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Simple Summary: Defining the specificity and biological sequalae induced by receptors differenti-
ated expressed in multiple myeloma cells are critical for the development of effective immunother-
apies based on monoclonal antibodies. Ongoing studies continue to discover new antigens with
superior tumor selectivity and defined function in regulating the pathophysiology of myeloma cells
directly or indirectly in the immunosuppressive bone marrow microenvironment. Meanwhile, it
is urgent to identify mechanisms of immune resistance and design more potent immunotherapies,
alone and/or with best combination partners to further prolong anti-MM immunity.

Abstract: The incorporation of novel agents in recent treatments in multiple myeloma (MM) has
improved the clinical outcome of patients. Specifically, the approval of monoclonal antibody (MoAb)
against CD38 (daratumumab) and SLAMF7 (elotuzumab) in relapsed and refractory MM (RRMM)
represents an important milestone in the development of targeted immunotherapy in MM. These
MoAb-based agents significantly induce cytotoxicity of MM cells via multiple effector-dependent
mechanisms and can further induce immunomodulation to repair a dysfunctional tumor immune
microenvironment. Recently, targeting B cell maturation antigen (BCMA), an even MM-specific
antigen, has shown high therapeutic activities by chimeric antigen receptor T cells (CAR T), antibody-
drug conjugate (ADC), bispecific T-cell engager (BiTE), as well as bispecific antibody (BiAb), with
some already approved for heavily pretreated RRMM patients. New antigens, such as orphan G
protein-coupled receptor class C group 5 member D (GPRC5D) and FcRH5, were identified and
rapidly moved to ongoing clinical studies. We here summarized the pathobiological function of key
MM antigens and the status of the corresponding immunotherapies. The potential challenges and
emerging treatment strategies are also discussed.

Keywords: multiple myeloma; MM; immunotherapy; tumor target antigen; immunomodulatory
drugs; IMiDs; monoclonal antibody; MoAb; CD38; signaling lymphocyte activation molecule
family 7; SLAMF7; B cell maturation antigen; BCMA; bone marrow (BM) microenvironment; orphan
G protein-coupled receptor class C group 5 member D; GPRC5D; FcRH5

1. Introduction

The development and introduction of the proteasome inhibitor (PI) bortezomib and
immunomodulatory drugs (IMiDs), including thalidomide and lenalidomide, has revolu-
tionized the treatment paradigm for multiple myeloma (MM). Second-generation drugs
within the same classes, such as carfilzomib and ixazomib (PIs) and pomalidomide (IMiDs),
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further improve the response rate, survival, and safety profile [1–3]. The incorporation of
autologous stem cell transplantation in eligible patients has also prolonged survival with
more durable disease control [4,5]. However, disease recurrence remains common for most
MM patients. Since drug-resistant clones constantly emerge and evolve, leading to a low
5-year overall survival rate in real-world data [6]. The clinical outcomes of patients with
relapsed or refractory MM (RRMM) are dismally poor because of the gradually decreased
durability of the response to successive lines of anti-MM therapy [7]. It is thus urgent to
further devise novel therapies with different mechanisms of action and optimize treatment
efficacy to reduce the risk of disease relapse and deepen response durability.

Accumulating studies for the past decades have defined that the bone marrow (BM)
microenvironment is essential in supporting MM cell growth, survival, and drug resistance.
MM cells are in close contact with surrounding BM accessory cells through bi-directional
interactions, including stromal cells (BMSCs) [8], osteoclasts (OCs) [9,10], regulatory T
(Treg) or B (Breg) cells [11–13], myeloid-derived suppressor cells (MDSCs) [14], tumor-
associated macrophages (TAMs) [15], and plasmacytoid dendritic cells [16]. These non-
MM cells, in turn, secrete abnormal levels of a variety of cytokines and growth factors
in a paracrine fashion to promote pathogenesis of MM, including interleukin-6 (IL-6),
IL-10, MIP-1α/β, transforming growth factor-beta (TGFβ), stromal cell-derived factor-1
(SDF-1), and a proliferation-inducing ligand (APRIL) [9,17–19]. Furthermore, changes
in BM accessory cells and cytokines, either secreted by accessory cells or MM cells via
autocrine or paracrine manners, contribute to myeloma cell immune escape, inhibition of
myeloma-specific T effector cells, induction of T-cell anergy, and abnormality in Treg cells,
resulting in an immunosuppressive microenvironment that impairs immunotherapy [20].

