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Cooper Pairing in A Doped 2D 
Antiferromagnet with Spin-Orbit 
Coupling
Jingxiang Zhao1 & Qiang Gu1,2

We study the two-dimensional Hubbard model with the Rashba type spin-orbit coupling within and 
beyond the mean-field theory. The antiferromagnetic ground state for the model at half-filling and the 
Cooper pairing induced by antiferromagnetic spin fluctuations near half-filling are examined based on 
the random-phase approximation. We show that the antiferromagnetic order is suppressed and the 
magnetic susceptibility turns out to be anisotropic in the presence of the spin-orbit coupling. Energy 
spectrums of transverse spin fluctuations are obtained and the effective interactions between holes 
mediated by antiferromagnetic spin fluctuations are deduced in the case of low hole doping. It seems 
that the spin-orbit coupling tends to form s+p-wave Cooper pairs, while the s+d-wave pairing is 
dominant when the spin-orbit coupling is absent.

Spin fluctuations may result in effective attractive interactions between fermions, and this mechanism plays an 
important role in understanding unconventional superconductivity1. And it attracts much attention till today2,3. 
For ferromagnetic or nearly ferromagnetic Fermi systems, spin fluctuations are favorable to spin-triplet Cooper 
pairs. For example, it was suggested that the p-wave triplet Cooper pairing in superfluid 3He, a nearly ferromag-
netic Fermi liquid, should be induced by spin fluctuations4. Furthermore, Fay and Appel pointed out that the 
longitudinal ferromagnetic spin fluctuations could cause p-wave effective attraction within the ferromagnetic 
state5. This theory provides a candidate explanation on the superconductivity in the ferromagnetic supercon-
ductors, such as UGe2

6 and UCoGe7, whose superconductivity (SC) state coexists with the itinerant-electron 
ferromagnetic order.

Similarly, antiferromagnetic (AFM) spin fluctuations can also give rise to Cooper pairing. Schrieffer, Wen and 
Zhang have proposed an AFM spin fluctuation mechanism, the spin-bag model8, to explain the high-Tc super-
conductivity9,10. This model is based on the half-filled Hubbard model on the square-lattice, which favors the 
AFM ground state in the large-U limit and thus corresponds to the AFM order of the parent materials of cuprate 
superconductors. Schrieffer et al. suggested that the AFM spin fluctuation should induce d-wave Cooper pairs 
between holes in the weak hole-doping case.

The AFM order is also present in many other superconductors or their parent materials, including 
heavy-fermion and iron-based superconductors. For instance, the SC phase of the heavy fermion material CePt 3Si  
has been proved to coexist with antiferromagnetism11, and so has the low-pressure SC phase of CeCu2Si2

12. 
Various AFM orders appear in iron-based superconductors, such as the collinear AFM state in LaO1−xFxFeAs13, 
the bi-collinear state in Fe1+ySexTe1−x

14, and the blocked checkerboard AFM order in K0.8Fe1.6Se2
15. Recently, some 

groups report the microscopic coexistence of antiferromagnetism and superconductivity in the iron-based mate-
rials16,17. It is naturally supposed that AFM spin fluctuations might play an important role in iron-based super-
conductors. For example, some reports suggest that the anti-ferromagnetic spin fluctuations of LaFeAsO1−xFx

18 
and Fe1−xCoxSe19 should mediate the s± wave superconducting state.

One more important issue is that the spin-orbit coupling (SOC) may be present in some of forgoing super-
conductors. Particularly, the SOC is inevitably resulted from the lack of structure inversion symmetry and 
therefore it must be considered in the non-centrosymmetric (NCS) superconductor20. SOC can cause the admix-
ture of spin-up and spin-down21,22, which essentially influences the spin degree of freedom. Resulting from the 
spin-mixing, SOC could lead to the mixture of spin-singlet and spin-triplet Cooper pairs23. Actually, SOC has 
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stimulated much research interest in recent years since it plays an important role in other condensed matter sys-
tems, e.g. Quantum spin Hall insulator24 and atomic Fermi superfluid25.

