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The free energy of mechanically unstable phases
A. van de Walle1, Q. Hong1,2, S. Kadkhodaei1 & R. Sun1

Phase diagrams provide ‘roadmaps’ to the possible states of matter. Their determination

traditionally rests on the assumption that all phases, even unstable ones, have well-defined

free energies under all conditions. However, this assumption is commonly violated in

condensed phases due to mechanical instabilities. This long-standing problem impedes

thermodynamic database development, as pragmatic attempts at solving this problem involve

delicate extrapolations that are highly nonunique and that lack an underlying theoretical

justification. Here we propose an efficient computational solution to this problem that has

a simple interpretation, both as a topological partitioning of atomic configuration space and as

a minimally constrained physical system. Our natural scheme smoothly extends the free

energy of stable phases, without relying on extrapolation, thus enabling a formal assessment

of widely used extrapolation schemes.
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P
hase diagrams play a central role in the physical sciences
and computational methods have become a preferred route
to obtain such thermodynamic information1–5. Widely

used frameworks for computing phase diagrams (for example,
computational thermodynamics1,6–9 and cluster expansion10–14

methods) rely on the assumption that all phases remain
metastable with well-defined free energies under all conditions.
Unfortunately, mechanical instabilities are common in solid-state
systems15–18, making free energies undefined (other than by
delicate extrapolation schemes). This problem has prompted a
long search for reasonable and practical definitions of free
energies for mechanically unstable phases6,16–21 and still hinders
thermodynamic database development21. Here we propose an
efficient computational solution with a natural interpretation,
both as a topological partitioning of atomic configuration space
and as a minimally constrained physical system. Our scheme
smoothly extends the free energy of mechanically stable phases,
without relying on extrapolation schemes. The results agree well
with available computational and experimental estimates.

A common approach to handle mechanical instabilities is to
merely assume that the functional form used to represent the data
in a mechanically stable composition range will automatically
provide a reasonable extrapolation into the unstable range.
This ‘lattice stability’ picture underlies the widely popular
computational thermodynamics (also known as CALculation
of PHase Diagram method, or CALPHAD) and cluster
expansion (also called generalized Ising model) frameworks, but
is not without well-documented problems16–19,21. Being
intrinsically noisy, extrapolations from different directions in
composition–temperature–pressure space may not agree.
Without careful analysis, the extrapolated free energy of an
unstable phase may inadvertently lie below the free energy of a
truly stable phase. Conceptually, even defining the free energy of
an unstable phase is difficult. Computational approaches are
being increasingly used to provide independent corroboration to
the CALPHAD assessments22 and to help address the problem of
unstable phases16–19.

This report pursues this line of attack by proposing a general
and efficient computational approach having a firmer theoretical
basis that can be justified from three complementary points of
view. First, it corresponds to a topological partitioning of phase
space based on a simple curvature criterion. Second, it has the
interpretation of stabilizing the system by constraining the
minimum number degrees of freedom. Finally, the proposed
definition yields free energies that vary smoothly as the system
crosses the point of mechanical instability, a property that is
verified both theoretically and through electronic structure
calculations on actual alloy systems. The calculated free energies
of unstable phases agree remarkably well with the ones obtained
via existing extrapolation schemes, thus placing the latter on a
stronger theoretical footing.

Results
Phase space partitioning. From a topological point of view,
phase space can be naturally partitioned into configurations s
based on the curvature of the system’s energy hypersurface
(Fig. 1). In a system of N atoms, let x denote the 3N vector of all
atomic positions, let V(x) denote the potential energy of the
system in that state and let c(x) be the minimum curvature at x,
that is, the minimum eigenvalue of of the Hessian (the matrix of
second derivatives). Hence, c(x) 40 and c(x) r0 correspond to
mechanically stable and unstable regions, respectively. Within the
lattice stability picture, a given lattice L is associated with many
possible ways of assigning the atoms to the lattice sites. For each
assignment s, we denote the ideal (or ‘unrelaxed’) positions of the

atoms by xu
s. (For each s, xu

s is a 3N vector.) In the neighbour-
hood of each xu

s, a small fraction of phase space around xu
s,

denoted Zs, is also associated with the configuration s, to
account for static and/or dynamic displacements of the atoms
around their ideal lattice positions. The free energy obtained from
the classical configurational partition function associated with
lattice L is then given by a 3N-dimensional integral in a familiar
‘coarse-grained’ form11:

FL ¼ � kBTln
X
s2L

Z

x2Zs

expð�bVðxÞÞdx ð1Þ

where b¼ 1/(kBT), T is temperature and kB is Boltzmann’s
constant. In our scheme, the neighbourhood Zs is the largest
connected set containing xu

s over which the minimum curvature
c(x) does not change sign. Within the set Zs, we also define xr

s as
the location of the minimum of V(x) within Zs (that is, the
‘relaxed’ positions) and Vðxr

sÞ is the energy of the system in
configuration s at 0 K. (Supplementary Note 1 provides more
details regarding these definitions.)