Monoclonal antibodies (MoAbs) binding to selective molecules on the surface of
cancer cells have transformed cancer treatment. In principle, these biologically based
molecules/proteins induce tumor cell killing mainly dependent on effector functions,
including antibody-dependent cellular cytotoxicity (ADCC) via CD16-expressing effec-
tor cells (i.e., NK cells, neutrophils, monocytes), complement-dependent cytotoxicity
(CDC), and/or antibody-dependent cellular phagocytosis (ADCP) via macrophages. These
primary mechanisms of action are distinct from small molecules used in conventional
chemotherapies, which directly induce tumor cell apoptosis and are largely independent of
immune effector function. The first two therapeutic MoAbs available for RRMM patients
are MoAbs targeting CD38 (daratumumab) and SLAMF7 (also named CS1) (elotuzumab),
approved by the U.S. Food and Drug Administration (FDA) in 2015 [21,22]. These rep-
resent an important breakthrough for effective targeted immune-based therapies in MM.
Importantly, results obtained from preclinical and clinical studies of both MoAbs thus far
have shown that these first-generation targeting bio-molecules also affect the immunosup-
pressive non-MM cell components in addition to MM cells [11–13,23–25]. These findings
have inspired many investigations on identifying the patho-immunological roles of various
immune regulatory cell subsets and molecules regulating their function using in vitro, ex
vivo, and in vivo models. Data from some of these studies have provided rationales to
improve the usage of targeting immunotherapeutic reagents with novel approaches. More
detailed results will be highlighted in subsequent sections.

Factors to be considered to enhance the effectiveness of current targeted immunother-
apies based on MoAb in MM are as follows. First, these agents should more selectively
identify and bind to specific cell surface antigens to trigger MM cell cytotoxicity with a
minimal off-target impact on normal tissues. Second, in addition to significantly inducing
MM cell lysis, these immunotherapeutic molecules could, at the same time, mitigate an
immunocompromised BM microenvironment and revert suppressive immune effector
cells. Moreover, a combination of different immunotherapeutic platforms with distinct
mechanisms of action against target antigens on MM cells as well as key immune stimula-
tory or inhibitory cells will enhance the strength and reduce the weakness of individual
drugs to further prolong the durability of the responses and reduce non-specific toxic-
ity. Currently, immunotherapeutic modalities based on naked MoAbs, chimeric antigen
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receptor T cells (CAR-T), bispecific antibody (BiAb), bispecific T-cell engager (BiTE), or
antibody-drug conjugates (ADC) are the main research areas under preclinical and clinical
development [26–28]. These agents are mostly designed to target tumor antigens on MM
cells and endowed with the ability to restore and further sustain anti-MM effector function
in the suppressive BM milieu.

