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An early warning model for infectious diseases is a crucial tool for timely monitoring,
prevention, and control of disease outbreaks. The integration of diverse multi-source data
using big data and artificial intelligence techniques has emerged as a key approach in
advancing these early warning models. This paper presents a comprehensive review of
widely utilized early warning models for infectious diseases around the globe. Unlike
previous review studies, this review encompasses newly developed approaches such as
the combined model and Hawkes model after the COVID-19 pandemic, providing a thor-
ough evaluation of their current application status and development prospects for the first
time. These models not only rely on conventional surveillance data but also incorporate
information from various sources. We aim to provide valuable insights for enhancing
global infectious disease surveillance and early warning systems, as well as informing
future research in this field, by summarizing the underlying modeling concepts, algo-
rithms, and application scenarios of each model.

© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Infectious disease surveillance serves as a crucial epidemiological tool for monitoring the population's health. The goals of
infectious disease surveillance are to describe the current burden and epidemiology of diseases, monitor trends, and identify
outbreaks and new pathogens (Murray & Cohen, 2017). Internationally, a diverse array of mainstream infectious disease
surveillance systems have been developed to monitor and signal potential outbreaks, including the traditional case-based
surveillance system and non-traditional case-, event-, lab-, syndromic-, web searchebased surveillance systems (W. Z.
Yang, 2017).

Infectious disease surveillance data show a trend toward multiple sources. Traditionally, infectious disease surveillance
data comprised mortality and morbidity, clinical data, laboratory reports, relevant field investigations, surveys, animal or
vector studies, and demographic and environmental data (Declich& Carter, 1994). However, traditional surveillance methods
based on the aforementioned data are limited in timeliness and sensitivity, attributable to factors such as the lengthy data
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validation process (Y. T. Yang, Horneffer, & DiLisio, 2013). In recent years, new data sources have emerged to complement
traditional infectious disease surveillance. These sources include sensors andmobile apps for collecting symptom and disease
data, internet surveys and crowd-sourced data, scenario-based field experiment data, and artificial intelligence (AI) in
conjunction with social media and web search data for outbreak prediction (Shausan, Nazarathy, & Dyda, 2023). Using these
data sources in surveillance poses advantages regarding timeliness and resource efficiency.

The terms “surveillance data” and “early warning” are closely connected: the former provides the foundation for the latter,
and the latter is an essential application of the former. The early warning of infectious diseases refers to the issuance of
warning signals before and during the early stages of an outbreak or epidemic to alert the potential risk of expansion using
specific analytical methods or models (W. Z. Yang, 2017). The past two decades have seen major breakthroughs in early
warning systems and methods for infectious diseases. Particularly, the COVID-19 pandemic accelerated the research and
application of big data, such as internet search, social media, and mobile location, alongside sophisticated analytical methods
for predicting outbreaks and assessing transmission risks based on surveillance data. Hence, conducting a systematic analysis
of the latest early warningmodels for infectious diseases is crucial, which can not only improve our understanding of themost
advanced available methods but also provide valuable insights for advancing and enhancing early warning systems and
methods to effectively combat infectious diseases.

The pandemic and long-term evolution of emerging infectious disease outbreaks represented by COVID-19 pose chal-
lenges to infectious disease modeling methods (Jacobsen et al., 2016). However, it also promote the enrichment and devel-
opment of suchmethods, such as Hawkes process and combinedmodels (Chiang, Liu,&Mohler, 2022; Kaplan, Park, Kresin,&
Schoenberg, 2022; Kelly et al., 2019; Lamprinakou, Gandy, &McCoy, 2023; Park, Chaffee, Harrigan, & Schoenberg, 2022; X. L.
Shi, Wei, & Chen, 2023; W. P. Zhao, Sun, Li, & Guan, 2022). While several scholars have previously reviewed early warning
models for infectious diseases, many of these reviews were conducted before the occurrence of COVID-19 and are in need of
updating (Kobres et al., 2019; Lai et al., 2021; X. X. Zhang et al., 2022). The reviews of infectious disease methods in the last 5
years have tended to focusmainly on COVID-19 and have not updated the current types of early warningmodels in the field of
infectious diseases (Chen, Liu, Yu,& Li, 2021; Deng et al., 2022; H. H. Shi, Wei,& Chen, 2023; Yadav& Akhter, 2021). Therefore,
the aim of this study is to provide a comprehensive review of the current variety of early warning models in the field of
infectious diseases, building on previous reviews and complementing those emerging methods that have been enriched and
developed during COVID-19.

For this review, we conducted searches on PubMed with the terms “infectious disease,” “warning,” and “model.” The
searches returned 682 papers related to models for the control of infectious disease. A total of 53 studies met the criteria and
were included in this review. We reclassified the models described in the included articles, outlined their applications to
infectious diseases, and analyzed the pros and cons of the models to propose a new classification scheme and a selection basis
for future modeling research to further promote the use of models for the prevention and control of infectious diseases.

2. Models

We categorized infectious disease early warning models into two types: models mainly based on traditional surveillance
data and those mainly based on multi-source surveillance data. The former includes temporal and/or spatial warning models
and dynamic models, while the latter encompasses AI techniques and combined models. The model classification framework
was shown in Fig. 1. The timeline of various models being proposed and introduced into the field of public health was shown
in Fig. 2. Table 1 summarized the key points of the definition or principle, features or applicability of various models.