When a configuration s0 corresponds to a standard mechanically
stable phase, this definition agrees with the usual notion of a local
potential well: if one were to ‘pull’ on the atoms with an increasing
force, the system would break free of a given local minimum
precisely at the point where a local instability develops (that is, when
the minimum eigenvalue of the Hessian vanishes). For a
mechanically stable phase, relaxation along a path of steepest
descent from xu

s0 towards xr
s0 would always face a positive curvature

along the path. In this case, the integral in equation (1) can easily be
evaluated (for example, within a harmonic approximation around
xr
s0 via a standard lattice dynamics calculation).

When a configuration s is associated with a mechanically
unstable phase, the point of minimum energy xr

s in Zs is
necessarily at its boundary (for otherwise the Hessian would have
had to be positive definite at an interior local minimum). Finding
this minimum generally involves solving a nonlinear constrained
optimization problem. Checking if a given point belongs to Zs at
each step of the optimization can be accomplished with the dimer
method23, which efficiently determines the smallest eigenvalue of
the Hessian.
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Figure 1 | Partitioning of phase space into neighbourhoods. The potential

energy hypersurface V(x) (as a function of the state x of the system)

defines a natural partitioning of phase space into neighbourhoods Zs, based

on the sign of c(x), the local minimum curvature of V(x) (blue: negative and

red: positive). Each neighbourhood (stable or not) can be assigned a well-

defined free energy by integration of the partition function over that

neighbourhood. In this example, the point xu
s corresponds to fcc W while

the point xr
s0 corresponds to bcc W (there are three symmetrically

equivalent basins corresponding to bcc W) and the path joining them is the

well-known Bain path. Also shown are paths of steepest descent from given

‘unrelaxed’ positions (xu
s, xu

s0 ) towards corresponding minima (xr
s, xr

s0 )

within the corresponding neighbourhoods (Zs, Zs0 ). For the mechanically

stable phase, xr
s0 lies at a local minimum while for the mechanically unstable

phase, xr
s lies at an inflection point along a path of steepest descent.
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Fortunately, in the rather common case where the instability
appears tangentially to a minimum energy path joining xu

s and a
neighbouring local minimum xr

s0 (Fig. 1), the point xr
s of

minimum energy in Zs can be easily determined as the inflection
point of a path determined by the nudged elastic band method24.
The cases where the onset of instability does not occur parallel to
the path can be readily detected by performing a standard phonon
analysis around the inflection point. If no other unstable mode is
detected in this fashion, one can be confident that the inflection
point is the appropriate point xr

s (since we have thus already
identified the point of instability onset). This is the situation we
encountered in the cases considered in this study. Note that there
may be multiple possible distinct paths, in which case the one
leading to the minimum V(xr

s) determines xr
s. Different possible

paths can be explored by considering various specific end points of
the nudged elastic band path (for example, different nearby
minima). This ‘path of steepest descent’ picture bears some
resemblance with Vineyard’s transition state theory25, with the
important distinction that an inflection point (rather than a saddle
point) plays a key role in separating the different regions.

Minimally constrained system. This idea of identifying the onset
of instability also leads to a second characterization of the
approach as using a minimally constrained system. At xr

s (and at
any other point of the boundary of Zs), the system is mechanically
stable along all but one direction. (Due to point group symmetry,
a few directions may simultaneously become unstable at the
same point.) Since in the thermodynamic limit (N-N),
the contribution of a single (or a finite number of) mode is
negligible, a harmonic expansion around xr

s is still possible and a
standard lattice dynamics calculation can be performed (unlike
the method proposed in ref. 18). (Other methods may be used to
provide a higher accuracy or to handle the presence of multiple
nearby minima, as detailed in Supplementary Note 1.) The
thermodynamic limit thus justifies merely neglecting the few
unstable modes and the system’s free energy can be defined
by imposing a linear constraint that freezes the few unstable
modes at xr

s. Our scheme can thus be viewed as constructing a
‘minimally constrained’ physical system. Further advantages of
this interpretation are discussed in Supplementary Note 2.

