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Stressors, during early life or adulthood, can alter steroid-sensitive behaviors, such as
exploration, anxiety, and/or cognitive processes. We investigated if exposure to acute
stressors in adulthood may alter behavioral and neuroendocrine responses of male rats
that were exposed to gestational stress or not. We hypothesized that rats exposed to
gestational and acute stress may show behavioral inhibition, increased corticosterone,
and altered androgen levels in the hippocampus. Subjects were adult, male offspring
of rat dams that were restrained daily on gestational days 14–20, or did not experience
this manipulation. Immediately before testing, rats were restraint stressed for 20 min
or not. During week 1, rats were tested in a battery of tasks, including the open field,
elevated plus maze, social interaction, tailflick, pawlick, and defensive burying tasks.
During week 2, rats were trained and tested 24 h later in the inhibitory avoidance
task. Plasma corticosterone and androgen levels, and hippocampal androgen levels,
were measured in all subjects. Gestational and acute restraint stress increased plasma
levels of corticosterone, and reduced levels of testosterone’s 5α-reduced metabolites,
dihydrotestosterone (DHT) and 3α-androstanediol (3α-diol), but not the aromatized
metabolite, estradiol (E2), in plasma or the hippocampus. Gestational and acute restraint
stress reduced central entries made in the open field, and latencies to enter the
shock-associated side of the inhibitory avoidance chamber during testing. Gestational
stress reduced time spent interacting with a conspecific. These data suggest that
gestational and acute restraint stress can have actions to produce behavioral inhibition
coincident with increased corticosterone and decreased 5α-reduced androgens of adult
male rats. Thus, gestational stress altered neural circuits involved in the neuroendocrine
response to acute stress in early adulthood.
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INTRODUCTION
The profound effects of stress on the nervous, immune,
metabolic, and cardiovascular systems for health-related out-
comes throughout development may depend in part upon the
timing of exposure to stressors. On a basic level, acute stress
has adaptive short-acting effects on systems that can mobi-
lize individuals from stimuli that challenge homeostasis. Early
life, chronic stress has pervasive physiological, neuroendocrine,
and behavioral consequences, involving hypothalamic-pituitary-
adrenal axis (HPA) dysfunction, that may contribute to patho-
logical conditions [e.g., depression, posttraumatic stress disorder
(PTSD), premature aging, hypertension, insulin resistance, etc.;
Barker et al., 1993; Bremner et al., 1997; Seckl, 2004; Entringer
et al., 2008]. Thus, the nature of stressors’ effects may depend
upon the timing of exposure.

Animal models of early life stress are useful to elucidate some
of the perinatal determinants of adult psychopathology. One valid
model of early life stress involves exposing rat dams to restraint
stress during late gestation and then assessing the developmental
and behavioral outcomes of their offspring. The construct validity
of this model of HPA dysfunction is supported by rats exposed to
gestational stress having higher baseline and stress-induced cor-
ticosterone levels (reviewed in Weinstock, 2007). There is also
face validity in this model. There are reports in the clinical liter-
ature that gestational stress can produce cognitive impairments
and deficits in affective responses, as well as increased risk for
diagnoses of psychopathologies, in addition to these alterations in
the HPA (reviewed in Weinstock, 2007). Despite the clear valid-
ity of this model, the nature of these effects may depend upon
sex/gender, developmental stage, and other factors.
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Sex differences, or the early organizing role of gonadal steroids,
need to be considered in the context of gestational stress. In sup-
port, our laboratory, and others, has shown that young adult
female rats may experience more deleterious physiological, neu-
roendocrine, and behavioral effects of gestational stress than do
their male littermates (Koehl et al., 1991; Weinstock et al., 1992;
McCormick et al., 1995; Alonso et al., 1997; Sternberg, 1999;
Szuran et al., 2000; Frye and Wawrzycki, 2003). Furthermore,
restraint stress on gestational day 18 decreases the volume of
the hippocampus of adult female rats, compared to male litter-
mates as adults, or age-matched, non-prenatally stressed controls
(Schmitz et al., 2002). However, not all studies show this pattern
of effects. For instance, there are clear effects of gestational stres-
sors among rats to increase anxiety behavior in the elevated plus
maze of male, but not female, rats compared to non-stressed con-
trols (Zuena et al., 2008; Brunton and Russell, 2010). An impor-
tant consideration is the timing of the stressor effects (Andersen
and Teicher, 2004). Early gestational stress (days 1–7) produces
performance deficits in the Barnes maze of adult male mice com-
pared to that of non-stressed controls; whereas early gestational
stress enhances females’ performance (Mueller and Bale, 2007).
Additionally, male, but not female, mice exposed to stress during
gestational days 1–7 have increased depression-like behavior in
the tail suspension and forced swim tasks and reduced sucrose
preference and greater HPA activity, compared to non-stressed
mice (Mueller and Bale, 2008). These effects were not observed in
mice that were gestationally stressed during mid to late pregnancy.
Another notion to consider is that vulnerability to pervasive
effects of early stress may occur at a later stage of development
in males than in females. For example, there are sex differences in
response to early adversity among rhesus macaques (Cirulli et al.,
2009). On postnatal day (PND) 60, but not before as observed
in females, male rhesus macaques showed effects of peer-rearing
stress (e.g., had increased cortisol and reduced play behavior)
compared to mother-reared controls (Cirulli et al., 2009). Overall,
these and other data, suggest that there are sex differences and
timing effects of stressor exposure for adult stress responding
and behavior (Bowman et al., 2004; Bowman, 2005). Androgens
have well-known organizing and activating effects on neural and
behavioral outcomes. Of interest is the extent to which gestational
stress may alter later androgen secretion and androgen-mediated
behavioral effects.