2. Pathophysiological Function for Validated MM Target Antigens and Their
Related Immunotherapies

The anti-MM mechanisms of targeted immunotherapeutic bio-reagents are mainly
derived from the MoAbs, which detect and engage with selective proteins on MM cell
membrane followed by the induction of NK cell-mediated killing (Figures 1 and 2). These
target antigens are chosen based on their differential expression and/or critical roles in
growth, survival, and drug resistance in MM cells. The following paragraphs underline
the major pathobiological and -immunological characteristics as well as the corresponding
targeting immunotherapeutic agents of MM target antigens currently under preclinical
and clinical studies.
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Figure 1. Pathobiological function of validated MM target antigens commonly used in current MM immunotherapies.
(A) CD38, a receptor and an ectoenzyme, regulates the conversion of NAD+ to ADO, which contributes to the immunocom-
promised tumor microenvironment. IL-6, an important MM growth, survival, and immunosuppressive cytokine, mainly
produced by non-myeloma BM cells (i.e., BMSCs, MDSC, OC, and TAM), binds to IL-6R, which interacts with gp130 to
activate the JAK1/2-STAT1/3 signaling pathway and subsequently downregulates CD38 expression in MM cells. (B) BCMA
is the cognate receptor for APRIL and BAFF, which are present in the BM microenvironment. APRIL, an important plasma
cell factor, preferentially binds to BCMA when compared with BAFF, to induce signaling pathways critical to promote
survival, proliferation, and drug resistance, as well as immunosuppression of MM cells. BCMA expression is induced by
BLIMP1, a key plasma cell transcriptional regulator, and BCMA protein is cleaved by gamma (γ)-secretase, resulting in the
soluble form (sBCMA) that is detected in MM patient serum and correlated with disease advancement. (C) CD138, the
transmembrane heparan sulfate proteoglycan syndecan-1, is overexpressed in malignant plasma cells and its levels are
associated with increased proliferation and survival, as well as decreased apoptosis in MM cell lines and patient MM cells.
Levels of shed CD138 (sCD138) cleaved by metalloproteinases and heparanase in MM patient serum samples are also linked
to disease progression and sCD138 acts locally or distally with various effector molecules (i.e., IL-6, APRIL, and VEGF) to
impact tumor progression. (D) SLAMF7, also named CS1, promotes adhesion of MM cells to BMSCs. The expression of
SLAMF7 is regulated by the transcriptional factor IKZF1 (Ikaros), a MM-related target by lenalidomide and pomalidomide,
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in MM cells. Soluble SLAMF7 (sSLAMF7) is detected in patient serum and promotes MM cell growth via homophilic
interaction with SLAMF7 on MM cells. Among these four MM antigens, BCMA has the most limited expression at the
transcript and protein levels in plasma cells but no other normal tissues except a minute subset of plasmacytoid dendritic
cell. ADO, adenosine; ADPR, ADP-ribose; APRIL, A proliferation inducing ligand; BAFF, B-cell activating factor; BMSC,
bone marrow stromal cell; JAK, Janus kinase; MDSC, myeloid-derived suppressor cell; NAD+, nicotinamide adenine
dinucleotide; OC, osteoclast; TAM, tumor-associated macrophages; VEGF, vascular endothelial growth factor.
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Figure 2. Multiple mechanisms of action and immunomodulatory effects of current targeted immunotherapies in MM.
(A) Monoclonal antibodies (MoAbs) identify and bind to specific antigens to trigger MM cell lysis via multiple immune-
dependent mechanisms, including ADCC, ADCP, and CDC. (B) The single chain fragment variant of the CAR-T cell first
targets the MM-specific antigen and potent MM cell lysis is induced in a major histocompatibility complex-independent
manner followed by increased proliferation and activation of T effector cells, including those with central and effector
memory phenotypes. (C) BiAb or BiTE, off-shelf products different from autologous CAR-T cells, simultaneously binds
to specific tumor antigen on MM cells and CD3 on T cells to trigger potent MM cell killing as well as proliferation of
immune effector T cells. T cells with memory phenotypes (Tcm, Tem, Tscm) and the major cytolytic T cells (CD8+ cells)
are increased significantly. (D) The MoAb portion of antibody drug conjugate (ADC) binds to tumor antigen on MM cell
membrane and the ADC is endocytosed followed by the release of potent cytotoxic payloads from lysosomes to directly
induce MM cell apoptosis. Payloads used in ADC are typically even more potent than those used in chemotherapies to
improve superior specific killing of tumors cells but not the surrounding normal tissues. Depending on the design of the
ADC, NK cells and macrophages are directly or indirectly activated to induce ADCC and phagocytosis, respectively, to
further augment killing of tumor cells. ADCC, antibody-dependent cellular cytotoxicity (NK cells are the predominant
effector cells. Other CD16-expressing effectors including monocytes and neutrophils are also capable to induce ADCC);
ADCP, antibody-dependent cellular phagocytosis (macrophage (M), especially with the M1 characteristics, are the key
effector cells whereas macrophages with M2 features (TAM in Figure 1) promote tumor growth); BiAb, bispecific antibody
engaging with T cells; BiTE, bispecific T cell engager; CDC, complement-dependent cytotoxicity; Tcm, central memory T
cell; Tem, effector memory T cell; Tscm, stem cell-like memory T cell.
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2.1. CD38

