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Burn-induced subepicardial injury in frog heart: a simple model mimicking ST 
segment changes in ischemic heart disease
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ABSTRACT. To mimic ischemic heart disease in humans, several animal models have been created, mainly in rodents by surgically ligating 
their coronary arteries. In the present study, by simply inducing burn injuries on the bullfrog heart, we reproduced abnormal ST segment 
changes in the electrocardiogram (ECG), mimicking those observed in ischemic heart disease, such as acute myocardial infarction and 
angina pectoris. The “currents of injury” created by a voltage gradient between the intact and damaged areas of the myocardium, negatively 
deflected the ECG vector during the diastolic phase, making the ST segment appear elevated during the systolic phase. This frog model of 
heart injury would be suitable to explain the mechanisms of ST segment changes observed in ischemic heart disease.
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Ischemic heart disease, including myocardial infarction 
and angina pectoris, is a leading cause of morbidity and 
mortality in the world [8]. The large loss of cardiomyocytes 
induced by ischemia often leads to an impairment of the 
cardiac contractility, loss of pump function and subsequent 
onset of heart failure [11]. The disease also provokes serious 
ventricular tachyarrhythmia, occasionally causing sudden 
cardiac death [1]. To mimic myocardial infarction in hu-
mans, several animal models have been created in rodents 
(mice and rats) or other mammals (rabbits, dogs and pigs) 
[16]. The procedure includes surgical ligation, cauteriza-
tion or cryo-injury of the left anterior descending coronary 
arteries (LAD) to induce myocardial ischemic damage [9, 
12, 16]. However, due to the increased cost of such animals 
and specific instruments required for the procedure, includ-
ing respiratory machines and anesthesia apparatuses, the 
use of these models was often limited to highly specialized 
laboratories [14]. Using the isolated hearts from bullfrogs, 
previous studies revealed the electrophysiological proper-
ties of cardiac muscles together with their mechanisms [2, 
15]. In these studies, the electrocardiogram (ECG) recorded 
from the frog heart showed an almost identical pattern to 
that of humans or rodents [15], indicating its usefulness as 
a mimic of the human heart. Therefore, the purpose of our 
study was to establish a simple model of myocardial damage 
in frog hearts. Here, by simply inducing burn injuries on the 
bullfrog heart, we reproduced ECG abnormalities represent-
ing those observed in ischemic heart disease, such as acute 

myocardial infarction and angina pectoris. Using this model, 
we will also explain the mechanisms of ST segment changes 
observed in human ischemic heart diseases.

Adult male bullfrogs weighing 400–500 g (n=22), pur-
chased from Mr. Ohuchi Kazuo, were initially anesthetized by 
diethyl-ether, which was inhaled only a short period of time 
as an inductive anesthesia. The frogs were then subjected to 
the intramuscular infection of a long-acting anesthetic, ethyl 
carbamate (0.50 g/kg; Wako Pure Chemical Industries, Ltd., 
Osaka, Japan), which was effective through the experiment. 
After deeply anesthetized, the frogs were placed on plates in 
the supine position. As previously described [15], the thorax 
was opened with a pair of scissors for the skin and muscles, 
and another pair of bone scissors for thoracotomy. The cov-
ering pericardium was removed with forceps to expose the 
heart. An ECG was used to record electrical signals from the 
bullfrog heart. A silver wire, which was coated with a layer 
of silver chloride and soldered to the output pin, was gently 
placed on the surface of the ventricle (the positive pole) and 
connected to the ECG amplifier, which was of our own mak-
ing as previously recommended [15]. Wilson’s central termi-
nal, which is obtained by averaging the measurements from 
the electrodes from the right arm, left arm and the left foot, 
was used as the negative pole. This represented a pericordial 
lead detected directly from the ventricular surface instead of 
the thoracic surface. The ECG waveforms were detected by 
an oscilloscope (TDS 1002, Tektronix Inc., Beaverton, OR, 
U.S.A.) connected to a monitor (Thermal arraycorder Type 
WR310, GRAPHTEC Corp., Yokohama, Japan). To record 
the transmembrane potential, the suction-electrode method 
was employed as originally described by Irisawa et al. [5]. 
A chloride-coated silver wire, inserted into a polyethylene 
tube (−1 mm in diameter), was placed on the surface of the 
ventricle and connected to the amplifier. The inside of the 
tube was filled with external solution containing (in mM): 
NaCl, 115; KCl, 2; CaCl2, 2.0; MgCl2, 1.0; Hepes, 5.0; and 
Na-Hepes 5.0 (pH 7.4 adjusted with NaOH). Using a syringe 
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connected to the tube, a negative pressure was applied to the 
recording electrode to break the cellular membranes under 
the tube. All experimental protocols described in the present 
study were approved by the Ethics Review Committee for 
Animal Experimentation of Tohoku University.

By simultaneously applying the ECG recording and the 
suction-electrode techniques to the heart muscle, we ob-
tained electrical traces from the middle portion of the ven-
tricle, as shown in Fig. 1. The top trace shows the ECG with 
the prominent QRS complexes, although the P and T waves, 
which indicate the atrial depolarization and ventricular repo-
larization, respectively [15], are almost indecipherable. The 
bottom trace illustrates the action potential of the ventricular 
cardiomyocytes, which consists of five phases including 
“rapid upstroke (phase 0)”, “partial repolarization (phase 
1)”, “plateau (phase 2)”, “rapid repolarization (phase 3)” 
and “resting membrane potential (phase 4)”. As previously 
shown in frog hearts [15], the QRS complex and the fol-
lowing wave (possibly T wave) synchronized with the rapid 
upstroke (phase 0) and rapid repolarization (phase 3) of the 
action potential, indicating that the QRS complex and the 
following T wave respectively reflected the excitation and 
de-excitation processes of the ventricular cardiomyocytes.