Recent studies have suggested that early challenges may alter
later secretion and effects of pregnane steroids produced de novo
in the brain (“neurosteroids”). In support, male and female
rats that were exposed to an immune challenge stressor dur-
ing late gestation had lower levels of a pregnane neurosteroid,
5α-pregnan-3α-ol-20-one (3α,5α-THP), than did control rats
when they were assessed at PND 28–30 (Paris et al., 2011a).
Moreover, male rats exposed to such a stressor during gesta-
tion show a more female-like pattern of anxiety-like behavior
in the open field, compared to control male rats, tested at PND
28–30. A similar pattern of effects was observed for restraint
stress, variable stressors, or administration of finasteride, a 5α-
reductase inhibitor, during late gestation, to produce deficits in
object recognition memory and lower pregnane neurosteroids
among juvenile male and female rats (Paris and Frye, 2011a,b;

Paris et al., 2011a,b). In these studies, androstane neurosteroids
were not measured, but finasteride would be expected to sim-
ilarly reduce levels of androstane neurosteroids. The effects of
gestational stress on neurosteroidogenesis persist into adulthood.
For example, adult female rats that were exposed to gestational
stress have lower hippocampus levels of 3α,5α-THP, as well as
increased depressive-like responding in the forced swim test,
compared to controls (Frye and Walf, 2004). These studies show
clear behavioral deficits coincident with decrements in neuroen-
docrine responding (i.e., lower pregnane neurosteroids) among
gestationally stressed offspring. Although both males and females
secrete pregnane neurosteroids, it may be that males are less
sensitive to pregnane neurosteroids than to androstane neuros-
teroids, which are produced at greater levels among males than
females.

It is of interest to determine the extent to which some of
the effects of gestational stress on male offspring are related
to androstane neurosteroids. Some sex differences noted in
adult rodents for HPA axis activity may be related to actions
of androgens. For example, there is greater activity in brain
regions known to inhibit the HPA, such as the hippocampus,
among gonadally intact males compared to females or gonadec-
tomized male mice (Goel et al., 2011). Moreover, studies con-
ducted in our laboratory and others have demonstrated that
androgens can have activational effects to reduce anxiety- and
depression-like behaviors and enhance cognitive performance of
adult male rats and mice (Frye and Seliga, 2001; Aikey et al.,
2002; Edinger and Frye, 2004; Fernández-Guasti and Martínez-
Mota, 2005; Buddenberg et al., 2009). These effects may be
due to actions of testosterone (T) and/or its metabolites in
the hippocampus. T is aromatized to produce estradiol (E2),
and metabolized by 5α-reductase and 3α-hydroxysteroid dehy-
drogenase (3α-HSD) to form dihydrotestosterone (DHT) and
3α-androstanediol (3α-diol), respectively. DHT and 3α-diol are
androstane neurosteroids produced locally in the brain, in areas,
such as the hippocampus, which has high levels of expression
of the requisite enzymes (Tsuruo, 2005). The hippocampus is
sensitive to the effects of T metabolites to enhance neurogene-
sis in adult rats (Spritzer and Galea, 2007; Galea, 2008). There
are clear effects of gestational stress on hippocampus struc-
ture and/or function of rodents (Schmitz et al., 2002; Kim
et al., 2006; Setiawan et al., 2007; Weinstock, 2007). The impor-
tance of 3α-diol in the hippocampus for the behavioral effects
of androgens has been reported in non-stressed adult male
rats (Frye et al., 2010). A question is the role of gestational
stress, coinciding with the development of the hippocampus
(i.e., late pregnancy), for later androgen responses. We hypothe-
sized that: (1) exposure to gestational stress of male rats during
late pregnancy would alter neuroendocrine function (increase
corticosterone, decrease androstane neurosteroids in the hip-
pocampus) and behavior (decrease exploration, social interac-
tion, and inhibitory avoidance), (2) there would be similar effect
of acute restraint stress in adulthood to increase corticosterone,
decrease neurosteroidogesis, and produce behavioral inhibition,
and (3) gestational stress may alter later responses to acute
restraint stress of adults for these neuroendocrine and behavioral
measures.
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MATERIALS AND METHODS
All methods utilized in this study using animal subjects were pre-
approved by the Institutional Animal Care and Use Committee at
the University at Albany-SUNY.

SUBJECTS AND HOUSING
Gonadally-intact, adult male Long-Evans rats (∼55 days of age;
250–300 g) were experimental subjects in this study (N = 48).
Rats were obtained from our breeder colony (original breed-
ers from Taconic, Germantown, NY) in the Social Sciences
Laboratory Animal Care Facility at the University at Albany-
SUNY following gestational stress or not (described below). They
were group-housed 3–4 per cage with continuous access to Purina
Rat Chow and tap water on a 12/12 h reversed light-dark cycle
(lights off at 0800 h). Experimental rats were picked up by animal
care staff and placed into clean cages once a week.