Due to the effect of SOC on spin states, it is infered that SOC could affect the spin fluctuations and influence 
the orbital symmetry of Cooper pairs mediated by spin fluctuations. Various models were studied to discuss the 
role of SOC in the orbital symmetry. Some papers employed a two-band model and stated that SOC could split the 
degeneracy of p-wave states26. This model combined the itinerant electrons with local moments and could help 
understand some unconventional superconductivity, e.g., Sr2RuO4. But it was not suitable for some superconduc-
tors whose SC and AFM order originated from the same band electrons, for example, some NCS superconduc-
tors which also exhibited the AFM order. Therefore, a single-band model was necessary. Some papers studied a 
single-band Hubbard model with SOC27,28 and reported that SOC might be in favor of the d+f-wave pairing states 
or p+d-wave states. However, these papers neglected the AFM fluctuation. In some intensive studies on NCS 
superconductivity, the AFM fluctuation was introduced in different ways. Some people selected parameters to 
fit spin susceptibility into experimental results manifesting anti-ferromagnetism29, while some people employed 
a staggered field to describe the AFM order30. All of them reported that the mixture of spin-singlet and triplet 
Cooper pairs was resulted from SOC and the orbital symmetry was obtained, e.g., s+p-wave or p+d+f-wave 
states. But the AFM order could not consistently obtained in these papers. Thus a better single-band model is 
necessary for consistently studying the effect of SOC on the AFM order and fluctuations.

In this paper, we investigate the half-filled Hubbard model with the Rashba SOC in a two-dimensional (2D) 
square lattice. The central issue of this paper is to examine the influence of SOC on the Cooper pairing interme-
diated by the AFM spin fluctuations. Our model is a single-band model, which suggests both AFM order and 
superconductivity are originated from one-band electrons. It is might help for understanding the magnetic prop-
erties and pairing symmetry of some quasi two-dimensional layered superconductors with SOC, for instance, 
iron-based superconductors31,32 and NCS33.

The paper is organized as follows. The model is described in Section II. Ground state properties for the model 
at the half-filling are studied based on the mean-field approximation and the Random Phase Approximation. The 
sublattice magnetization, the spectrum of transverse spin excitation and the ratio of transverse versus longitudinal 
spin susceptibility at (π, π) are calculated. Section IV discusses effective interactions between holes induced by 
the AFM spin fluctuations in the case of weak hole doping, with the emphasis on pairing effects in the s, p, and d 
channels. The conclusions are given in the last section.

The mean-field model
We start from a single-band half-filled Hubbard model with SOC in a two-dimensional square lattice.
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where εk = −2t(coskxa + coskya) is the kinetic energy arising from electron hoping between the nearest neigh-
bours with a being the lattice constant. The second term of Hamiltonian describes the spin-orbit coupling with α 
being the coupling strength. Here the type of SOC takes the form as27,30: s(



k ) =  σ∑σ σ σ σ σ σ′ ′ ′
†c ck k, , , ,  and 

g(


k) = (−vy(


k), vx(


k), 0), where vx,y(

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0), protects the symmetry and periodicity of the Brillouin zone. In the following, we assume a = 1 for simplicity.
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2 2 , the term of SOC, −2tα∑k(sinky ± i sinkx) can be denoted as 

α φ∑ ±ˆv k i( )exp( )k k , where φk = arctan(sinkx/sinky). In this case, the Hamiltonian has the form,
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In the presence of the AFM order, by using the mean-field approach (MFA), the interaction term can be writ-
ten as σ− ∑ σ σ σ σσ σ′ + ′ ′

†US c ck k Q
z

k, , , ,
3,8, where Q = (π, π), the nesting vector of Fermi surface as shown in Fig. 1(a), and 

=S G S G N/Q
z , where σ= ∑ σ σσ σ+ ′ ′

†S c cQ
z

k k Q
z

k, ,  and |G〉 is the ground state of the model. Therefore, the AFM 
order can be studied consistently. When the spin-orbit coupling is ignored, |G〉 is the same as the ground state of 
the antiferromagnetism defined as in ref.8. Through introducing new fermion-operators fk,η (η = 1, 2, 3, 4), the 
Hamiltonian can be diagonalized via the Bogliubov transformation. In the process of diagonalization, some equa-
tions between k and k + Q are: (i) the nesting Fermi surface results in εk + Q = −εk; (ii) the principal value of φk is 
confined in (−π, π]. Accordingly φk + Q = φk + π is defined to keep + φ− +v k Q e( ) i k Q = − φ−v k e( ) ik k and φ−k = φk + 
π to preserve g(−k) = −g(k). The relationship between electron operators and the quasi-particles operators is 
expressed as,
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,
, ξ= + Δ± ±Ek k, ,

2 2  is the eigenvalue with ξk,± = εk ± αvk and Δ = 
−US/2. The diagonalized Hamiltonian can be formed as below,
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Where, ∑′ represents the summation extending over the magnetic zone without SOC displayed in Fig. 1(a). The 
Fermi surface and the energy spectrum of electrons are split by SOC as shown in Fig. 1(a) and (b), respectively. 
The nesting Fermi surface which stands for the AFM order is broken by SOC, which suggests that SOC should 
suppress AFM order. Moreover, the system still retains the periodicity as shown in Fig. 1(b) so the first BZ can 
still represent the symmetry of the model. So the numerical analysis will be reduced in the first BZ rather than 
magnetic BZ in the presence of SOC.