2.1. Models mainly based on traditional surveillance data

There are three common approaches to building models, primarily based on traditional monitoring data. (1) spatial and/or
temporal warning models, (2) dynamic models and (3) Hawkes models. The spatial and/or temporal warning models aim to
detect potential outbreak hotspots by analyzing spatial and/or temporal patterns. Dynamic models focus on modeling the
transmission dynamics within a population. We can improve the parameters and assumptions in the dynamic model,
enhancing the accuracy of predictions, by comprehending the spatial patterns of disease occurrence. Hawkes processesmodel
the unevenly spaced self-exciting arrivals of events in time. However, time series data is often collected on a fixed phase.
Discrete-time Hawkes processes can model the evenly spaced arrivals of events in time and capturing the self-exciting
character, which are relatively new and many theoretical properties are yet to be studied.

2.1.1. Temporal warning models
Temporal warning models analyze the time-varying characteristics of historical surveillance data and utilize baseline data

from the same period to predict future occurrences and trends. These models extract pertinent patterns from single time-
series surveillance data and establish early warning systems for infectious diseases. Temporal warning models can be
categorized into control chart-based models, time series models, regression models, Markov chains, and gray models based
on differences in modeling approaches.

A control chart determines indicator warning thresholds based on historical data and issue warnings when actual
monitoring data is “out of control.” It is suitable for all infectious diseases and is effective for infectious diseases with seasonal
epidemics or periodic epidemic law (Siettos & Russo, 2013). A cumulative sum control chart gradually accumulates the
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Fig. 1. Classification of early warning models for infectious diseases.

Fig. 2. Timeline of various models being proposed and introduced into the field of public health.
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Table 1
Common early warning models for infectious diseases.

Category Model Definition or principle Features or applicability

Models Mainly Based on Traditional Surveillance Data
A. Temporal warning models

Control chart (Siettos & Russo, 2013) Using historical data and considering the
sensitivity, specificity, and positive predictive
value of indicators, by establishing an upper or
lower limit of indicator early warning as a
threshold for identifying abnormal signals, an
early warning can be issued when the actual
monitored data “out of control”.

It is suitable for all kinds of infectious diseases,
and has better effect on infectious diseases
with seasonal epidemic or periodic epidemic
law.

Cumulative sum control chart (Rakitzis et al.,
2018)

Continuously accumulate the difference
between the observed value and the expected
value, gradually accumulate the fluctuations in
the data, and quickly and sensitively detect the
small abnormalities in the data.

Real-time surveillance of outbreaks with small
changes in the number of cases and
surveillance of relatively uncommon
infectious diseases are effective. Do not rely on
long-term historical baseline data.

Time series analysis-ARIMA (Alegado &
Tumibay, 2019)

The time sequence formed when the forecast
target changes with time is taken as a random
queue. There are mainly moving average
method, exponential smoothing method and
Box-Jenkins model.

It is mainly used to analyze and solve the
stationarity, randomness and seasonality of
the time series. It can also predict the
development trend of the research object
based on the analysis of the time series. Data
preparation and operation are relatively
simple and easy to implement, and the results
are relatively accurate, and are usually used to
predict short-term fluctuations of infectious
diseases. Disadvantage: not suitable for rare
and severe diseases simulation.

Time series analysis-Moving percentile
method (R. P. Wang et al., 2017)

Non-parametric test method. The median of
historical monitoring data represents the
average level of monitoring indicators, and the
percentile of a certain confidence level is used
as the control limit.

Early warning model based on time
dimension.

Time series analysis-Exponential weighted
moving average (Alimohamadi et al., 2020;
Burkom et al., 2021)

Sequence data processing method. It is suitable for monitoring sequences with a
relatively stable baseline, and is mostly used
for short-term historical data. It can introduce
weighting ideas based on the distance
between historical data and current time,
consider the correlation between past data
and current data, and is highly sensitive to
small changes, and can quickly identify
outbreaks.

Regression model (T. Q. Zhou, 2022) A method of predicting how a variable change
with other variables, in the absence of an
outbreak, uses the distribution of residuals to
determine the threshold. It is mainly divided
into linear regression and nonlinear
regression. The common ones are linear
regression model, quadratic curve model,
cubic curve model, and exponential curve
model.

It can be used for outbreak detection based on
laboratory results and cases reported by the
surveillance system, and for symptom
monitoring.

Markov chain (Z. B. Xu et al., 2022) Regarding time series as a random process, it is
a way to predict the future through different
initial states of things and apply probability
theory to study the changing trend of random
events.

It has simplicity and low data requirements,
but has limitation in parameter estimation and
assumption. It is suitable for simple models
with stable data.

Gray model (Duan & Nie, 2022) After turning irregular raw data into more
regularly generated data, model equations are
established to predict future development
trends.

It has no strict requirements on the sample
size and probability distribution, the model is
simple, and the prediction effect is good. Data
and disease data that change in the form of an
exponential function are more applicable. It is
suitable for short-term prediction of diseases
with stable epidemic factors.