GESTATIONAL STRESS
Female breeder rats (n = 60) were cycled through two normal,
4–5 day estrous cycles and mated on behavioral estrus. Pregnant
rats were then randomly assigned to the control (n = 26) or
restraint stress (n = 34) condition. Rats in the control condition
remained undisturbed in their home cages throughout preg-
nancy, except for weekly cage cleaning by animal care staff. The
pregnant rats that were restraint stressed experienced weekly cage
cleaning in the same manner as did the control breeders, but
were restraint stressed by being placed in a Plexiglas restrainer
(7.5 cm diameter × 19.5 cm length) under a 60-watt light for
45 min daily from gestational days 14–20 (Frye and Walf, 2004).
Although it was not systematically examined, overt differences in
body weight of the dams, or weight or length of the pups, were
not apparent. However, this type of chronic stress during gesta-
tion can produce profound effects to interfere with reproductive
outcomes and reduce fertility, length of gestation, and litter size
(Paris and Frye, 2011a,b). Additionally, gestational stress can have
long-lasting effects on HPA responding, such that restraint stress
from gestational day 17–21 increases corticosterone in dams at
the time of birth compared to control dams (Paris and Frye,
2011b). To control for potential litter effects, which may be due
to differences in maternal care, one pup from each litter in the
control or gestational stress conditions were utilized so that there
was not over-representation of any one litter in the experimental
groups. Cross-fostering was not utilized as this produced con-
founds and/or detrimental effects in some studies (Macrì et al.,
2010).

ACUTE RESTRAINT STRESS
As adults, rats were randomly assigned to be in the control,
non-restraint stressed condition (n = 24), or they experienced
acute restraint stress (n = 24). Restraint stress consisted of plac-
ing rats in Plexiglas restrainers (7.5 cm diameter × 19.5 cm
length) for 20 min, under a 60-watt light (Walf and Frye, 2005).
Temperatures of the restraint tube, when placed 30.5 cm under
such a lamp, rise from 20 to 21◦C within 1 min and remain at this
temperature 20 and 45 min later. As such, this is not considered a
heat stressor when utilized for 45 min as a gestational stressor, or
when utilized for 20 min as an acute stressor in adults. We have

verified that this acute restraint stress protocol increases corticos-
terone levels following restraint stress and 20 min of behavioral
testing (open field, elevated plus maze, forced swim test) com-
pared to behavioral testing in these tasks alone among female
rats (Walf and Frye, 2005). Thus, there were four experimen-
tal conditions (n = 12/condition): (1) Non-gestationally stressed,
non-acute stressed control, (2) Non-gestationally stressed, acute
restraint stressed, (3) Gestationally stressed, non-acute stressed,
(4) Gestationally stressed, acute restraint stressed.

BEHAVIORAL TESTING
Traditional measures of stress/anxiety of rodents were utilized as
behavioral indices of hippocampal function (open field, elevated
plus maze, defensive freezing) and hippocampal/amygdala func-
tion (inhibitory avoidance task). Because footshock was utilized
as stimuli, pain thresholds (tailflick and pawlick latencies) were
assessed. Handling can alter behavioral responses, so rats received
the same amount of handling before testing. Each rat was picked
up once each week by the animal care staff for cage changing,
and then consistently picked up by the experimenter immediately
before behavioral testing. Rats had behavioral assessments in a
battery of tasks (open field, elevated plus maze, social interaction,
tailflick, pawlick, and defensive freezing) during the first week of
testing. The next week, rats were habituated and trained in the
inhibitory avoidance task and then tested the following day. All
behavioral tasks were run by observers blind to the hypothesized
outcome of the study and/or gestational stress condition of rats.
Testing chambers were thoroughly cleaned with dilute Quatricide
and dried with paper towels between each test. The bars on the
grid floor of the inhibitory avoidance chamber were also cleaned
with 70% isopropyl alcohol.

Open field
Rats were placed in the southeast corner of the open field.
Entries into central and peripheral squares of the open field
(76 × 57 × 35 cm) were recorded during the 5-min task. Entries
were defined by placement of all four paws in the square. The
total and central square entries made in the open field are utilized
as indices of general motor/exploratory and reduced anxiety-like
behavior, respectively (Walf and Frye, 2005).

Elevated plus maze
In the elevated plus maze, rats were placed in the junction of the
four arms (two alleyways with walls, and two alleyways without
walls) of the elevated plus maze (Walf and Frye, 2005). The time
spent by rats on the open and closed arms was recorded during
this 5-min task. Open arm time is considered an index of reduced
anxiety-like behavior.

Social interaction
A stimulus male from the breeder colony that was gonadally intact
was placed in the open field for this task. This male rat had
been habituated to this task and similar tasks so that the behav-
ior of the experimental animal did not depend upon that of the
stimulus male conspecific. The time spent by the experimental
rat engaging in social interaction with the conspecific (with the
experimental male making the contact) was recorded during this
5 min task (Frye and Seliga, 2001). Social interaction was defined
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by grooming, sniffing, touching, and following with contact when
it was initiated by the experimental rat. The time spent in social
interaction is utilized as a measure of social behavior.

Pawlick task
The latency for rats to lick their front or back paws following
placement on a heated surface (Fisherbrand test tube warmer;
50◦C) was recorded (Frye and Seliga, 2001). The maximum
latency in this task was 180 s. This latency is utilized as an index
of anti-nociceptive behavior in this task.

Tailflick task
The latency for rats to reflexively move their tails from a heat
source (San Diego Instruments; 50◦C) was recorded for three
consecutive trials and averaged (Frye and Seliga, 2001). The max-
imum latency for each trial was 10 s. The average tailflick latency
is utilized as an index of anti-nociceptive behavior in this task.

Defensive burying task
Rats were tested in the defensive burying task as per published
methods (Frye and Seliga, 2001). Rats were placed in the south-
east corner of a testing chamber (clear Plexiglas, 26.0 × 21.2 ×
24.7 cm, with woodchip bedding). In the northwest corner of
the chamber, there was a cylindrical pedestal (2.5 cm diameter,
10.0 cm height) wrapped by wires connected to a shock source
(Lafayette Model A615B, Lafayette, IN) set to deliver 0.66 mA
of unscrambled shock. When rats touched the pedestal, a brief
footshock was delivered, which was terminated immediately fol-
lowing the rat’s withdrawal of its paw from the pedestal. The
duration spent burying the pedestal with the woodchip bedding
in response to the footshock received by the rat was recorded for
15 min following shock. The time spent burying was utilized as
an index of anxiety-like responding.