In the half-filled case, the conductive bands, 
+fk

c
,  and 

−fk
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,  
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,  are valence bands which are full filled by particles, so the ground state can be defined as:
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Ground state properties on the random-phase approximation
To quantitatively study the effect exerted by SOC on the AFM order, we employ the foregoing definitions of 
ground state to obtain the self-consistent equation of the sublattice magnetization S:
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3,8. We show the relationship between S and the Hubbard interaction U/t in Fig. 2(a). 
It must be pointed out that the MFA is more applicable when the Hubbard interaction is strong, so U/t > 1 is 
shown. It does not imply that a critical value of Hubbard interaction is defined. As shown, S increases as the 
Hubbard interaction U is enhanced. To study the role of SOC theoretically, the strength of SOC is selected from 0 
to 2. The results with α = 0 correspond to the absence of SOC8. If U is fixed, we can find that S decreases with α 
increased. Figure 2(b) exhibits that the weaker the interaction U is, the smaller SOC suppressing the magnetiza-
tion to zero is. These results suggest that the Hubbard interaction be beneficial to AFM order, while AFM order 
should be suppressed by SOC. The suppression of S by SOC might be due to the width-broadening of the Hubbard 
bands by SOC. It is similar to the decreasing of Hubbard interaction. The system might be in favor of paramag-
netic metal when U is small34. As shown in Fig. 2(a), the weaker U is, the smaller S is.

It is known that the MF approach can give a qualitative description. To quantitatively study the effect of the 
Hubbard interaction U on the sublattice, we have to discuss the effect of fluctuations on the ground state. Based 
on the ground state of the model, the definitions of charge and spin correlation functions of electrons are ref.8,
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00

Figure 1.  (a) The schematic of the first Brillouin zone; the solid line represents the Fermi surface at half-filling 
without SOC. The dashed lines represent the split Fermi surfaces resulted from SOC. (b) The schematic diagram 
of the eigenvalues. It is shown that the period of energy bands are protected by Rashba SOC. The dotted line 
locating in the middle of figure represents the chemical potential.
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|G〉 is the ground state defined by Eq. (8). In the case of half-filling, the non-vanishing terms of Eqs (10) and (11) 
are
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where, t < t1. The reason lies in that a particle only annihilates firstly, then creates in the fulled valence bands and 
the process is just the opposite one in the empty conduction bands.

Based on the transformation, Eqs (3)∼(6), the correlation functions of quasi particles can be obtained as 
below,
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The correlation function of electrons is,
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Figure 2.  (a) The sublattice magnetization S of the system with SOC obtained by the mean-field approach. α is 
the strength of the reduced spin-orbit coupling. (b) The sublattice magnetization S v.s. the strength of SOC α for 
different Hubbard interaction U, which is obtained by mean-field approach.
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non-zero as the spin-mixing effect caused by SOC. The transverse spin correlation functions of electrons are 
presented are as follows,
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In the limit of α = 0, all the correlation functions are the same as ref.8. The subscript o and Q in Eqs (21)∼(24) 
and (25)∼(28) are q′ = q and q′ = q + Q respectively.

χ ω χ ω δ χ ω δ′ = ′ − + ′ − + .+− +− +−
  

q q q q q q q q Q( , ; ) ( ; ) ( ) ( , ) ( ) (29)fi o fi Q fi0, , ,

With the Random-Phase-Approximation theory (RPA), we can arrive at the charge and spin susceptibilities 
including fluctuations, Eqs (30), (31) and (32), respectively.
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To investigate the effect of SOC on the spin fluctuations, the energy spectrum of transverse spin fluctuations 
is deduced by calculating the pole of transverse dynamical spin susceptibility, as shown in Fig. 3. In the absence 
of SOC, there is a gapless point at q = (π, π), which is consistent with the Goldstone theorem35. However, a gap 
opens in the presence of SOC, even though the AFM order remains. The similar phenomenon is also reported in 
ref.36 which have discussed the magnetic excitation in Sr2IrO4. A gap will open at the (0, 0) point, which is due to 
the spin-orbit coupling. That the gap opens in the presence of SOC might result from that SOC breaks the contin-
uous symmetry37,38, so Goldstone theory is not applicable.