B. Spatial warning models
Spatial scan statistic (Kulldorff, 1997) It divides geographic space into many small

areas as scanning windows, and uses Monte
Carlo hypothesis test to detect the areas where
the monitoring indicators are statistically
different from the conventional level.

It can identify spatial clusters of infectious
diseases and determine high-risk areas, but
requires spatially stable data. It assumes that
disease spread is uniform and does not
account for factors such as population density
and mobility that may influence transmission.

C. Spatio-temporal warning models

(continued on next page)
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Table 1 (continued )

Category Model Definition or principle Features or applicability

Prospective space-time permutation scan
statistic (Kulldorff et al., 2005)

This method incorporates the temporal aspect
into the spatial scan statistic. By identifying
different regions at different time points, it
effectively detects spatio-temporal clustering
of diseases and enables early warnings.

It can identify spatial clustering of diseases and
predict outbreaks. However, this model
requires spatial clustering of infectious
diseases and cannot issue warnings solely
based on temporal clustering.

Bayesian spatio-temporal models
(Rotejanaprasert et al., 2020)

It analyzes time effects, spatial effects, and
spatio-temporal interaction effects under the
Bayesian framework.

It is characterized by more accurate prediction
for small sample information, allowing the
existence of spatio-temporal interactions and
over-discretization, but determining the a
priori information is more complicated.

D. Infectious disease dynamics models
Compartment models (Kermack &
McKendrick, 1991)

The basic idea is to divide the population into
several classes (compartments), which
represent populations in different disease
states, and then use mathematical means to
establish the kinetic equations of these
variables, and then study the transmission
dynamics of the disease process.

The parameters considered in model are
difficult to be estimated comprehensively and
the parameters may change dynamically at
different stages of the epidemic, the prediction
effect is often poor, but it has important
application value for early warning and
evaluation of prevention and control effects.

E. Hawkes models
Hawkes models (Lamprinakou et al., 2023;
Schoenberg, 2023a)

The Hawkes process is a point process with
self-exciting properties, used for modeling
randomly occurring events. It assumes that the
occurrence of an event elevates the likelihood
of subsequent event.

It is particularly advantageous for analyzing
small-scale infectious diseases and modeling
the initial stage. It's simple yet flexible,
allowing spatio-temporal covariates, and can
be utilized alongside compartment models
and neural networks.

Models Mainly Based on Multi-source Surveillance Data
F. Artificial intelligence techniques

Random forest (Breiman, 2001; Kandula &
Shaman, 2019)

A combinatorial prediction model based on
decision trees.

Random forest is faster in operation, but its
trained model efficacy is lower when the
number of samples of a certain class in the
dataset is significantly smaller.

Artificial neural networks (Laureano-Rosario
et al., 2018; J. F. Xu & Zhou, 2011)

It classifies and regresses complex information
by simulating the process of processing
information in the neural network of the
human brain.

Good nonlinear fitting ability, but insufficient
explanatory power.

Conventional Neural Network (Dhillon &
Verma, 2020; Zheng & Hu, 2021)

CNN is a class of feed-forward neural networks
containing convolutional computation and
deep structure, and the basic computing units
include convolutional layer, activation
function layer, pooling layer, and fully-
connected layer.

Automatic extraction of target features, large
memory consumption, high energy
consumption.

Recurrent neural network (Lu M, 2020) The outputs of neurons in an RNN can be re-
input to the neurons so that the datamaintains
a dependency.

Small number of parameters required, low
transferability between gradients.

Long short term memory network (P. Huang,
2019)

LSTM adds the controllability of memory
function in RNN.

LSTM is suitable for longer interval and
delayed time series in the epidemic, and it can
adequately approximate complex nonlinear
relationships, with long time memory
function. However, the output results are
difficult to interpret, and the accuracy is low
when sample data were small.

G. Combined models
Combined models (Kogan et al., 2021;
Santillana et al., 2015; Y. L. Shi, Cheng, Huang,
& Ren, 2020; Z. F. Yang et al., 2020; Ying et al.,
2020; S. Zhou, Shen, & Wang, 2020).

A model that combines multiple early warning
modelling approaches to take full advantage of
the strengths of each approach, thereby
providing more comprehensive, accurate and
flexible warnings. It is more common to see
combinations of methods such as machine
learning, temporal warning models, and
Compartment models.

Combined models tend to outperform
traditional models in terms of data source
usage, model robustness, and model
performances, but they are more complex to
build and maintain.
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difference between observed and expected values, quickly and sensitively detects small anomalies in the data, and does not
rely on long-term historical baseline data (Rakitzis, Castagliola, & Maravelakis, 2018). Autoregressive integrated moving
average (ARIMA) models systematize smooth time-series sampled data to estimate and infer the future state of a phe-
nomenon by unveiling the underlying pattern between a target variable and time. These models are effective in capturing
short-term disease fluctuations, although their applicability is limited when simulating rare and severe diseases (Alegado &
Tumibay, 2019). In the moving percentile method, the median of long historical monitoring data represents the average level,
and the percentile of a certain confidence level represents the control limit (R. P. Wang, Jiang, Michael, & Zhao, 2017).
414
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Exponential weighted moving average (EWMA) is especially suitable for short-term historical data and sensitive to small
changes, considering distance and correlation between past and current data (Alimohamadi et al., 2020; Burkom et al., 2021).
A regression model can be used for outbreak detection based on laboratory results and cases reported by the surveillance
system, as well as for symptom monitoring (T. Q. Zhou, 2022). The Markov chain predicts the future through different initial
states of things and applies the probability theory to study the changing trend of random events. It has low data requirements
but has limitations in parameter estimation (Z. B. Xu, Zhang, & Huang, 2022). The gray model is especially useful for small
samples and short-term predictions (Duan & Nie, 2022).