CD38, a type II transmembrane glycoprotein, was first identified as a marker of cell
activation and proliferation in lymphocytes. It regulates cell migration [29] and receptor-
mediated adhesion via interaction with endothelial CD31 or hyaluronic acid [30]. CD38
receptor also exhibits ecto-enzymatic activity, involved in the metabolism of cytoplasmic
nicotinamide adenine dinucleotide phosphate (NADP) and extracellular nicotinamide ade-
nine dinucleotide (NAD+) [31]. In addition, CD38 interacts with its substrate, NAD+, to in-
crease production of Ca2+ mobilizing compounds; i.e., cyclic adenosine diphosphate ribose
(CADPR), ADP ribose (ADPR), and nicotinic acid adenine dinucleotide phosphate [32–34].
ADPR is further converted to adenosine monophosphate (AMP) by CD203a and then
adenosine (ADO), which exhibits immunosuppressive activity via a reduction in immune
cell activity and induction of differentiation of osteoclast, one of the most immunosuppres-
sive BM accessory cells [35–38]. Moreover, the malignant plasma cells further use aerobic
glycolysis to promote an acidic BM, which together with CD38 highly expressed on their
surface induce the generation of AMP and ADO.

In MM cells, CD38 is downregulated by IL-6, the major MM cell growth and sur-
vival factor secreted by BMSCs, via activation of IL-6-induced JAK1/2-STAT1/3 signaling
pathways [39,40]. Decreased CD38 expression triggered by IL-6 in MM cells is further
associated with reduced sensitivity to anti-CD38 MoAb (i.e., daratumumab), providing a
new molecular mechanism to support the immunosuppressive function of IL-6 in the BM
microenvironment. Since the JAK1/2 inhibitor ruxolitinib blocks IL-6-induced phosphory-
lation of STAT1 and STAT3, these data also suggest a potential combination daratumumab
with JAK1/2 inhibitor to revert daratumumab resistance.

On the other hand, since CD38 is also expressed at various levels in other normal
hematopoietic cells, including NK effector cells, daratumumab-induced MM cell lysis is
negatively affected due to daratumumab-induced NK cell depletion, as seen in laboratory
studies as well as in patients [41–43]. New adoptive immunotherapy using ex vivo ex-
panded human primary NK cells with or without CD38 knockout was recently proposed
to boost daratumumab activity in MM [42,43]. In contrast, when compared with immune
effector T cells, immune inhibitory Treg and Breg cells express elevated CD38 levels, as
high as MM cells, and thereby are preferentially eliminated by CD38 targeting MoAbs
and T cell expansion is promoted [11,12,44]. This additional function on targeting key
immune suppressive cell subsets further support the therapeutic efficacy of anti-CD38
MoAbs in MM.

The incorporation of daratumumab into current anti-MM treatment regimens has sig-
nificantly prolonged overall survival in RR as well as ND MM patients [22,45–48]. In 2019,
daratumumab is the first MoAb, when used in combination, approved for treatment for
NDMM patients who may still exhibit functional immune cells in the less defective immune
BM milieu. The second anti-CD38 MoAb, isatuximab, recognizes the non-overlapping
CD38 epitope of daratumumab and has shown convincing clinical activity, leading to its
approval when combined with pomalidomide and dexamethasone in RRMM in 2020 [49].