In this scheme, one may be concerned that a single unstable
phonon mode can be surrounded (on the same phonon branch) by
infinitely many stable, but very soft, modes that may still lead to a
divergence of the free energy. However, as observed in ref. 19, the
free energy contribution of a phonon branch with a single point
where frequency vanishes involves the integral of a singularity that
is only logarithmic and thus yields a finite contribution.

Our partitioning scheme may appear somewhat oversimplified
in that it only checks for the mere presence of unstable mode(s)
instead of distinguishing regions that exhibit a different number
of unstable modes. However, such distinction brings little more,
as one has to realize that, in an extended solid, when a phonon
branch touches the zero frequency axis only a small finite number
of unstable modes appear. Beyond that, when a phonon branch
crosses the zero frequency axis, one then has an infinite number
of unstable modes. So the possible numbers of unstable modes are
only 0, m, infinity, where m is a small number (that does not scale
with system size). The value m is only reached at the boundaries
of the regions Zs (where xr

s is located for mechanically unstable
phases), while the values 0 or infinity are reached inside
mechanically stable or unstable regions, respectively.

Smooth extrapolation property. A third way to motivate the
proposed approach is to study the behaviour of the system
when some external variable a (for example, chemical

composition or pressure) is continuously varied until the system
crosses the point of mechanical stability at a¼ a0. To this effect,
we consider a parameter-dependent potential V(x,a). As shown in
Supplementary Note 3, the (constrained) Helmholtz free energy
of the system at positive temperature in neighbourhood Zs is a
smooth function of a because it is given by the integral
� b� 1ln

R
x2Zs

expð� bVðx; aÞÞdx in which both V(x,a) and Zs
vary smoothly in a, except in rare singular cases.

The limit of zero temperature (where the free energy reduces to
the energy) is useful (for example, in the context of cluster
expansions) and provides the most stringent test of smoothness
property (since the free energy integral reduces to the evaluation
of the potential V(x) at a single point xr

s, eliminating the
automatic smoothing effect of the integral). To study this, we
track the location of xr

s as a function of a (which we denote xr(a))
and as well as the corresponding value of the potential V(xr(a),a).
Under our scheme, for aoa0, xr(a) is at a local minimum, while
for a4a0, xr(a) tracks an inflection point. The disappearance of
the local minimum at a¼ a0 signals the point beyond which there
no longer exists a well-defined structural energy (at 0 K) in the
traditional sense. Our approach then provides a way to assign
an energy via the inflection point. We can assume x to be
one-dimensional without significant loss in generality by
considering, once again, the potential along a path joining xu

s
and xr

s0 . We show in Supplementary Note 4 that V(xr(a),a) is a
continuously differentiable function of a at a¼ a0, so our scheme
provides a smooth extension of the usual notion of local energy
minimum. The fact that the minimum and the inflection point
merge just indicates that the two notions agree in the limit case
where they are both applicable, which is an arguably desirable
property. This property is illustrated in Fig. 2 and follows the fact
that, when a local minimum disappears, it does so by joining a
nearby inflection point, which survives in the unstable regime
(as further illustrated in Supplementary Fig. 1). This smooth
extrapolation property is extremely convenient in the context
of phase diagram calculations, because a series approximation
(for example, by orthogonal polynomials) of the system’s energy
that covers both mechanically stable and unstable regions
converges faster if the junction between the two regions is
smooth26 (although the junction is not sufficiently smooth to
allow for a Taylor expansion across the junction). This holds for
both the cluster expansion and the polynomial expansions used in
CALPHAD modelling.

Application to alloy systems. We now demonstrate, through
electronic structure calculations, that the above formal
considerations actually lead to practically useful definitions of
the free energy of mechanically unstable phases that (i) exhibit
excellent smoothness properties and (ii) agree with available
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Figure 2 | Demonstration of the smooth extrapolation property of the

proposed approach. Example of one-dimensional potential (red curves)

(Vðx; aÞ ¼ � aðx� 1Þ� 1
2 ðx� aÞ2þ 1

4 ðx� aÞ4) varying with the value of

some external variable a (such as composition). (a) The energy (at 0 K) is

given by the local minimum (blue) if it exists, and by the inflection point

(green) when instability occurs. (b) The energy thus defined is a smooth

function of a, even at the onset of instability (marked by a vertical dash).
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estimates. As a benchmark, we chose the Ir–Re–W alloy system,
because it is relevant to the design of substitute alloys for
Re in high-temperature applications27 and because it combines
elements that each favours a different lattice: Ir is face-centered
cubic (fcc), Re is hexagonal close-packed (hcp) and W is
body-centered cubic (bcc). We compute the formation energies
of ideal solid solutions as a function of composition, which
simultaneously tests the suitability of our scheme for CALPHAD
and cluster expansion modelling.