In terms of applications, different international early warning systems use different time warning models. In the US, the
electronic surveillance system for the early notification of community-based epidemics (ESSENCE) uses an exponentially
weighted moving average model to compare and analyze the time-weighted average of current surveillance data with past
surveillance data, which is highly sensitive to short-term fluctuations. Additionally, an adaptive multiple regression model
was introduced to correct for the effect of holidays (the closer the time, the greater the weight) (Burkom et al., 2021). In
Germany, SurvNet uses an automatic outbreak detection algorithm to analyze statutory infectious disease data weekly and
generates a signal when detecting the number of incidence cases above a threshold (Straetemans, Altmann, Eckmanns, &
Krause, 2008). China Infectious Disease Automated-Alert and Response System (CIDARS) uses the moving percentile
method and cumulative and control chart method models to detect and warn different types of infectious diseases. If the
incidence level of the number of cases in the current 7-day periods exceeds the level of the nth percentile (Pn) of the baseline
data for the same period in the past 5 years (the threshold value varies for each type of disease), the system sends out one
warning signal (S. Huang et al., 2022).

2.1.2. Spatial warning models
Spatial warning models analyze the spatial distribution characteristics of infectious diseases and provide insights into the

spatial aggregation and outbreak risk by observing surveillance data within a specific period. The theoretical basis is that
when an infectious disease outbreak occurs, the number of cases will increase abnormally in a short period and tend to cluster
in a specific area, with obvious differences in incidence from other areas. The spatial scan statistic and SaTScan software,
proposed and developed by Kulldorff, is one of the most influential methods and tools for identifying spatial aggregation in
disease outbreaks (Kulldorff, 1997). This method divides geographic space into small scanning windows and utilizes Monte
Carlo hypothesis tests to detect areas wheremonitoring indicators statistically deviate from the expected level and to identify
spatial aggregation. However, it assumes a uniform spread of the disease and does not consider factors such as population
density andmobility, which can influence transmission. The data should exhibit a certain degree of spatial stability to use this
method effectively. Another approach, the flexible spatial scanning statistic, has been developed to identify “irregularly
shaped” aggregation areas and has demonstrated better performance in detecting outbreak areas in practical applications (J.
N. Zhou, Feng, Tan, & Li, 2010).

2.1.3. Spatiotemporal warning models
Spatiotemporal warning models simultaneously monitor and provide alerts from both temporal and spatial dimensions,

allowing for more comprehensive information and higher timeliness and accuracy. Currently, the prospective space-time
permutation scan statistic and the Bayesian space-time model are widely utilized.

The prospective space-time permutation scan statistic, proposed by Kulldoorf (Kulldorff, Heffernan, Hartman, Assunçao,&
Mostashari, 2005), incorporates the temporal aspect into the spatial scan statistic. It effectively detects spatiotemporal
clustering of infectious diseases and enables early warnings by identifying different regions at different time points.
Compared to purely temporal warning models, this approach not only predicts disease outbreaks but also identifies spatial
clustering of infectious diseases, which is beneficial for relevant departments to implement timely countermeasures. For
instance, the US employed this method for daily monitoring of COVID-19 outbreaks, facilitating informed decision-making
and resource allocation (Hohl, Delmelle, Desjardins, & Lan, 2020). However, this model cannot issue warnings solely based
on temporal clustering. Bayesian spatiotemporal models can analyze time effects, spatial effects, and spatiotemporal inter-
action effects under the Bayesian framework. It is characterized by a more accurate prediction for small sample information,
allowing the existence of interactions and over-discretization, although determining the a priori information is more
complicated (Rotejanaprasert, Ekapirat, Areechokchai, & Maude, 2020).

2.1.4. Dynamics models
Unlike spatiotemporal warningmodels, the dynamics model utilizes data to estimate system parameters and calculate key

indicators, such as the basic regeneration number (R0), the size of the diseased population, and the inflection point of the
epidemic. This is achieved through mathematical analysis based on the transmission mechanism and development law of
infectious diseases. These calculations provide a crucial foundation for epidemic research and early warning efforts.

The compartment model, initially proposed by Kennack and McKendrick in 1927, is the predominant dynamic model
(Kermack & McKendrick, 1991). It encompasses two classic types of basic compartment models: the SIR model and the SIS
model. The fundamental concept behind this model involves dividing the population into distinct classes or compartments
that represent different disease states. Then, mathematical methods are employed to establish kinetic equations about the
transmission dynamics of disease. However, the predictive efficacy of themodel is often limited due to the complexities in the
comprehensive estimation of the parameters and the potential dynamic changes of these parameters at various stages of an
415
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epidemic. Nonetheless, it is extremely useful in facilitating early warning systems and evaluating the effectiveness of pre-
vention and control measures (L. H. Huang, Wei, Shen, Zhu,& Chen, 2020). For instance, researchers conducted simulations of
potential transmission scenarios employing various dynamic models during the COVID-19 epidemic. These models played a
crucial role in forecasting epidemiological trends, evaluating healthcare resource requirements, analyzing vaccination rates,
and formulating prevention and control strategies (Kissler, Tedijanto, Goldstein, Grad, & Lipsitch, 2020; R. Y. Li, Pei, et al.,
2020).