Inhibitory avoidance task
The inhibitory avoidance task was conducted in accordance with
previously published methods (Edinger and Frye, 2004). The
chamber consisted of two compartments (a white illuminated
compartment and a black dark compartment) divided by a guil-
lotine door. All rats were habituated for 2 min on the white side of
the box. During training rats were placed into the white side of the
box for 1 min before the guillotine door was lifted by the exper-
imenter. The latency for rats to crossover to the dark side of the
chamber (max. latency 20 min) was recorded and the door was
closed. Rats were then administered a mild footshock (0.2 mA,
5 s duration) through a grid floor, and left in the dark side of
the chamber for 1 min. The next day, rats were placed in the
white chamber for 1 min, the door was lifted, and the latency
to move to the dark side was recorded (max latency 5 mins).
Longer crossover latencies indicate better inhibitory avoidance
performance.

MEASUREMENT OF CORTICOSTERONE AND ANDROGEN LEVELS
Tissue collection, storage, and preparation for radioimmunoassay
After testing in the inhibitory avoidance task, rats were rapidly
decapitated and trunk blood and whole brains were collected.
Blood was spun in a refrigerated centrifuge at 3000 g at 4◦C.

Whole brains were rapidly frozen on dry ice immediately after dis-
section from the skull. Tissues were placed in long-term storage
in a −80◦C freezer. Brains were thawed on weigh boats placed on
ice and the entire hippocampus was dissected out. Hippocampus
samples were homogenized with a glass/Teflon homogenizer in
distilled water and trace amounts of [3H] steroid.

Steroid extraction for radioimmunoassay
Steroids were extracted as follows to measure corticosterone in
plasma and androgens (T, E2, DHT, and 3α-diol) in plasma
and hippocampus (Edinger and Frye, 2004; Frye et al., 2010).
Corticosterone was extracted from 10 μl of plasma by heating
plasma samples at 60◦C for 30 min. Plasma samples for extraction
of E2, T, DHT, and 3α-diol were incubated at room temperature
with distilled water and 800 cpms of [3H] steroid. Plasma sam-
ples were then snap frozen twice by placing an acetone bath with
dry ice, and then test tubes were placed in a savant to evaporate
ether. Dried down samples were reconstituted by adding the same
volume of 0.1 M phosphate assay buffer (pH 7.4) as the original
plasma volume immediately before set-up of radioimmunoassays.
Androgens were extracted from the hippocampus homogenate
with diethyl ether, which was subsequently evaporated. Samples
were reconstituted in 0.1 M phosphate assay buffer (pH 7.4).

Radioimmunoassay of corticosterone and androgens
Typical radioimmunoassay methods for plasma corticosterone
and plasma and brain androgens were employed (Edinger and
Frye, 2004; Frye et al., 2010). The range of the standard curves,
prepared in duplicate, was 0–4 ng for corticosterone, 12.5–1000
for E2 50–2000 pg for T and DHT and 0–2000 pg for 3α-
diol. Samples were added to assay buffer followed by addition
of the appropriate antibody and [3H] steroid (PerkinElmer).
For corticosterone measurement, samples were incubated at
room temperature for 60 min with [3H] corticosterone (NET
182: specific activity = 48.2 ci/mmol; New England Nuclear)
and corticosterone antibody (B#3-163; Esoterix Endocrinology,
Calabasas Hills, CA), which binds 40–60% of corticosterone at a
1:20,000 concentration. T, DHT, and 3α-diol assays were incu-
bated overnight at 4◦C. E2 was incubated for 60 mins at room
temperature. The E2 antibody (#244; Dr. Niswender, Colorado
State University, Fort Collins, CO) binds approximately 90% of
[3H] E2 (NET-317, 51.3 Ci/mmol) in a 1:40,000 dilution. The
T antibody (T3–125; Esoterix Endocrinology) only has modest
cross reactivity with DHT, and binds between 60 and 65% of
[3H] T (NET-387: specific activity = 51.0 ci/mmol) in a 1:20,000
dilution. The DHT antibody (DT3-351; Esoterix Endocrinology;
1:20,000 dilution) is moderately specific to DHT, but there is
some cross-reactivity with T and binds 60–65% of [3H] DHT
(NET-302; specific activity = 43.5 Ci/mmol). The 3α-diol anti-
body (X-144; Dr. P.N. Rao, Southwest Foundation for Biomedical
Research, San Antonio, TX) is highly specific to 3α-diol and
binds about 96% of [3H] 3α-diol (NET-806: specific activity =
41.00 ci/mmol) when used in a 1:20,000 dilution. Dextran-coated
charcoal in assay buffer was rapidly added to assay tubes and
samples were incubated with charcoal for 20 min. Samples were
then spun in a refrigerated centrifuge at 3000 g at 4◦C for 20 min
to separate bound and free steroid. Supernatant was decanted
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into a glass scintillation vials with 5 ml Scintiverse BD (Fisher
Scientific). Total assay volumes were 950 μl for corticosterone
and 1200 μl for androgens. The concentration of the samples was
determined by using the logit-log method of Rodbard and Hutt
(1974), interpolation of the standards, and correction for recov-
ery with Assay Zap. Intra- and inter-assay coefficients of variance
for these assays are: corticosterone: 5% and 8%; T: 5% and 5%;
E2: 8% and 10%; DHT: 2% and 10%; 3α-diol: 9% and 10%.