Our approach can be implemented by finding a path of steepest
descent connecting the unrelaxed ideal lattice structure to the
fully relaxed structure in one of two ways: (i) by using the nudged
elastic band method, generalized to allow for cell shape
variations28 or (ii) by using ‘damped’ dynamics in which the
atoms are repeatedly displaced in the direction of the force they
experience by a fixed distance. The first option is useful if the
relaxed structure has a lower symmetry than the unrelaxed one,
while the second is computationally more efficient. In accordance
with our definition of Zs and xr

s, we determine the energy of the
inflection point along that path, if it exists, and the energy of the
fully relaxed structure, if it does not, thus suggesting the name
‘inflection-detection’ method. A standard phonon analysis is then
performed about the point of expansion identified in the previous
step. If the number of unstable modes is negligible (that is, does
not scale linearly with the density of the k-point mesh), the free
energy can be obtained from the phonon density of states of the
stable modes in the usual way11. If the number of unstable modes
is not negligible then a more expensive search for the approriate
expansion point must be performed using the dimer method to
identify points of zero minimum local curvature, from which the
minimum energy point must be determined.

When searching for the nearest local minimum, one needs to
allow for possible symmetry breaking (for instance, in the case of
fcc W, distortions along the Bain path must be allowed so that the
nearby minimum is actually bcc W). To obtain phonon entropy

contributions, we simply use a harmonic approximation about xr
s

and a standard lattice dynamics analysis (the single unstable
mode actually has null probability of falling exactly on one of the
sampled k-points, so it requires no special treatment in our
approach).

In Fig. 3, mechanically unstable composition ranges are readily
seen where there is no overlap between the results obtained
with inflection-detection and those obtained with full relaxations
allowing for symmetry breaking. Formation energies obtained by
relaxing the atomic geometry under symmetry constraints
(such that the unrelaxed and relaxed geometries have the same
space group) are seen to have poor extrapolation behaviour,
because the symmetry changes discontinuously with composition
(solid solutions have a low local symmetry, while pure end
members have a high symmetry). Formation energies obtained
under relaxations allowing for symmetry breaking exhibit a
somewhat smoother behaviour, but unfortunately allow the
system to move away from the intended mechanically unstable
phase into the nearby mechanically stable phase (marked in
parentheses). The proposed ‘inflection-detection’ method clearly
yields the most natural extrapolation behaviour while at the same
time avoiding full relaxation towards nearby mechanically stable
phases. In addition, the inflection-detection predictions for pure
elements agree remarkably well with the widely used Scientific
Group Thermodata Europe (SGTE) values29, thus placing them
on a stronger conceptual footing. This agreement is most likely
the consequence of the smooth extrapolation property of the
inflection-detection scheme. While agreement appears less good
for the W hcp–bcc difference, this particular experimental
estimate is based on limited data. For instance, the entropy
difference between these phases is assumed to be zero in the
SGTE data and an estimate which does not rely on this
assumption20 agrees significantly better.

It is instructive to further look into the case of fcc W, because it
has received considerable attention. Figure 4 shows that the
inflection-detection method yields values of the fcc–bcc energy
and entropy difference in very good agreement with recent
computations18. There is considerable spread in the specific
CALPHAD estimates (because many postulated unstable
free energies yield the same observable phase boundaries),
but there is a clear ‘band’ of energy–entropy combinations that
are generally considered consistent with observed phase
boundaries and our estimate falls in the middle of this band.
Supplementary Note 5 provides additional details regarding
the construction of this figure and Supplementary Fig. 2 displays
the same data in an alternative representation (free energy
difference as a function of temperature).
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Over mechanically stable regions, all three calculation methods considered

agree. However, the proposed inflection-detection method provides the

smoothest extrapolation behaviour into mechanically unstable regions,

unlike formation energies obtained with symmetry-constrained relaxations

(in which the structure’s space group is not allowed to change during

relaxations). At the same time, the inflection-detection method avoids full

relaxation towards nearby mechanically stable phases (marked in
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relaxed structures are allowed to have a lower symmetry than the