2.1.5. Hawkes models
The Hawkes model, a type of point process, was introduced by the British statistician Alan G. Hawkes in 1971 (Hawkes,

1971). This model is prominently used in various fields such as finance, criminology, social networks, and more recently,
epidemiology. The fundamental principle of the Hawkes model is that it represents events whose occurrence increases the
probability of future events (Garetto, Leonardi, & Torrisi, 2021). This self-exciting property makes it particularly suitable for
modeling contagious phenomena. For instance, some scholars used the Hawkesmodel to analyze the Ebola outbreak in Congo
and West Africa, determining that the model offers specific advantages for examining small-scale infectious diseases and
simulating the initial spreading process of such diseases (Kelly et al., 2019; Park et al., 2022). The COVID-19 pandemic has
further accelerated the development and application of the Hawkesmodel and its variants. For example, Hawkesmodels have
been adapted to incorporate spatial covariates, allowing for the real-time tracking and forecasting of infection hotspots
(Chiang et al., 2022). Studies have shown that these models can outperform traditional compartmental models in certain
scenarios, providing more granular and dynamic insights (Bertozzi, Franco, Mohler, Short, & Sledge, 2020). For example, a
study compared the prediction results of the Hawkes model with those of the SEIR model and discovered that the Hawkes
model provided more accurate predictions, with a root mean square error 71 times lower than that of the SEIR model (Park
et al., 2022). In all, the basic Hawkes model is well-suited for analyzing and predicting small-scale epidemics or the initial
stage of outbreaks. However, due to its simplicity and flexibility, the Hawkes model can be extended into various variants to
better adapt to different pandemic stages and complex outbreak scenarios (Dukkipati, Gracious, & Gupta, 2021; Rizoiu,
Mishra, Kong, Carman, & Xie, 2017; Unwin et al., 2021).

2.2. Models mainly based on multi-source surveillance data

As disease surveillance technology advances, there is a growing availability of multi-source data, including syndromic
data, data from various hospital systems (e.g., radiology information systems, laboratory information systems, and image-
archiving and transmission systems) (Durango-Chavez et al., 2022), pharmacy data, wastewater monitoring data
(McMahan et al., 2021; Phan et al., 2023), and online public opinion data (e.g., keyword search indexes, social media heat, and
newsmedia reports) (Alsudias& Rayson, 2021; Daughton, Chunara,& Paul, 2020; JingWei Li et al., 2022; Kim& Ahn, 2021; Li,
Xu, et al., 2020; Lim, Tucker, & Kumara, 2017). There is an increasing trend of diversification, heterogeneity, and big data in
surveillance data, prompting the need for alternative approaches to early warning models. AI technologies offer the ability to
swiftly collect, process, and analyze large-scale multi-source data, enabling timely and accurate warnings (Jordan &Mitchell,
2015). Moreover, these technologies possess the capability for independent learning and performance improvement
(Bragazzi et al., 2020).

2.2.1. Artificial intelligence techniques
Machine learning algorithms are the key to the realization of AI technology. Examples include random Forest (RF), artificial

neural network (ANN), convolutional neural network (CNN), recurrent neural network (RNN), and long short-term memory
network (LSTM). Furthermore, machine learning methods are popular in infectious disease early warning.

The RF is a combinatorial predictionmodel originally proposed by Breiman in 2001 (Breiman, 2001). It is based on decision
trees, with each decision tree constructed from a set of training samples obtained through a self-service sampling method.
The data are recursively partitioned in the regression space by the decision tree until the subspace exhibits minimal variation.
The final classification result is determined by aggregating the votes from all decision trees. While RF offers faster operation,
its efficacy in modeling is diminished when the samples for a particular class are small. To address this limitation, some
researchers integrated symptom monitoring and online public data into the model to improve the efficacy negatively
impacted by scarce samples. For example, Kandula et al. demonstrated a 44% reduction inwarning errors by incorporating the
Google weekly influenza prediction trend as an additional data source (Kandula & Shaman, 2019).

The ANN was developed from the neuron model proposed in 1943, which classifies and regresses extensive complex
information by simulating the information processing within the human brain's neural network. Neurons serve as the
fundamental units for information processing in artificial neural networks and consist of three components: the input layer,
hidden layer(s), and output layer. A great number of neurons form an artificial neural network according to a certain
connection. These models exhibit excellent nonlinear fitting capabilities (Laureano-Rosario et al., 2018), making them robust
against outliers and multicollinearity. However, the ANN cannot explicitly elucidate its inference and the underlying basis of
its conclusions due to the intricate nature of the hidden layer (J. F. Xu & Zhou, 2011).