Besides the induction of effector-mediated MM cell lysis in a CD38-dependent manner,
both daratumumab and isatuximab eliminate high CD38-expressing immune inhibitory
cell subsets (i.e., Treg, Breg) in MM patients, a supplementary mechanism to increase
immune effector cell number and function [11–13]. Compared with NK effector cells, T
effector cells express low levels of CD38. A BiTE, AMG 424, with a lower CD38-binding
affinity together with CD3 binding to T cells, was recently developed and its preclinical
activity was evaluated using in vitro and in vivo models of human MM [50]. This next
generation CD38-targeting molecule potently induces a cytotoxic T cell response to kill MM
cells via cytolytic cytokine production (i.e., interferon-gamma (IFNγ), granzyme B (GZMB),
perforin (PRF1)), with minimal toxicity on T effector cells. Furthermore, anti-CD38 CAR-T
cells were reported and induced lysis of CD38+ MM cells with mild effects on other CD3+
T cells [51].
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2.2. SLAMF7 (CS1)

SLAMF7 is a member of the immunoglobulin gene superfamily (signaling lympho-
cyte activation molecule family) and associated with cytotoxic effector, humoral and
auto-immunity, and cell survival/adhesion, as well as lymphocyte development [52,53].
SLAMF7 is also expressed on the surface of certain subsets of immune cells, including
NK cells, cytotoxic T lymphocytes (CD8+ cells), B lymphocytes, and mature dendritic
cells. SLAMF7 itself can serve as a receptor of NK cell and it is a self-ligand that exhibits a
homophilic interaction to augment NK cell-mediated cytotoxicity [54]. Moreover, SLAMF7
on the surface of B cells is upregulated during B cell activation to promote proliferation of
naive and memory B cells and cytokine production [55].

SLAMF7 is highly expressed on patient MM cells from ND to RRMM patients, in-
dependent of the cytogenetic risk classification [24,56]. Soluble SLAMF7 (sSLAMF7) is
detected in MM patients rather than normal individuals [24] and could promote MM cell
growth via activating the SHP-2 and ERK signaling pathways via homophilic interac-
tion [57]. Targeting IKZF1 (Ikaros 1), a critical transcriptional activator of SLAMF7, by
IMiDs downregulates SLAMF7 expression and ameliorated the response of MM cells to
sSLAMF7. MM cells with t(4;14) translocations (15% of all MM cases) have higher SLAMF7
expression, associated with MMSET overexpression [58]. SLAMF7 knockdown by its
shRNA inhibits colony formation and induces cell cycle arrest followed by apoptosis of
t(4;14) plasma cells, indicating elevated SLAMF7 expression in promoting the growth of
MM cells. Furthermore, SLAMF7 promotes the adhesion of plasma cells to BM stromal cells
to support survival and proliferation of MM cells in the BM; conversely, an antagonistic
anti-SLAMF7 MoAb prevents MM cells from adhesion to BMSCs and induces ADCC to
lyse MM cells [24,59]. Most recently, SLAMF7 was found highly expressed on immuno-
suppressive CD8+CD28-CD57+ Tregs in MM patients and these cells could be eliminated
using anti-SLAMF7 MoAb elotuzumab [25].

Elotuzumab, the first-in-class humanized immunoglobulin G1 anti-SLAMF7 MoAb,
exhibits immunomodulatory effects on NK cells via activation of SLAMF7/EAT2 signaling
without negative impacts on NK cell number and survival [24,56,60]. Combination of elo-
tuzumab with IMiDs (lenalidomide, pomalidomide) with low-dose dexamethasone signifi-
cantly improved the clinical outcome of RRMM patients in the ELOQUENT-2 trial [21,61],
leading to its approval for the treatment in RRMM. SLAMF7-targeting agents using ADC,
CAR-T, or BiAb are under preclinical and/or clinical investigations.