DATA ANALYSES
A MANOVA was utilized to determine the extent to which there
was a pattern of the independent variables of stressor exposure
for behavior across the several tasks that were utilized. These
results suggested that there was a difference between measures
utilized, with the most robust effects noted in the tasks that
rats were exposed to immediately after restraint stress (open
field, inhibitory avoidance) or a highly androgen sensitive task
(social interaction). Two-way analyses of variance (ANOVAs)
with Fisher’s post-hoc tests were used to evaluate effects of gesta-
tional and acute restraint stress on behavioral indices and steroid
levels. Given evidence for the nature and timing of the task to
influence outcomes, we will focus the discussion of the results
on the open field, inhibitory avoidance, and social interaction
tasks. As a proxy of metabolism enzyme activity, ratios of the
metabolites, DHT and 3α-diol, to the parent hormone, T, in the
hippocampus were calculated and compared. The α level for sta-
tistical significance was p < 0.05, and a trend was considered
when p < 0.10.

RESULTS
EFFECTS OF GESTATIONAL STRESS
Gestational stress had pervasive effects to alter HPA responding as
demonstrated by a main effect of gestational stress on plasma cor-
ticosterone levels [F(1, 44) = 16.87, p < 0.01]. Post hoc analyses
demonstrated that rats exposed to gestational stress had signifi-
cantly higher plasma corticosterone levels than did non-stressed,
control rats (Figure 1). Corticosterone levels in the non-stressed
control group were akin perhaps to those reportedly in similarly
non-stressed adult male rats (e.g., 2.9 μg/dl ± 1.3 s.e.m.; Frye
et al., 2010).

Although there were no differences due to gestational stress for
plasma levels of T, DHT, or E2 (Table 1), there were differences in
plasma levels of 3α-diol [F(1, 44) = 3.69, p < 0.06]. Gestational
stress tended to reduce plasma 3α-diol levels compared to that
observed in non-stressed controls (Figure 2). Plasma levels of
T, DHT, and 3α-diol were in the ranges reported in the litera-
ture of gonadally intact adult male rats (T: 12.0–5.0 ng/ml, DHT:
6.0–3.5 ng/ml; 3α-diol: 15.0–1.5 ng/ml; Frye and Edinger, 2004;
Edinger and Frye, 2007a; Frye et al., 2010), but plasma E2 levels
tended to be higher than a previous study (0.8 pg/ml ± 0.5 s.e.m.;
Frye et al., 2010).

There were significant effects of gestational stress for hip-
pocampal levels of DHT [F(1, 44) = 5.18, p < 0.03], but not T,
E2, or 3α-diol. Gestational restraint stress significantly reduced
hippocampal DHT levels, compared to non-stressed controls
(Figure 2). Hippocampus levels of T, E2, DHT, and 3α-diol were
similar to ranges of levels reported in the literature of gonadally

FIGURE 1 | Plasma Corticosterone Levels. Figure depicts the plasma
levels of corticosterone (mean ± s.e.m.) of adult male rats that were
gestationally stressed or not, and then restraint stressed, or not,
immediately before testing in the open field. ∗∗Above line indicates a
significant difference of gestational stress compared to non-gestationally
stressed (control) rats (p < 0.05 for main effect and Fisher’s PLSD post-hoc
tests). ∧ Indicates a significant difference of acute restraint stress
compared to no acute stress group (p < 0.05 for main effect and Fisher’s
PLSD post-hoc tests). There was no significant interaction between stress
variables for plasma corticosterone levels.

Table 1 | Plasma and hippocampal levels of testosterone (T) and its

aromatized metabolite, estradiol (E2).

Endocrine

measures

Condition

Control Gestationally-stressed

No acute

stress

Acute

stress

No acute

stress

Acute

stress

Plasma T (ng/ml) 9.2 ± 3.4 4.2 ± 1.0 7.0 ± 1.7 5.6 ± 1.1

Hippocampus T
(ng/mg)

7.1 ± 1.9 5.2 ± 1.4 4.4 ± 0.8 4.6 ± 1.2

Plasma E2 (pg/ml) 4.8 ± 1.0 4.0 ± 0.8 4.7 ± 1.1 6.3 ± 1.4

Hippocampus E2

(pg/mg)
1.3 ± 0.2 2.6 ± 1.0 1.9 ± 0.8 1.2 ± 0.2

Data are expressed as mean + S.E.M. There were no significant effects of

gestational or acute stress, or interactions of these variables, to report for these

measures.

intact adult male rats (T: 4.0–7.0 ng/mg, E2: 1.3 pg/mg ± 0.3
s.e.m., DHT: 3.0–1.5 ng/mg; 3α-diol: 5.0–2.7 ng/mg; Frye and
Edinger, 2004; Edinger and Frye, 2007a; Frye et al., 2010).

