiquitination-
mediated Nrf2 suppression. Under in vitro, we found
that inhibition of the PI3K/Akt pathway by the inhibitor
LY294002 downregulated Nrf2-regulated antioxidant
genes in senescent CD4" T cells. Moreover, the hPMSC-
mediated reduction in the expression of aging-related
mRNA and/or protein for IL-6, OPN, P16, and P21 were
abolished by Akt inhibitor LY294002 and Nrf2 inhibitor
ML385. In addition, the decreased percentage of SA-p-
gal-positive CD4" T cells and ROS levels by hPMSC
treatment were also abolished by LY294002 and ML385
supplementation. Our findings reveal that the protective
effects of hPMSCs on senescent CD4" T cells depend on
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Fig. 8 Schematic illustration of the protective effects of hPMSCs on CD4" T cells senescence. Aging is accompanied by decreased activation of
Nrf2 antioxidant pathway and dysfunction of redox metabolism in CD4™ T cells. hPMSCs attenuate CD4" T cells senescence via activating Nrf2-
mediated exogenous antioxidant defenses. hPMSCs improve Nrf2 activation mediated by increasing phosphorylation of Akt pathway and

Akt-mediated Nrf2 antioxidant signaling. However, the
direct link between hPMSC treatment and phosphoryl-
ation of the Akt pathway in senescent CD4" T cells re-
mains a key unanswered question.

It has been found that direct cell-cell contact between
MSCs and CD4" T cells was required for the immuno-
modulatory effect of MSCs [50, 51]; therefore, we investi-
gated whether cell-cell contact is necessary in order for
hPMSCs to display their anti-aging effect on CD4" T cells,
by using both indirect (Transwell) and direct co-culture
strategies. We found that also hPMSCs attenuate CD4" T
cells senescence under both co-culture conditions, it was
much weaker in indirect contact than when cells were
allowed to have direct contact. This finding fits with the
evidence that both cell-cell contact and secreted molecules
are necessary for immunomodulatory effect of MSCs on T
cells [52]. The unknown molecular regulator(s) might be
associated with the contact-dependent mechanism under-
lying this event should be further studied.

Conclusions

In summary, as illustrated in Fig. 8, our data demon-
strate a novel role for hPMSCs in attenuating D-gal in-
duced CD4" T cell senescence by activating Nrf2-

mediated antioxidant defenses and that upregulation of
Nrf2 by hPMSCs is regulated partially via the Akt/GSK-
3B/Fyn pathway. Our findings reveal that the administra-
tion of hPMSCs may be a novel therapeutic strategy for
immunosenescence treatment.
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