The CNN belongs to a class of feed-forward neural networks incorporating convolutional computation and deep structure.
The fundamental computing units in the CNN include the convolutional layer, activation function layer, pooling layer, and
fully-connected layer, in which the convolutional and pooling layers are interconnected to form the core component of the
416
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network. The application of CNN gained popularity in 2006. The CNN can automatically extract target features, identify
patterns in the sample set, and exhibit high classification accuracy and efficiency (Dhillon& Verma, 2020). However, memory
consumption, energy usage, and production costs of the model escalate as the number of network layers increases. Zheng
et al. found that a hybrid network of ANN and CNN was more accurate (95.1%) than ANN (89.1%) and CNN (90.1%) alone in the
tuberculosis early warning model (Zheng & Hu, 2021).

The RNN is well-suited for processing time series data. The neuronal outputs in the RNN can be fed back as inputs to
maintain data dependency and share parameters within the network structure, reducing the required parameters. Lu Min
et al. established an RNN-based influenza prediction model for Beijing relying on public opinion data sources, showing good
prediction results (Lu M, 2020). However, standard RNNs suffer from gradient vanishing or explosion and have limited
gradient transferability during training, resulting in their inability to effectively utilize information from long sequences. To
address these issues, Huang Peng et al. added the controllability of memory function in RNN to establish a predictionmodel of
class B infectious diseases in Sichuan Provincewith LSTM, which was successfully implemented within the Sichuan Center for
Disease Control and Prevention (P. Huang, 2019).

2.2.2. Combined model
Early warning of infectious diseases is challenging because the transmission dynamics of disease outbreaks are intricate,

and models cannot fully account for the factors involved in disease development. Although various spatial and/or temporal
models, dynamics models (mechanism-driven), and AI models (data-driven) have been proposed, some limitations remain in
the existing studies. For example, many parameters will be introduced when more practical factors are considered in the
mechanism-drivenmodel. Additionally, determining proper values is difficult. Furthermore, data-driven methods are limited
in elucidating the spread and persistence principles of diseases, and the use of low-quality data at the early stage of a disease
outbreak can introduce uncertainties. Fortunately, the characteristics of different models are complementary to a certain
extent because an increasing number of combined models are developed and provide better performance. Since the 21st
century, the combination of machine learning and time series analysis has been the most popular combined model.
Furthermore, the COVID-19 pandemic has also promoted the integration of machine learning with compartment models,
Hawkes models, and the fusion of compartment models with time series analysis.

Recently, combining AI models (data-driven) with dynamics models (mechanism-driven) has become a research hotspot
during the COVID-19 pandemic. Data-driven models can assist in reducing the reliance on assumptions and parameters in
epidemic mechanisms by incorporating infectious disease features in data. Meanwhile, mechanism-driven models can
enhance the interpretability of data-driven models and mitigate uncertainties caused by low-quality data. Consequently,
integrating data-driven (especially deep neural networks) and mechanism-driven methods is promising for advancing the
study of infectious diseases. For instance, Chen F et al. and Xiao YN et al. constructed a combined model including
transmission-dynamics-informed neural networks (TDINNs) and epidemiological priors informed deep neural networks
(Epi-DNNs) to determine the intensity of interventions during the COVID-19 pandemic, integrating a deep neural network
with a dynamical model (He, Tang, & Xiao, 2023; Ning, Jia, Wei, Li, & Chen, 2023). Similarly, foreign scholar Marian Petrica
employed a neural network to dynamically estimate parameters for SIRD models over seven consecutive days. Based on this
model, future events can be predicted for the upcoming day based on the model (Petrica & Popescu, 2023). Furthermore, in
addition to deep neural networks, the level-based learning swarm optimizer has been fused with SEIR models to forecast
emerging infectious diseases, considering factors such as population migration (X. L. Shi, Wei, & Chen, 2023).

Meanwhile, the Hawkes process model was developed in the realm of infectious diseases due to the COVID-19, and its
combined model with machine learning was used for the first time in this domain. For instance, Dukkipati et al. combined
LSTM with Hawkes to estimate the dynamic reproduction number and forecast the daily cases of COVID-19, of India, laying
the groundwork for the containment policy in the country (Dukkipati et al., 2021). Moreover, the predictive efficacy of
compartment models may be constrained by their dependence on numerous assumptions and the lack of real-time or ac-
curate data availability during outbreaks. Research has indicated that integrating time series analysis with a compartment
model can address this limitation. Following the development of the compartment model, methodologies such as the ARIMA
model can be employed to compute and forecast variances between the compartment model estimates and the actual data.
These variances can be then utilized to refine model predictions, enhancing overall model reliability (Ala'raj, Majdalawieh, &
Nizamuddin, 2021; W. P. Zhao et al., 2022).