2.3. CD138 (Syndecan-1)

CD138 (syndecan 1), a member of the syndecan family of type I transmembrane
proteoglycan, has been commonly used as a prognostic marker in MM, since its expres-
sion level is elevated in malignant versus normal plasma cells [62]. CD138 modulates
various biological processes, including proliferation [63], adhesion [64], migration [65], en-
docytosis [66], macropinocytosis [67], immunomodulation [68], and regulation of heparan
sulfate proteoglycans [69]. Increased CD38 expression promotes proliferation and survival
of MM cells, as well as angiogenesis and IL-6 receptor sensitivity in MM cells [70,71].
IL-6-induced growth and survival signaling cascades upon binding to IL-6R is further
augmented in MM cells overexpressing CD138, indicating cross-talks between CD138 and
IL6R in the progression of MM. Importantly, high CD138 expression is linked to enhanced
malignant plasma cell growth and disease burden in patients. Since CD138 is cleaved by
metalloproteinases and heparanase, soluble CD138 (sCD138) is detected in patient serum
samples and its levels are associated with the prognosis of MM, with shorter survival
in patients with higher levels [72]. Significantly, shedding of CD138 (sCD138) from MM
cells stimulates myeloma cell growth by positive regulation and interaction with other
MM-promoting factors (i.e., IL-6, vascular endothelial growth factor (VEGF), APRIL) in the
BM microenvironment [62,70,73].

Besides plasma cells, CD138 is expressed in other normal and malignant human
tissues at various levels, including normal squamous epithelial, goblet, and columnar cells
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in the gastrointestinal tract, as well as tumor cells, including squamous cell carcinoma
and adenocarcinoma [67,74,75]. As reported in previous clinical studies testing the first
CD138-targeting ADC, BT062, described below, high expression of CD138 on epithelial cells
was associated with increased risk of treatment toxicity (such as mucositis or diarrhea) [76].

BT062/Indatuximab ravtansine, an ADC with cytotoxic maytansinoid DM4, was the
first CD138-targeting drug tested in an MM clinical trial [76,77]. Most of the adverse events
were mild (grade 1 or 2), with diarrhea and fatigue the most common. The response rate
of monotherapy or combination therapy (with lenalidomide or pomalidomide and dex-
amethasone) in RRMM patients were 14.7% and 77%, respectively [76,77]. Besides ADC,
CD138-targeting therapy under clinical and preclinical investigation include CAR-NK
and CAR-T cell therapy [78–80]. A case report demonstrated a patient with extensive ex-
tramedullary MM involvement receiving anti-CD138 CAR-T cell infusion (total: 1.5 × 108)
after a conditioning regimen of cyclophosphamide and fludarabine. The patient experi-
enced grade 2 cytokine release syndrome (CRS) and received anti-IL-6R MoAb tocilizumab
treatment with clinical partial response (PR) [81].

Recently, a bispecific antibody and CAR-T cell based on a new anti-CD138 MoAb
showed significant anti-MM activity and an immunomodulatory effect in preclinical stud-
ies [78]. A novel naked MoAb VIS832 was recently made, showing enhanced membrane
CD138-binding affinity compared to the MoAb portion of BT062 [82]. VIS832, as a naked
IgG1 MoAb, potently induced ADCC and ADCP against MM cells, including resistant cell
lines or patient MM cells, without directly impacting MM cells. No toxicity was seen in NK
cells treated with VIS832, confirming the absence of CD138 expression on immune effector
cells. Anti-MM activity of VIS832 in the in vitro and in vivo models was further augmented
when combining with lenalidomide or bortezomib in the preclinical study. These data
provide a clinical rationale to test this new anti-CD138 MoAb, alone or in combination with
current standard-of-care anti-MM drugs in MM.