To study the effect of the fluctuations on the sublattice magnetization, we use the definition of sublattice mag-
netization according to ref.8,39,

∫∑ ω
π

σ ω= − ′ +S i
N

d G k k QTr
2

[ ( , ; )]
(33)k

z 0

with ignoring fluctuations, we define the single-particle Green function with respect to the ground state, |G〉,
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ω δ
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− +
+
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− +

.
+ −
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In this case,
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1 2 ,

(35)k k k

which is the same as the result of the MFA, Eq. (9). When the fluctuations are considered in our model, the full 
Green’s function can be obtained by Dyson’s equation (Fig. 4) with the self-energy which is established by Eqs 
(30)∼(32).

ω ω
ω

′
=

′
− Σ ′

αβ αβ
αβG k k G k k

k k1
( , ; )

1
( , ; )

( , ; ) ,
(36)

0

Figure 3.  The energy spectrum of transverse spin fluctuation with different strength of SOC, which is along the 
symmetry route (0, 0) → (0, π) → (π, π) → (0, 0).

Figure 4.  The Feynman diagram of Green function modified by longitudinal spin-fluctuations and transverse 
spin fluctuations. The double lines are the single-particle Green function of the quasi-particles.



www.nature.com/scientificreports/

7Scientific RepOrtS |  (2018) 8:892  | DOI:10.1038/s41598-017-19038-7

where k′ = k + Q. Replacing G0 by the full Green function G in Eq. (35), the numerical results of the sublattice 
magnetization is shown in Fig. 5. The magnetization is suppressed by the SOC, which agrees with the results 
obtained by MFA. Comparing with the MFA, the value of S is smaller with the same strength of SOC.

The ratio of the transverse susceptibility to the longitudinal one with q = (π, π) is calculated. The depend-
ence of ratio on the SOC is exhibited by Fig. 6. The Hubbard interaction U = 9.7 t is selected to correspond with 
ref.39, which suggests that the anisotropy of antiferromagnetic fluctuations of Ba0.68K0.32Fe2As2 may be due to the 
spin-orbit coupling. The parent material of Ba0.68K0.32Fe2As2 emerges AFM order and can be regraded as quasi 
two-dimensional square lattice32, which can be illuminated via our model. The role of SOC in the anisotropy of 
susceptibility for Sr2RuO4 was also reported by Eremin et al.40, which is agreed with our study. Our calculation 
shows that (1) the ratio is 1 when α = 0, that is the spin fluctuations are isotropic in the absence of the spin-orbit 
coupling; (2) the ratio is larger than 1 with the increasing of the coupling, which indicates that the spin-orbit 
coupling can result in an anisotropy of the spin-fluctuations which agrees with ref.39; (3) ratio decreases with the 
Hubbard interaction decreased when we fix the strength of coupling.

Cooper pairing near half-filling
In the absence of SOC, the anti-ferromagnetic fluctuations of the weak holes doped Hubbard model favors d-wave 
paring, which has been used to give an interpretation on the cuprates superconductors8. In this section, the effec-
tive interaction intermediated by anti-ferromagnetic spin fluctuations with SOC is studied and the symmetry of 
Cooper pairs is discussed. We now assume that the system is weak holes doped. At half-filling, the valence band 
is full and the conduction band is empty. The electrons of the top of the valence band are removed in the case of 

Figure 5.  The sublattice magnetization S is affected by fluctuations for different SOC, which are obtained by 
RPA.

Figure 6.  The ratio of the transverse and longitudinal susceptibility for different Hubbard interactions. The 
triangle, circle and rhombus are together on “1” when the strength of SOC is zero.
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weak hole doping, and the system can emerge a metallic behavior and superconductivity resulted from the holes. 
First, the BCS type Hamiltonian is,

∑ ∑

∑ ∑

∑ ∑
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− ′
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,

,

where Vc(k′, k) is induced by charge-fluctuations and Vz(k′, k) and V + − (k′, k) are caused by longitudinal and 
transverse fluctuations, respectively.