There were significant effects of gestational stress for behav-
ioral responses in the open field, inhibitory avoidance, and social
interaction tasks. There were significant effects of gestational
stress for central [F(1, 44) = 4.84, p < 0.03], but not total, entries
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FIGURE 2 | Plasma and Hippocampal Dihydrotestosterone and

3α-Androstanediol Levels. Figure depicts the plasma levels (mean ± s.e.m.)
of dihydrotestosterone (DHT; panel A) and 3α-androstanediol (3α-diol;
panel B) and hippocampal levels (mean ± s.e.m.) of DHT (panel C) and 3α-diol
(panel D) of adult male rats that were gestationally stressed or not, and then
restraint stressed, or not, immediately before testing in the open field.
∗∗ Above line indicates a significant effect of gestational stress vs. no
gestational stress (p < 0.05 for main effect and Fisher’s PLSD post-hoc

tests). ∧ Indicates a significant effect of restraint stress vs. no acute stress
(p < 0.05 for main effect and Fisher’s PLSD post-hoc tests). ∗∧ Indicates an
interaction between gestational and restraint stress (p < 0.05 for main effect
and Fisher’s PLSD post-hoc tests). + Indicates a tendency for an interaction
between gestational and restraint stress (p < 0.10 for main effect and
p < 0.05 for Fisher’s PLSD post-hoc tests). # Indicates a tendency for
difference of gestational stress compared to non-stress control condition
(p < 0.10 for main effect and p < 0.05 for Fisher’s PLSD post-hoc tests).

in the open field. Gestational stress decreased central open field
entries compared to that observed in the non-stress condition
(Figure 3). A similar pattern was observed in the inhibitory avoid-
ance task. Rats that were gestationally stressed [F(1, 35) = 6.29,
p < 0.02] had lower crossover latencies in the inhibitory avoid-
ance task compared to non-stressed control rats (Figure 4).
Similarly, in the social interaction task, gestationally stressed rats,
compared to control rats, spent significantly less time engaging
in social interaction with a conspecific [F(1, 44) = 7.29, p < 0.01;
Figure 5].

EFFECTS OF ACUTE RESTRAINT STRESS
The effects of the acute restraint stress paradigm utilized were
validated by a demonstrated increase in plasma corticosterone

[F(1, 44) = 10.43, p < 0.01]. Compared to the non-stressed
control rats, acute restraint stress significantly increased plasma
corticosterone levels (Figure 1).

There were no differences due to acute restraint stress for
plasma or hippocampus levels of T, E2, or DHT, or plasma 3α-diol
levels (Table 1, Figure 2), there were differences in hippocam-
pal levels of 3α-diol [F(1, 44) = 10.43, p < 0.01]. Rats that were
exposed to acute restraint stress had significantly reduced levels
of 3α-diol in the hippocampus compared to the non-stressed rats
(Figure 2).

There were significant effects of acute restraint stress for
behavioral responses in the open field and inhibitory avoid-
ance task. Acute restraint stress decreased total [F(1, 44) = 15.36,
p < 0.01] and central [F(1, 44) = 3.80, p < 0.05] open field
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FIGURE 3 | Open Field Behavior. Figure depicts total (panel A) and central
(panel B) entries made (mean ± s.e.m.) made in the open field of adult
male rats that were gestationally stressed or not, and then restraint
stressed, or not, immediately before testing in the open field. ∗∗ Above line
indicates a significant difference of gestational stress compared to
non-gestationally stressed (control) rats (p < 0.05 for main effect and
Fisher’s PLSD post-hoc tests). ∧ Indicates a significant difference of acute
restraint stress compared to no acute stress group (p < 0.05 for main
effect and Fisher’s PLSD post-hoc tests). There were no significant
interactions between stress variables for performance in the open field.

entries compared to the non-stress control condition (Figure 3).
Similarly, in the inhibitory avoidance task, acute restraint stress
[F(1, 35) = 4.25, p < 0.04] decreased crossover latencies in the
inhibitory avoidance task compared to the non-stress condition
(Figure 4). There were no significant effects of gestational stress
for behavioral responses in the social interaction (Figure 5) ele-
vated plus maze, paw lick, tailflick, or defensive freezing tasks
(Table 2).

INTERACTIONS BETWEEN GESTATIONAL AND ACUTE STRESS
There was a tendency for an interaction between gestational and
acute stress to alter plasma DHT levels. Plasma levels of DHT
tended to be reduced most greatly among gestationally stressed
rats following acute restraint stress [F(1, 44) = 3.17, p < 0.08],

FIGURE 4 | Inhibitory Avoidance Performance. Figure depicts the
crossover latencies (mean in secs ± s.e.m.) during testing of adult male
rats that were gestationally stressed or not, and then restraint stressed, or
not, immediately before training in the inhibitory avoidance task. ∗∗ Above
line indicates a significant difference of gestational stress compared to
non-gestationally stressed (control) rats (p < 0.05 for main effect and
Fisher’s PLSD post-hoc tests). ∧ Indicates a significant difference of acute
restraint stress compared to no acute stress group (p < 0.05 for main effect
and Fisher’s PLSD post-hoc tests). There was no significant interaction
between stress variables for performance in the inhibitory avoidance task.

FIGURE 5 | Social Interaction. Figure depicts the duration of time spent in
social interaction with a conspecific (mean in secs ± s.e.m.) of adult male
rats that were gestationally stressed or not, and then restraint stressed, or
not, immediately before testing. ∗∗ Above line indicates a significant
difference of gestational stress compared to non-gestationally stressed
(control) rats (p < 0.05 for main effect and Fisher’s PLSD post-hoc tests).
There was no significant interaction between stress variables for social
interaction.
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Table 2 | Behavioral data in the elevated plus maze, pawlick, tailflick, and defensive burying task.