To induce subepicardial injury, the tip of a glass capillary 
tube with a diameter of 1.5 mm was heated in the flame to 
more than 600°C and gently applied to the ventricular wall 
of the heart (Fig. 2A). By repeatedly imposing the heated 
tube for a few sec, several overlapping burn injuries, with 
diameters of approximately 2–4 mm, were made in the sub-
epicardial myocardium adjacent to the ventricular surface 
where the ECG recording electrode was placed (Fig. 2A). 
The trial numbers of the injuries were decided to mimic the 
minimum size of myocardial infarction in rodent models, 
which was induced by the coronary artery ligation [14]. 
Before the injuries were made, the ECG showed normal 
QRS complexes followed by positive T waves (Fig. 2B top), 
between which were the ST and TQ segments recorded on 
the isoelectric line (Fig. 2B top). However, immediately 
after the burn injuries were made, the ECG demonstrated 
a prominent elevation of the ST segment (17.6 ± 3.4 mV, 
n=5), which was far above the isoelectric baseline (Fig. 2B 
bottom), indicating the induction of myocardial injury. The 
mechanisms by which the subepicardial burn injury induced 
the ST segment elevation can be explained as follows (Fig. 
3A). Due to the cellular damage, the extracellular concentra-
tion of K+ ions is elevated around the injured cells (Fig. 3Aa) 
[10], which makes their resting membrane potential signifi-
cantly higher than that of the adjacent intact cells (Fig. 3Ab). 
This difference creates a voltage gradient between the intact 
and damaged areas of the myocardium during the diastolic 
phase of the cardiac cycle, producing “currents of injury” 
(Fig. 3Ac), which arise from the damaged subepicardium 
and flow towards the intact endocardium [6]. Since the cur-
rents flow away from the ECG recording electrode placed 
adjacent to the burn injury (Fig. 3Ac), the ECG vector dur-
ing the diastolic phase shows a negative deflection from the 
isoelectric line (Fig. 3Ad), making the ST segment appear 
elevated during the systolic phase.

In human ischemic heart diseases, such as acute myocar-
dial infarction and angina pectoris, hypoxic cellular dam-
age leads to the diminished intracellular concentration of 
adenosine triphosphate (ATP). Such loss of ATP decreases 
the activity of the ATP-dependent transport system, includ-
ing Na+/K+-ATPase, which normally transports K+ ions into 
the cell, but Na+ ions out of the cell [3]. As a result of the 
decreased pump activity, K+ ions are prevented from being 
pumped back into the cells, which decreases their intracel-
lular concentration, but increases their extracellular concen-
tration instead. This also creates the difference in the resting 
membrane potential between the intact and ischemic areas 
of the myocardium (Fig. 3Ab) and produces the “currents 
of injury” as were the cases with the burn-induced cardiac 
injury in frogs (Fig. 3Ac).

In cases of acute myocardial infarction, since severe 
ischemia usually induces transmural myocardial damage 
(Fig. 3Ba), the “currents of injury” flow away from the 
ECG recording electrode (pericordial lead), which is placed 
on the same side of the injured ventricular wall (Fig. 3Ba) 
[6]. Therefore, as was the case with the subepicardilal burn 
injury in our experiment (Fig. 3Ad), the ECG changes ob-
served in myocardial infarction are primarily featured by 
an elevation of the ST segment during the acute phase [13]. 
On the other hand, in cases of angina pectoris, myocardial 
injuries are frequently induced in the subendocardial areas 
(Fig. 3Bb), which are anatomically most prone to the oxygen 
deprivation [13]. Therefore, in such cases, the “currents of 
injury” that arise from the subendocardium flow towards the 
intact ventricular surface where the pericordial lead is placed 
(Fig. 3Bb) [4]. The direction of the currents is opposite of 
that in myocardial infarction (Fig. 3Ba) or the burn injury 
in our experiment (Fig. 3Ac). This causes the ECG vector 

Fig. 1. Simultaneous recordings of the electrocardiogram (ECG) 
and the transmembrane action potential in the bullfrog heart. The 
top trace shows the ECG with the prominent QRS complexes, 
although the P and T waves are almost indecipherable. The bottom 
trace illustrates the action potential of ventricular cardiomyocytes, 
which consists of five phases including phase 0 (rapid upstroke), 1 
(partial repolarization), 2 (plateau), 3 (rapid repolarization) and 4 
(resting membrane potential).
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in angina pectoris to show positive deflection during the 
diastolic phase, making the ST segment appear depressed 
during the systolic phase [13]. Additionally, differing from 
a simple burn injury, the cardiac ischemia also facilitates 
the opening of KATP-channels during the systolic phase [7], 
which accelerates the rapid repolarization (phase 3) of the 
action potential, significantly shortening its duration. This 
also creates a voltage gradient between the intact and an-
orexic areas during the systolic phase, producing currents 
that flow against the “currents of injury”. Since such currents 
positively or negatively deflect the ECG vectors during the 
systolic phase, they would have additional effects on the ST 
segment changes observed in ischemic heart disease.

In conclusion, using the bullfrog heart, we introduced a 
simple model representing the ST segment changes in isch-
emic heart disease, such as acute myocardial infarction and 
angina pectoris. This frog model of heart injury would be 
suitable to explain the mechanisms of ST segment changes 
observed in ischemic heart disease.
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