χ′ = − ′V k k U k k( , ) 2 ( , ) , (38)c RPA
00

χ′ = ′V k k k k( , ) ( , ) , (39)z RPA
zz

χ′ = ′ .+−
+−V k k k k( , ) ( , ) (40)RPA

It is well known that the symmetry of pairs can be shown by the energy gap of superconductors, ΔSC, defined 
by BCS theory as,

k V k k k
E k

( ) ( , ) ( )
( ) (41)

SC
k

SC

k SC
∑∆ = ′

∆ ′

+ ∆ ′
.

′

Based on Eq. (41), we can find that the symmetry of ΔSC(k) is the same as the interaction on V(k). In our 
model, the function ΔSC(k) cannot be known directly, so the self-consistent equation is too difficult to solve. And 
thus we can discuss the symmetry of gap according to the symmetry of the interaction. To find out dominant 
channels of the pairing interaction, the interaction will be expanded in spherical harmonics function5,41, that is 
the partial wave expansion (see in the Section of Method).

According to the BCS-type Hamiltonian, the interactions can be rewritten as follow,

† † † †∑ ∑= ′ + ′ .
σ

σ σ σ σ
′

′ ↑ − ′ ↓ − ↓ ↑
′

′ − ′ −H V k k c c c c V k k c c c c( , ) ( , )
(42)

int
k k

S
k k k k

k k

T
k k k k

,
, , , ,

, ,
, , , ,

The spin-singlet interaction VS(k, k′) and triplet VT(k, k′) which consist of the interactions arising from the 
charge, longitudinal and transverse spin fluctuations are,

′ = ′ + ′ − ′+−V k k V k k V k k V k k( , ) ( , ) ( , ) 2 ( , ) , (43)S c z

′ = ′ − ′ .V k k V k k V k k( , ) ( , ) ( , ) (44)T c z

To study the effect of SOC on the symmetry, we numerically calculated the strength of l = 0, 1, 2, that is s-, 
p- and d-wave channel of the interaction, VS and VT, with the strength of SOC α = 0.01, 0.1, 0.2, 0.3, 0.5, 0.8, 1.0. 
The relation of the strength of partial wave for interaction to SOC has been shown in Fig. 7. We can find that the 
values of l = 0 and l = 1 are negative and l = 2 is positive. In order to facilitate comparison, the results without 

Figure 7.  The strength of interactions for l = 0, 1, 2, which corresponds to s-, p-, and d-wave pairing, 
respectively.



www.nature.com/scientificreports/

9Scientific RepOrtS |  (2018) 8:892  | DOI:10.1038/s41598-017-19038-7

SOC are also calculated. The strength of s-wave potential, l = 0, is about −0.17, and p-wave, l = 1, is position and 
very small, 0.05. For l = 2, d-wave, the strength is about −0.14. It means that SOC is in favor of s- and p-wave 
attractive interactions mediated by AFM fluctuations other than d-wave, which is different from the case with-
out SOC3,8, where s and d-wave pairs is dominant. Meanwhile, the strength of p-wave potential is as strong as 
s-wave. So the spin-orbit coupling could bring about the mixture of spin-singlet and spin-triplet Cooper pairs 
and the orbital degree of freedom is an admixture of s+p-wave. As mentioned in the introduction, SOC could 
lead to the mixture of spin-singlet and spin-triplet Cooper pairs23. For spin-singlet Cooper pairs, the space wave 
function should be symmetric, for example, s-wave or d-wave, and for triplet, the space wave function should 
be antisymmetric, e.g. p-wave or f-wave. Our calculations suggest that s+p-wave Cooper pair be favorable with 
respect to the model considered in our works. It may be helpful in understanding the pairing symmetry of NCS 
superconductors. Many works on NCS superconductors have reported that the spin degree of freedom is the 
mixture of spin-singlet and triplet28,42,43, however a consensus on the symmetry of orbital degree of freedom 
has not been reached. According to our calculations, SOC tends to form the s+p-wave Cooper pairs which is 
mediated by AFM fluctuations when the Hubbard model is adopted, which is agreed with refs29,30. In contrast to 
the two papers, we calculate the partial waves of the effective interaction to study the pairing symmetry, which is 
more direct than them. Refs27,43 suggest that SOC should induce d+f or s+f pairing states, but their models are 
different from ours. For the two-band models, some papers also indicate that SOC could play an important role in 
the p-wave pairing state. Sigrist et al.26 and Annet et al.44 have studied t-J model and an attractive Hubbard model, 
respectively. Both of them stated that the chiral p-wave state of Sr2RuO4 should be due to SOC.