2.4. B-Cell Maturation Antigen (BCMA)

BCMA, also called tumor necrosis factor receptor superfamily member 17 (TNFRS17)
or CD269, is a type III transmembrane protein with extracellular domains rich in cysteine
without a signal peptide. BCMA, closely related to B-cell activation factor receptor (BAFF-
R), and transmembrane activator and calcium modulator and cyclophilin ligand interactor
(TACI), regulates B cell proliferation and survival, as well as maturation and differentiation
into plasma cells [83–85]. These three functionally related receptors bind to their cognate
ligands, BAFF and/or APRIL, with different affinities, to support long-term survival of B
cells at different stages of development. Specifically, BCMA, but not BAFF-R or TACI, is
crucial for the long-term survival of plasma cells, but not overall B cell homeostasis [85].
During the differentiation of B cells into plasma cells, the expression of BCMA is induced
from late memory cell, while BAFF-R is concomitantly extinguished. BCMA expression is
regulated by B-lymphocyte-induced maturation protein 1 (BLIMP1), an important plasma
cell transcriptional factor [86]. Under normal physiological conditions, the membrane
BCMA is cleaved by gamma-secretase to form the soluble BCMA (sBCMA) [87]. Serum
levels of sBCMA are significantly higher in MM patients than healthy individuals and
associated with immune deficiency in the tumor microenvironment [88,89]. Elevated
sBCMA levels are positively linked to increased tumor burden and poorer overall or
progression-free survival [89]. Furthermore, the post-treatment levels of sBCMA could be
used as a predictive marker for treatment response [90–92].

As in the case for CD38, SLAMF7, and CD138, expression of BCMA is increased in
patient MM cells. The evaluation of patient samples from various cohorts further con-
firmed that expression of BCMA at the transcript and protein level is more restrictively
expressed on plasma cells but no other normal tissues, when compared with the above
MM antigens included in the previous paragraphs [93–95]. Among other normal tissues,
BCMA transcript and protein are only weakly detected on plasmacytoid dendritic cells, a
minute BM cell subset that promote MM cell growth, survival, and resistance to anti-MM
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drugs [95]. Patients with higher BCMA expression from their CD138+ plasma cells also
have elevated BCMA levels in autologous plasmacytoid dendritic cells, further supporting
the patho-biological role of BCMA in MM. In addition, BCMA is co-immunoprecipitated
with interferon regulatory factor 4, a major transcription factor mediating survival of MM
cells [96]. Overexpression of BCMA directly augments MM cell growth and survival via
induction of protein kinase B (AKT), MAPK, and nuclear factor (NF)-κB signaling cascades,
followed by upregulation of the gene expression of molecules critical in growth and anti-
apoptosis [18,19,84]. It further enhances expression of genes related to activation of OCs,
adhesion, angiogenesis, and metastasis, as well as development of immunosuppressive
characters, including programmed death ligand 1 (PD-L1), TGFβ, and IL-10. Moreover,
overexpression of BCMA in the MM cell line expressing low BCMA levels induces early
onset and increased volume of xenografted tumors with increased CD31/microvessel den-
sity and VEGF in a murine model of RPMI8226 MM cells, confirming its tumor-promoting
effects in vivo.

As a critical plasma cell receptor, BCMA binds to its cognate ligands BAFF or APRIL
to activate AKT, ERK1/2, and NFκB pathways in MM cells [18,97]. These two ligands are
mainly secreted by non-MM cells in the BM and with differential influences on the biology
of MM cells. First, BAFF binds to BAFF-R, BCMA, and TACI, to promote adhesion of MM
cell to BM stromal cells, but with a significantly higher selectivity (~100-fold) to BAFF-R,
which is hardly detectable in MM cells [97,98]. In contrast, APRIL cannot bind to BAFF-R
and preferentially binds to BCMA or TACI, the latter of which is less frequently expressed
when compared with the former in MM cells. Specifically, APRIL preferably binds to BCMA
with much higher affinity than BAFF [83,99] and is predominantly produced by myeloid
cells, macrophages, OC precursor cells, and OCs which play central pathophysiological
roles in MM-induced bone lesions. All these data indicate that APRIL may be a more
significant factor than BAFF in the development and progression of MM. Importantly,
APRIL binding to BCMA triggers multiple signaling pathways to further promote drug
resistance of MM cells and the progression of immunosuppressive BM milieu via induction
of the key downstream anti-apoptotic genes (Mcl-1, Bcl-2/Bcl-xL) and immune regulatory
genes (IL-10, PD-L1, VEGF, TGF-β) in MM cells [18,19]. Moreover, APRIL directly impacts
Treg cells that express no BCMA, to promote an immunosuppressive BM microenvironment
via binding to TACI whose expression levels are significantly correlated with upregulated
Treg markers, including Foxp3 and CTLA-4 [44]. Besides TACI-dependent induction of
cell cycle progression and anti-apoptosis genes, APRIL specifically augments expression of
Foxp3, IL-10, TGFβ1, and PD-L1 in Tregs to further augment Treg-inhibited conventional
T cells proliferation and cytolytic function. APRIL also enhances IL-10-producing Breg
cells via TACI in the BM of MM patients. All these results strongly support targeting
APRIL/BCMA and APRIL/TACI systems for novel MM immunotherapies.