Previously, numerous studies focused on combining AI (data-driven) with other models, with one of the commonly used
models being the temporal warning model. However, the prediction performance of temporal warning models (e.g., ARIMA)
is often insufficient for nonlinear parts and direct prediction of the original series. To address these issues, temporal warning
models were combined with data-driven models. For example, Oliveira proposed the ARIMA-SVR model, combining ARIMA
with support vector regression in 2016. This hybrid model significantly improved the prediction accuracy (de Oliveira &
Ludermir, 2016). In 2021, Zhai et al. used the combination model of ARIMA-BPNN and ARIMA-ERNN to predict brucellosis
in Shanxi Province, China (Zhai et al., 2021), demonstrating that combination models outperformed the standalone ARIMA
model. Nevertheless, all the above-mentioned models predicted the original sequence. The accuracy of directly using the
combined model for prediction is still insufficient when handling complex characteristics in the original sequences. To solve
this problem, a decomposition- and reorganization-based strategy for constructing a combinedmodel was proposed. Singular
spectrum analysis (SSA) can decompose the complex original sequence into simpler and regular sub-sequences (Hassani,
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2022). In 2023, Zhao et al. built an indirect combinatorial prediction model of SSA-SARIMA-LSTM for influenza prediction.
This model improved the prediction accuracy by modeling and superimposing the sub-sequences (Z. Zhao et al., 2023).

In addition to time warning models, there are also combinations of AI with other models. For example, Santillana et al.
proposed an influenza early warning model aggregating a network model with real-time multivariate linear regression to
optimize the combination of multiple sources of data, such as Google search, social media data, hospital visit records, and
influenza-like case surveillance, which is better than a single source of data for early warning (Santillana et al., 2015). Kogan
et al. used a Bayesian model in the US to analyze a combination of information regarding COVID-19 on social media, internet
search information, and fever surveillance data and captured an exponential rise in the number of confirmed cases 2e3weeks
in advance (Kogan et al., 2021). Madhav Marathe introduced a novel epidemic forecasting framework called deep
learningebased epidemic forecasting with synthetic information (DEFSI) for short-term, high-resolution predictions of
influenza. DEFSI combines multi-agent systems and deep neural networks, harnessing the benefits of both causal methods
and AI (L. J. Wang, Chen, & Marathe, 2019). Moreover, stacking-based deterministic ensemble models were popular for in-
fectious disease prediction (Mahajan et al., 2022; Sherratt et al., 2023).

Furthermore, studies combined methods other than AI. For instance, the Bayesian approach with the combination of SIR
and spatial conditional autoregressive models was used to understand the transmission of the H1N1 pandemic in 2009 over
time and space (X. D. Huang et al., 2016).

3. Discussion

Each model type has its own strengths, weaknesses, and applicability to different scientific questions. In this paper, in-
fectious disease early warning models are divided into four main types: spatial and/or temporal warning model, dynamic
model, AI techniques, and combined models. Spatiotemporal models can effectively detect disease outbreaks early in both
time and space, facilitating the allocation of public health resources (Ting et al., 2021). However, this model requires a sig-
nificant amount of geographic and migration data for a population. Dynamic models provide a mechanistic perspective on
disease transmission. They can predict epidemiological trends, analyze influencing factors, and evaluate the effects of in-
terventions, such as vaccination. However, determining model parameters and considering time-varying parameters can be
challenging (Davarci, Yang, Viguerie, Yankeelov,& Lorenzo, 2023). Fortunately, AI techniques, such as neural networks, can be
used to estimate the parameters of dynamic models and allow time-varying parameters to be considered, greatly improving
the model prediction ability (He et al., 2023). However, AI algorithms are less interpretable, and their performance relies
heavily on data quality. Among other combined models, the integration of time series and deep learning is widely used and
improves predictions with fewer parameters (Pathan, Biswas, & Khandaker, 2020). Nevertheless, most models tend to
perform better in the short term than in the long term. In conclusion, selecting a suitablemodel based on the specific situation
and research objective is essential.

Several factors influence model selection (Deng et al., 2022). First, the stage of transmission plays an important role. In the
early stages of an epidemic, understanding of the disease is limited, leading to the construction of only a simple SIR model. As
disease progresses and essential insights are unveiled, building more complex models that can perform new or different
functions becomes possible. Second, data availability is crucial. Insufficient real-world data limits researchers to basic data-
driven models for predicting epidemic trajectories. However, models can be enhanced regarding types, accuracy, and
complexity as data volume and diversity increase. The selected model should seamlessly handle various data types, including
disease incidence, climate data, and socioenvironmental variables (Haque et al., 2024). Moreover, the choice of a statistical
model should consider the specific characteristics of the infectious disease and influencing factors. For diseases with clear
temporal patterns, ARIMA or SARIMAmodels may be suitable. In cases of complex interactions, machine learning techniques
can provide valuable insights. They have been valuable for understanding non-linear relationships and complex interactions
between environmental factors and diseases like COVID-19 and influenza. In addition, balancing model complexity with
interpretability and accounting for uncertainty in model are vital (Mariotti, Alonso Moral, & Gatt, 2023). Bayesian methods
and ensemble modelling can provide a more comprehensive understanding of uncertainty associated with various model
choices (Abdar et al., 2021). Lastly, the purpose of the model must be clear. For instance, evaluating the impact of prevention
and control measures requires consideration of the natural history of the disease, characteristics and settings of the inter-
vention, and other factors, for which compartment models are applicable (Kong et al., 2022).