corresponding unrelaxed ones). The resulting inflection-detection

predictions for pure elements agree remarkably well with the widely used

SGTE values29 and more recent estimates20. (Formation energies are

reported relative to each element’s most stable crystal structure.)
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Discussion
Caution is advised before blindly applying the proposed method
to all phases exhibiting some form of mechanical instabilities.
If a mechanically unstable state s can potentially relax to
many multiple nearby minima, a local analysis of the free
energy based on an expansion about the inflection points may
need to be supplemented by an analysis of the degeneracy
of the paths (which will introduce an additional entropy
contribution). However, if the number of paths does not increase
exponentially with system size, the corresponding entropy
contribution is negligible in the thermodynamic limit.
This is the case in the examples considered in this report, but
would not be the case, for instance, for bcc titanium30. The
case of bcc Ti is an example of a high-symmetry crystal structure
that is mechanically unstable based on a harmonic phonon
analysis but that is nevertheless ‘dynamically stabilized’
because the structure hops between local minima away
from the high-symmetry point where mechanically instability
occurs. (This can even take place in such a way that the
average position of the atoms is at the high-symmetry
configuration.) In such cases, the general formalism of
partitioning phase space based on curvature still holds, but
the dynamically stabilized phase corresponds to the
collections of local mechanically stable potential wells located
away from the high-symmetry point, not the mechanically
unstable region containing the high-symmetry point.
These many different configurations s must be accounted for
to yield the correct free energy and hence a harmonic expansion
about a single local minimum is insufficient. The multiple
local minima can be conveniently handled via cluster expansion
techniques10–14. This situation is rather different from the type
of mechanical instability considered in this paper, because bcc
Ti actually exists in nature while the phases we consider here
(such as fcc W) do not (making the definition of their free energy
more challenging).

In summary, we propose a very simple and efficient method to
define the free energy of mechanically unstable phases that is
grounded in formal statistical mechanics and that exhibits the
desirable smooth extrapolation behaviour into unstable regions
that makes a direct connection with existing extrapolation
schemes. Extensive testing on a particularly challenging ternary
system exhibiting all three common lattices (fcc, bcc and hcp)
confirms the predicted smooth behaviour and shows very good
agreement with available experimental and computational
estimates. The proposed method has been implemented within
the Alloy Theoretic Automated Toolkit (ATAT)31–33 as the
‘robustrelax’ command.

As such, the method offers promising avenue to solve
the mechanical stability problem in the computational
thermodynamics and cluster expansion frameworks that should
benefit the large community of researchers in industry and
academia that depends on phase diagrams to solve materials
design problems in the automotive, aerospace, chemical process
and electronic industries as well as in the general fields of
materials science, solid-state physics, chemistry and planetary
sciences.

Methods
Electronic structure. Electronic structure calculations were performed with the
Vienna Ab initio Simulation Package (VASP) code implementing the projector
augmented wave method34. The PBE (Perdew, Burke and Ernzerhof) functional35

was used, with a plane wave kinetic energy cutoff of 250 eV. The k-point mesh was
automatically determined, as described in ref. 31, to guarantee at least 4,000 k-
points per reciprocal atom. For ionic relaxations and force calculations (forces
converged to 10� 2 eV Å� 1), Fermi smearing of 0.1 eV was used with the
Methfessel–Paxton scheme36 of order 1. For total energy calculation on prerelaxed
geometries, the tetrahedron method with Blöchl corrections37 was used. Phonon

calculations were performed with the supercell method using the fitfc code33

including up to third nearest neighbour force constants in a 64 atom supercell with
0.2 Å displacements.

Solid solution model. Solid solutions were modelled using Special Quasirandom
Structure (SQS)38, generated by the mcsqs code39. These SQS contain 32–48 atoms
and ensure that at least the third nearest neighbour pair correlations match those of
the disordered state and that all three-body correlations with a diameter below the
third nearest neighbour pairs do not deviate by 41/8 from their disordered state
values.