Behavioral measures Condition

Control Gestationally-stressed

No acute stress Acute stress No acute stress Acute stress

Elevated plus maze—open arm time (s) 25.4 ± 6.0 13.2 ± 4.5 10.3 ± 3.9 13.8 ± 6.6

Pawlick—front paw latency (s) 137.3 ± 14.3 125.7 ± 17.0 122.2 ± 10.9 106.2 ± 16.6

Pawlick—back paw latency (s) 167.0 ± 7.7 149.0 ± 12.6 149.0 ± 10.3 135.4 ± 15.9

Tailflick—average latency (s) 5.9 ± 0.4 5.3 ± 0.3 5.4 ± 0.6 6.1 ± 0.5

Defensive burying—time spent burying (s) 101.3 ± 40.4 87.5 ± 41.9 49.0 ± 28.0 46.2 ± 31.1

Data are expressed as mean + S.E.M. There were no significant effects of gestational or acute stress, or interactions of these variables, to report for these

measures.

compared to controls. Similarly, there was a significant inter-
action for gestational and acute restraint stress for plasma 3α-
diol levels [F(1, 44) = 6.98, p < 0.01]. Plasma 3α-diol levels were
reduced particularly in rats that were gestationally stressed, and
not exposed to restraint stress as adults, compared to non-
stressed rats.

Albeit not statistically significant, there was evidence for
an interaction between gestational and acute restraint stress
for activity of 5α-reductase and 3α-HSD in the hippocampus.
Gestationally stressed rats that were exposed to acute stress as
adults had the lowest 5α-reductase (2.5 ± 1.2), and highest 3α-
HSD (2.7 ± 0.8), conversion ratios, compared to all other groups:
gestationally stressed and no acute stress (5α-reductase 3.1 ± 1.0;
3α-HSD 2.2 ± 0.7), no gestational stress and acute restraint stress
(5α-reductase 2.9 ± 0.8; 3α-HSD 1.2 ± 0.5), and no restraint
stress during gestation or adulthood (5α-reductase 2.9 ± 0.8;
3α-HSD 1.7 ± 0.6).

DISCUSSION
Our hypotheses that rats exposed to gestational and acute stress
may increase corticosterone secretion, alter androgen levels, and
produce behavioral inhibition, and gestational stress may poten-
tiate the effects of acute stress exposure in adulthood, was
supported in the following ways. Gestational stress increased
corticosterone levels, decreased plasma 3α-diol levels, decreased
hippocampal DHT levels and produced behavioral inhibition in
the open field, inhibitory avoidance, and social interaction tasks.
Acute restraint stress increased corticosterone levels, decreased
hippocampal 3α-diol levels and produced behavioral inhibi-
tion in the open field and inhibitory avoidance task. There was
evidence that gestational stress exposure altered later neuroen-
docrine, but not behavioral, responses of acutely restraint stressed
rats. Plasma levels of DHT and 3α-diol were lowest, hippocam-
pal 5α-reductase activity was lowest, and hippocampal 3α-HSD
activity was highest among gestationally stressed rats that were
acutely restraint stressed. No group differences were noted for
plasma or hippocampal levels of T, or its aromatized metabo-
lite. Together these data show that gestational and acute restraint
stressors have actions to increase HPA responding as measured
by plasma corticosterone, alter 5α-reduced T metabolite levels
in plasma and hippocampus, and produce behavioral inhibition.

Further, gestational stress may impose organizational effects to
alter androstane neurosteroid responses to acute stress exposure
in adulthood.

The present study confirms and extends the previously
reported effects of gestational stress to produce behavioral inhi-
bition and alter functional effects of androgens in the open field
and inhibitory avoidance task. In the present study, gestational
stress reduced central entries made in the open field. In pre-
vious studies, gestationally stressed male rodents have greater
depression-like behavior in the forced swim or sucrose anhedo-
nia test (Frye and Wawrzycki, 2003; Mueller and Bale, 2008).
As well, rats that were gestationally stressed had poorer per-
formance than did their non-stressed controls in the inhibitory
avoidance task. This pattern confirms previous reports on the
role of HPA dysregulation for cognitive and/or emotional mem-
ory task performance of rats. In support, gestationally stressed
female rats have poorer performance in the inhibitory avoid-
ance task compared to their non-stressed controls (Walf and
Frye, 2007) and gestationally stressed male rats have poorer spa-
tial performance (Lemaire et al., 2000; Zagron and Weinstock,
2006). Gestational stress reduced time spent in social interaction
with a conspecific. Other studies have demonstrated gestational
challenges alter social interaction and reproductive behaviors
(Ward et al., 1994, 1996, 1999; Lee et al., 2007). In the present
study, there were no effects of acute restraint stress for social
interaction. These data suggest that there may be differences
in the behavioral outcomes of restraint during early develop-
ment versus later in life for this androgen-sensitive behavior. A
question is whether more robust differences for social behavior
would have been observed in more challenging and androgen-
sensitive situations, such as mating and/or agonistic encoun-
ters (DeBold and Miczek, 1981; Lumia et al., 1994; McGinnis,
2004). Individual differences in mating responses and subse-
quent central production of androstane neurosteroids in the
brain mediate anxiety-responding of adult male rats (Edinger
and Frye, 2007a). In the present study, there was reduced
androstane neurosteroids and social interaction among rats that
were gestationally stressed. A question to address in future stud-
ies is the extent to which gestational stress may have pervasive
effects to alter mating and mating-induced neurosteroidogenesis
among males.
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The present study confirms and extends the previously
reported pattern of acute stress altering steroid-mediated
responding among rats. In the present study, we found that
male rats that were restraint stressed for 20 min before behav-
ioral assessments had behavioral inhibition, as evidenced by
fewer total and central square entries made, compared to their
non-stressed counterparts. We have observed a similar pattern
of behavioral inhibition in the open field and elevated plus
maze among adult, ovariectomized, E2-primed following 20 min
of restraint stress, compared to their non-stressed counterparts
(Walf and Frye, 2005). Interestingly, in the present study, the
effects of acute stress were more robust in the open field than
in other anxiety tasks assessed, the elevated plus maze or defen-
sive burying task. Although differences between these anxiety
tasks were not anticipated, the timing of when rats were tested
in these tasks suggests that the greatest amount of behavioral
inhibition occurred immediately following acute restraint stress.
Rats were exposed to acute restraint stress immediately before
testing in the open field; whereas, stressor exposure was approx-
imately 5 and 20 min before testing in the elevated plus maze
and defensive freezing task, respectively. Additionally, rats that
were acutely restraint stressed before training in the inhibitory
avoidance task demonstrated memory impairments in this task
when tested 24 h later. Although we did not measure corticos-
terone following training, we predict that corticosterone levels
were high among restraint stressed rats during training and in
the period afterward, thus, interfering with memory consoli-
dation. Additionally, restraint stress reduced levels of 3α-diol
in the hippocampus. Previous studies have demonstrated that
3α-diol has actions in the hippocampus to improve cogni-
tive function and decrease anxiety-like responding of male rats
(Edinger and Frye, 2004, 2007b; Frye and Edinger, 2004; Frye
et al., 2008, 2010). Thus, restraint stress produced behavioral
inhibition in the open field task and performance deficits in
the inhibitory avoidance task, and reduced hippocampus levels
of 3α-diol.