For the s- and p-wave, the strength of interaction decreases with the increasing of SOC when the strength is 
strong. It implies that the large SOC might be bad for the superconductivity. However, the interaction increases 
initially with SOC and decreases afterwards. It seems that the SOC suppresses the magnetization, which possibly 
enhance the spin fluctuations. Furthermore, the interaction induced by spin fluctuations is promoted. When the 
strength of SOC is very large, all the pairing potentials are suppressed by SOC. It indicates that large SOC is bad 
for superconductivity which is agreed with the dependence of critical temperature on SOC45. Figure 8 illustrate 
the dependence of interactions on the momentum. According to Eq. (41), it could describe the symmetry of the 
gap of superconductivity. Obviously, the s-wave is angular-isotropy, and it may be a conventional s-wave state. 
For p-wave, the state should be l = 1 and m = 0 in terms of the Legendre function of two dimension. And d-wave 
potential is also m = 0, which is the same as p-wave.

Conclusion
In summary, we have studied the ground state of the two-dimensional Hubbard model with Rashba SOC on a 
square lattice. Both the results obtained by MFA and RPA show that the sublattice magnetization decreases with 
the increasing of SOC for a fixed Hubbard interaction. Moreover, the magnetization for RPA is smaller than MFA 
with the same U and α. The suppression of AFM order caused by SOC might be resulted from that SOC broadens 
the sub-Hubbard bands. Besides, a gapped energy spectrum of transverse spin fluctuations and an anisotropy of 
spin susceptibility, which are brought about by SOC, are present.

Furthermore, we have discussed the effective pairing interactions between electrons mediated by AFM spin 
fluctuations in the case of weak hole doping. The calculations about the partial waves of interactions indicate that 
p-wave potential can be induced by SOC. The d-wave potential which is dominant without SOC is suppressed by 
SOC. Moreover, the strength of s-wave always exists whether SOC is present or not. It seems that the SOC tends 
to form s+p paring rather than s+d pairing.

Note added. We are just aware of a numerical work studying the mechanism of p-wave Cooper pairs46. They 
state that the degeneracy of various p-wave states is split by the magnetic anisotropy. The anisotropy might result 
from SOC. This paper indicates that the symmetry of Cooper pairs mediated by spin-fluctuations is still a hot 
topic.

Method
In this section, we give some details about our calculations of fluctuations and the partial waves of interactions.

Random Phase Approximation.  To investigate effects of fluctuations, we employ the RPA which includes 
all bubble Feynman diagrams and thus is more reliable than the mean field theory. It is noted that, due to the 

Figure 8.  The dependence of interactions on the angle of momentum for l = 0, 1, 2, which corresponds to VS, 
VP, and VD, respectively.
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spin-mixing effect caused by SOC, Green functions of the single electron include σσG , besides Gσσ. So Feynman 
diagrams of electrons are more complex than diagrams of quasi particles. Consequently, we firstly calculate the 
correlation functions of quasi particles, Eq. (12), then susceptibilities of electrons can be obtained according to 
the relationship between “ck” and “fk”, Eqs (3)∼(6).

As shown in Fig. (9), the charge, longitudinal and transverse dressed susceptibility, Eqs (30), (31) and (32), 
can be solved by RPA. Based on these dressed susceptibilities, we can solve the self-energy and the full Green 
function, Eq. (36).

Partial Wave Expansion.  According to the spherical harmonics function Yl
m, the partial wave expansion 

can directly reveal the symmetry of the interaction. For three dimensions, the interaction can be expanded into 
spherical harmonics function Y x( )l

m ,

∑ θ φ θ φ′ = + ′ ′V k k l V Y Y( , ) (2 1) ( , ) ( , ) ,
(45)l m

l
m

l
m

k k l
m

k k
,

∫ θ φ θ φ θ φ= ′ .′ ′V d d V k k Y Y( , ) ( , ) ( , ) (46)l
m

l
m

k k l
m

k k

where, θ and φ are solid angles of 


k . Our model is two dimensional, so we have to use Legendre Polynomials Pl(x) 
to expand the interaction.

∑ θ θ′ = + ′V k k l VP P( , ) (2 1) (cos ) (cos ) ,
(47)l

l l k l k

∫ θ θ θ θ= ′ .
−

′ ′V d d V k k P Pcos cos ( , ) (cos ) (cos ) (48)l k k l k l k
1

1

where, θ = +k k kcos /x x y
2 2 . Based on the Eq. (48), the spin-singlet interaction VS and triplet one VT in the Eq. 

(42) can be expanded in partial waves.
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