Steepest descent path determination. Nudged elastic band method calculations
were performed with six images connecting an ideal unrelaxed structure to its fully
relaxed counterpart. For systems with periodic boundary conditions (as considered
here), the ‘unrelaxed’ structure is obtained by freezing all ionic degrees of freedom
as well as all cell shape parameters, except for the volume, which is allowed to
equilibrate (this eliminates numerical difficulties associated with very large and
unphysical energy changes). To determine the fully relaxed structure, symmetry
breaking was necessary for the high-symmetry pure elements. Symmetry breaking
was along the Bain path for fcc–bcc instabilities and along the Burger path for
bcc–hcp instabilities. For the SQS, symmetry breaking was unnecessary. When six
images were found to be insufficient to resolve the energy landscape (this issue was
concentrated in the bcc SQS structures), a more efficient steepest descent algorithm
was used to decompose the path into 10–80 images. In all cases, piecewise cubic
polynomial interpolation was used to locate the inflection point accurately.
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15. Grimvall, G., Magyari-Köpe, B., Ozolins, C. & Persson, K. A. Lattice instabilities
in metallic elements. Rev. Mod. Phys. 84, 945–986 (2012).

16. Craievich, P. J., Weinert, M., Sanchez, J. M. & Watson, R. E. Local stability of
nonequilibrium phases. Phys. Rev. Lett. 72, 3076–3079 (1994).

17. Einarsdotter, K., Sadigh, B., Grimvall, G. & Ozolins, V. Phonon instabilities in
fcc and bcc tungsten. Phys. Rev. Lett. 79, 2073–2076 (1997).

18. Ozolins, V. First-principles calculations of free energies of unstable phases: the
case of fcc W. Phys. Rev. Lett. 102, 065702 (2009).

19. Guillermet, A. F., Ozolins, V., Grimvall, G. & Krling, M. Phase stabilities in the
Pt-W system: thermodynamic and electronic-structure calculations. Phys. Rev.
B 51, 10364–10374 (1995).

20. Saunders, N., Miodownik, A. & Dinsdale, A. Metastable lattice stabilities for the
elements. Calphad 12, 351–374 (1988).

21. Hickel, T., Kattner, U. R. & Fries, S. G. Computational thermodynamics:
recent developments and future potential and prospects. Phys. Status Solidi B
251, 9–13 (2014).

22. Wang, Y. et al. Ab initio lattice stability in comparison with CALPHAD lattice
stability. Calphad 28, 79–90 (2004).

23. Henkelman, G. & Jonsson, H. A dimer method for finding saddle points on
high dimensional potential surfaces using only first derivatives. J. Chem. Phys.
111, 7010–7022 (1999).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8559 ARTICLE

NATURE COMMUNICATIONS | 6:7559 | DOI: 10.1038/ncomms8559 | www.nature.com/naturecommunications 5

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


24. Mills, G., Jonsson, H. & Schenter, G. K. Reversible work transition state theory:
application to dissociative adsorption of hydrogen. Surf. Sci. 324, 305–337 (1995).

25. Vineyard, G. H. Frequency factors and isotope effects in solid state rate
processes. J. Phys. Chem. Solids 3, 121–127 (1957).

26. Lorentz, G. Approximation of Functions (Chelsey Publishing Co., 1986).
27. de Jong, M., Olmsted, D. L., van de Walle, A. & Asta, M. First-principles study

of the structural and elastic properties of rhenium-based transition-metal
alloys. Phys. Rev. B 86, 224101 (2012).

28. Sheppard, D., Xiao, P., Chemelewski, W., Johnson, D. D. & Henkelman, G. A
generalized solid-state nudged elastic band method. J. Chem. Phys. 136, 074103
(2012).

29. Dinsdale, A. T. SGTE data for pure elements. Calphad 15, 317–425 (1991).
30. Petry, W. et al. Phonon dispersion of the bcc phase of group-iv metals. i. bcc

titanium. Phys. Rev. B 43, 10933–10947 (1991).
31. van de Walle, A. & Ceder, G. Automating first-principles phase diagram

calculations. J. Phase Equilib. 23, 348–359 (2002).
32. van de Walle, A., Asta, M. & Ceder, G. The Alloy Theoretic Automated toolkit:

a user guide. Calphad 26, 539–553 (2002).
33. van de Walle, A. Multicomponent multisublattice alloys, nonconfigurational

entropy and other additions to the Alloy Theoretic Automated Toolkit.
Calphad 33, 266–278 (2009).

34. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector
augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

35. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation
made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

36. Methfessel, M. & Paxton, A. T. High-precision sampling for brillouin-zone
integration in metals. Phys. Rev. B 40, 3616–3621 (1989).
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