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ABSTRACT Wetlands in the Tibetan Plateau play a crucial role in global carbon cy-
cling. Here, we report the metagenome-assembled genomes (MAGs) of two hydro-
gen-dependent methanogens from the Zoige wetland of the Tibetan Plateau. The
novel species belong to Methanomassiliicoccales, the seventh euryarchaeal methano-
genic order.

Methanogens are a group of archaea that control methane production in wet-
lands. Wetlands in the Tibetan Plateau are the major methane emission center

in China (1). The genome research on uncultured methanogens in this extreme envi-
ronment is of great importance in explaining the methane cycle in high-altitude
wetlands.

Previously, extant methanogenic organisms were thought to belong exclusively
to the phylum Euryarchaeota (2, 3), although more recently this assertion has been
challenged by reports about the Bathyarchaeota (4, 5), Verstraetearchaeota (3, 6),
and newly discovered Cyanobacteria (7, 8) phyla. Methanogens from the Metha-
nomassiliicoccales order are called the seventh order of methanogens and are
widely distributed in various environments (9). Here, we announce two metage-
nome-assembled genomes (MAGs) of novel Methanomassiliicoccales species with
medium completeness.

Two sediment cores from the Flower Lake National Reserve of the Zoige wetland
(102°529E, 33°569N) were sampled using sampling equipment (10 cm in diameter). The
sampling site was water saturated, and the standing water depth was about 20 cm.
Sediment cores were mixed thoroughly and kept at 280°C before use. DNA was
extracted from the two sediment samples using the FastDNA spin kit for soil (MP
Biomedicals, Cleveland, OH, USA) following the manufacturer’s instructions. A shotgun
library was prepared with the NEBNext kit. Sequencing was completed on an Illumina
HiSeq 2� 150-bp platform. The average amount of metagenomic raw data for each
sample was approximately 30 Gbp.

Sequencing quality for each sample was checked with FastQC (v.0.11.8) (10), and
low-quality reads were trimmed using Trimmomatic (v.2.1.7) (11). Clean data were
assembled individually using MEGAHIT (v.1.0) (12). To obtain MAGs, sequencing reads
for each sample were mapped to the contigs using Bowtie 2 (v.2.2.5) to obtain differen-
tial coverage of each sample (13); genome binning was conducted based on these dif-
ferential coverage files with MetaBAT (14) using a 1,000-bp contig cutoff value. The
completeness and contamination of the MAGs were estimated using CheckM (v.1.1.2)
(15). MAGs containing mcrA genes were selected by GraftM (v.0.13.1) (16) and anno-
tated using Prokka (v.1.14.6) (17). rRNA coding regions (16S and 23S) of MAGs were
predicted with Barrnap (https://github.com/tseemann/barrnap). Default parameters
were used for all software unless otherwise specified.
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The two MAGs obtained in this study have genome sizes of 1.05Mb (bin 47) and 1.67Mb
(bin 107), and the genome completeness values were 67.7% with 2.42% contamination and
86.6% with 4.84% contamination, respectively (Table 1). The MAGs were both identified as
Methanomassiliicoccales strains according to the mcrA gene taxonomy assignment, with
81.3% and 83.8% similarities to the Massiliicoccales Lake Pavin MAG according to an online
BLAST search of the NCBI nucleotide database ofmcrA genes (18).

The two MAGs contain all genes required for hydrogen-dependent reduction of
methanol to methane, as proposed for other Methanomassiliicoccales strains (18).
This announcement provides the basis for isolating this clade from environments.

Data availability. The Methanomassiliicoccales genome sequences have been depos-
ited in GenBank under the accession numbers JACXTO000000000 and JACXTP000000000.
The versions described here are the first versions. All metagenomic data generated from this
announcement are available under BioProject number PRJNA644254. Metagenomic bins
can be found under BioSample numbers SAMN15455434 and SAMN15455435.
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