The outbreak of COVID-19 posed a serious challenge to the infectious disease surveillance system and early warning
methods globally and locally in China (Meckawy, Stuckler, Mehta, Al-Ahdal, & Doebbeling, 2022). On the one hand, public
health authorities can enhance the development of robust early warning systems by comprehensively understanding the
strengths and limitations of different models and applying them to a group of diseases with similar transmission routes and
characteristics (Haque et al., 2024; Semenza, 2015). The effectiveness of the early warning system can be improved through
comprehensive application of various models and continuous evaluation and improvement (Chinese Academy of Medical
Sciences and Peking Union Medical College Peking University Chinese Center for Disease Control and Prevention, 2024).
On the other hand, as far as early warning models are concerned, their performance relies on two main aspects: the model
and the data source. Research and practical applications of early warning models for infectious diseases using traditional
surveillance data have currently reached an advanced stage, whereas AI models and combined models leveraging multi-
source data are still in the developmental phase. The advent of big data has led to a diversification of data sources for in-
fectious disease early warning, encompassing syndromic data from hospitals (such as fever, cough, and diarrhea), data from
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different systems in hospitals, such as Radiography Information System (RIS) and Laboratory Information System (LIS), and
data from public sentiment networks, such as internet search indices and social media trends (Gao et al., 2022; Hughes,
Edeghere, O'Brien, Vivancos, & Elliot, 2020). Consequently, the integration of big data and AI techniques might play a
pivotal role in the enhancement of early warning models (Jiao, Ji, Yan, & Qi, 2023). Further research and exploration are
essential to take full advantage of multi-source data, optimize algorithm performance, and enhance the interpretability of
these models. Hence, the combination of AI and other early warningmodels, especially dynamic models, will become a future
development trend (He et al., 2023; Ning et al., 2023; Petrica & Popescu, 2023).

The COVID-19 pandemic has underscored the critical importance of surveilling unknown pathogens (“Disease X00) on a
global scale (Cunningham & Hopkins, 2023). Given its enigmatic nature, Disease X presents unique challenges to existing
models. How can infectious disease early warning models specifically contribute to Disease X surveillance and response?
Firstly, in terms of pathogen identification and mutant strain prediction, researchers can leverage multimodal and multi-
omics data of emerging infectious viruses. After constructing a virus mutation spectrum, they can use virus variant predic-
tion models (e.g., LSTM, RF, explainable AI, combined models), mutant antigen and receptor affinity analysis (e.g., machine
learning, molecular dynamics simulation), virus dynamic evolution and transmission models (e.g., compartment models,
combined models), and variant monitoring and early warning (e.g., big data and artificial intelligence) to predict virus mu-
tation and transmission, providing forward-looking technical support for epidemic prevention and control (Ren et al., 2023).
Secondly, regarding disease transmission characteristics and trend prediction, researchers can enhance existing early
warning models by incorporating subdivided compartments, dynamic parameters, agent-based models, combined models
and interdisciplinary technologies. This approach enables a more in-depth identification of transmission characteristics and
improved trend prediction. For instance, development of foundational or variant Hawkes model to promptly detect and
forecast outbreaks of unknown pathogens based on it's simple yet adaptable properties (Kelly et al., 2019; Park et al., 2022;
Schoenberg, 2023b; Unwin et al., 2021); application of innovative combinedmodels to better utilize multi-source monitoring
data and combine big data technology to achieve multi-trigger intelligent monitoring (Jin, Dong, Yu, & Luo, 2022;
Papageorgiou & Tsaklidis, 2023; Y. Y. Zhang, Tang, & Yu, 2023); development of novel dynamic GIS-based spatiotemporal
models to link infectious diseases with internet-based data and social-environmental data (Nazia, Law, & Butt, 2023); and
integration of internet-based models with social-environmental data to produce infectious disease surveillance systems
capable of better identifying vulnerable/susceptible communities over space and time (McClymont et al., 2024). Finally,
concerning the intervention effects of prevention and control measures, researchers can evaluate the impacts of various
interventions, such as human mobility restrictions, non-pharmacological measures, healthcare resource availability, and
vaccination strategies through diverse modeling methodologies like compartment models, agent-based models, system
dynamics models, network models, and combined models (Xiang et al., 2021; L. H. Zhou et al., 2022).
4. Conclusion

The recent COVID-19 pandemic has significantly propelled the advancement of both existing and emerging early warning
models for infectious diseases, while also presenting challenges and guiding future model development and application.
Unlike previous review studies, this review encompasses newly emerging or recently developed approaches, such as the
combined model and Hawkes model, providing a thorough evaluation of their current application status and development
prospects for the first time. Additionally, this review not only summarizes early warningmodels for specific infectious disease
types but also offers a comprehensive overview of those in the broader field of infectious diseases. This includes an analysis of
the principles, characteristics, and applicability of these models, serving as a foundational resource for subsequent re-
searchers to comprehend various models and select the most suitable ones. Each model possesses its unique set of strengths
and weaknesses. This study reveals that scholars have been exploring various aspects, such as improving existing models,
developing emerging methods, and implementing innovative model combinations, with significant results. This underscores
the importance of fully utilizing multi-source surveillance data for various types of infectious diseases and employing
appropriatemodels for predictionwithin the existing early warning system.Moreover, regular evaluation and updating of the
system and models are essential to tackle unknown pathogens that are constantly evolving.
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