The present data show that gestational stress can have per-
vasive effects on adult responding to an acute restraint stressor.
These effects were apparent for rats’ neuroendocrine responses,
rather than behavioral effects. Rather than alterations in T or E2

levels among male rats in the present study, salient reductions
in plasma levels of DHT and 3α-diol were observed for gesta-
tionally stressed rats exposed to acute restraint stress. As well,
these results of lower levels of DHT and 3α-diol suggest that
stress exposure during gestation and adulthood may have reduced
expression or activity of the requisite enzymes, 5α-reductase and
3α-HSD, respectively. Although expression and activity of 5α-
reductase and 3α-HSD were not measured directly, calculated
conversion ratios suggested a pattern of decreased 5α-reductase
and increased 3α-HSD activity among gestationally stressed rats
that were acutely restraint stressed as adults. Enzymes, such as
the 5α-reductase isozymes, are involved in organizational effects
of steroids on the brain during early development, and there
are sex differences in adulthood as to how androgens mod-
ify these enzymes (Torres and Ortega, 2003, 2006). Neonatal
manipulations of T irreversibly program the expression of these
enzymes that convert T to DHT and 3α-diol in the liver of

rats (Gustafsson and Stenberg, 1974a,b). The role of stressors
for regulating 5α-reductase and other steroidogenic enzymes,
and their neurosteroid products, throughout development has
been described. Prenatal immobilization stress on gestational
days 15–18 is associated with initial decreases in 5α-reductase
activity in the cerebral cortex and hypothalamus of PND 1 male
pups, but elevated 5α-reductase activity in the cortex, hippocam-
pus, and hypothalamus on PND 5 (Ordyan and Pivina, 2005).
Another model of early life stress, isolation rearing, for 5–8 weeks
reduces expression of 5α-reductase and levels of 3α,5α-THP in
the nucleus accumbens and medial prefontal cortex of male rats
(Bortolato et al., 2011). Among PND 7 male and female rats,
high expression of 3 alpha-HSD mRNA was found, which is coin-
cident with the stress hyporesponsive period in the rat (Mitev
et al., 2003). Conversely, acute swim or environmental stress
among adult male rats increases prefrontal cortex expression
of 5α-reductase (Sánchez et al., 2008, 2009). In our labora-
tory, social challenges, such as paced mating, reliably increase
production of the pregnane neurosteroid, 3α,5α-THP, in the mid-
brain, hippocampus, and prefrontal cortex of female rats (Frye
et al., 2007). As such, the present results may be related to
the pervasive effects of acute and chronic stressors on activity
and/or expression of metabolism enzymes. Moreover, 3α-diol is
a positive allosteric modulator of GABA/benzodiazepine recep-
tor complexes (Gee, 1988), and like the pregnane neurosteroid,
3α,5α-THP, may be released with stressors to dampen the HPA
response and restore homeostasis (Erskine and Kornberg, 1992;
Patchev et al., 1994, 1996; Frye, 2009). There is recent evidence
for 3α-diol to reduce HPA hyper-responsiveness to a physi-
cal, stressor, IL-1β administration, of gestationally stressed male
rats (Brunton and Russell, 2010). Together, these data further
provide evidence supporting a role of neurosteroids as mod-
ulators of the HPA (Purdy et al., 1991; Patchev et al., 1994,
1996; Guo et al., 1995). Future studies will further investigate
this notion that some of these behavioral deficits with stress
could be related to differences in capacity for androgens to be
metabolized.

In summary, the present study demonstrated that gesta-
tional and acute restraint stress increased corticosterone secre-
tion, reduced levels of androstane neurosteroids, and produced
behavioral inhibition of adult male rats. It is important to
determine how sex/gender and gonadal hormones may mit-
igate stress responses following early life adversity because
these factors influence the individual’s developmental trajec-
tory and pathophysiological states. Neuropsychiatric disorders,
such as anxiety, depression, and PTSD, are stress-related dis-
orders that are influenced by sex/gender and gonadal hor-
mones. Indeed, neurodegeneration, as can occur with aging
or disease, can be exacerbated by stress and influenced by
sex/gender and gonadal hormones. Of clinical significance is
that some males may particularly be sensitive to stressors in
adulthood when androgen levels are perturbed. Examples of
this may be “roids rage” and/or post-finasteride syndrome.
The understanding of these pathophysiological states is impor-
tant to reveal the etiology of disorders, but also for eluci-
dating the possible mechanisms of the normative state, which
may be influenced by interactions between adrenal and gonadal
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hormones, and their metabolism, during different developmental
periods.
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