The first therapeutic anti-BCMA MoAb J6M0 was selected based on its significant
blocking activity induced by BCMA binding to BAFF or APRIL in the single to sub-digit
nanomolar range [95]. J6M0 was subsequently conjugated via non-cleavable linker with a
novel anti-tubulin drug monomethyl auristatin F (MMAF) (GSK2857916, now Belantamab
mafodotin). GSK2857916 showed more selective and potent anti-MM killing than its
monomethyl auristatin E (MMAE) ADC homolog in the preclinical study, thereby moving
forward to the first clinical trial of BCMA-targeting ADC in MM [83,95]. GSK2857916
directly induces MM cell apoptosis and simultaneously stimulates ADCC and ADCP
via NK and macrophages, respectively. Since 2015 [83], there have been overwhelming
advances of new BCMA-based immunotherapeutic agents, including ADC delivering
novel potent drugs with different mechanisms to induce MM cell apoptosis, CAR-T, or NK
cells, as well as BiTEs and BiAbs engaging T or NK effector cells. Impressively, preclinical
studies of these innovative agents utilizing various in vitro and in vivo models consistently
demonstrate robust anti-MM cytotoxicity with some having been further translated into
significant clinical activities [93–95,100–102]. All early phase clinical studies in small patient
cohorts showed a promising high response rate and durable disease control in heavily
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pretreated RRMM patients [27,103,104]. Several anti-BCMA agents have completed or
entered phase 2 or 3 studies [27]. In 2020, belantamab mafodotin and idecabtagene vicleucel
(ide-cel; formerly bb2121) were the first anti-BCMA ADC and CAR-T therapy, respectively,
approved by FDA as a single agent for heavily pretreated RRMM patients. Most recently,
teclistamab, a BiAb targeting BCMA and CD3 (a Humanized BCMA CD3 DuoBody®

Antibody), received FDA breakthrough therapy designations for RRMM [105]. Today,
BCMA targeting immunotherapy is the first targeted therapy inducing an impressive
clinical response as monotherapy in heavily pretreated MM patients who have no more
treatment options left.

3. Other MM Tumor Antigens for Emerging Targeted Immunotherapy

The success of recent CAR-T, BiTE, and ADC, based on BCMA-targeting therapies,
has quickly stimulated further development of immunotherapy targeting other novel
antigens. Data of clinical studies further confirm that exclusive and high expression
of tumor antigens on cancer cell is a key factor for new target selection to maximize the
potency while minimizing the risk of off-target toxicity. Orphan G protein-coupled receptor,
class C group 5 member D (GPRC5D), is a newly identified MM antigen that is highly
expressed on MM cells in the BM but not normal tissue, although weakly expressed in hair
follicles [106]. GPRC5D CAR-T exhibiting potent anti-MM activity in a preclinical study
has led to ongoing clinical studies. BiAbs targeting GPRC5D and CD3 (talquetamab/JNJ-
64407564 and GPRC5D TRAB) have also shown potent T-cell-mediated killing of GPRC5D+
MM cells and proliferation/activation of T cells in the preclinical and ongoing clinical
studies [107,108]. Furthermore, the expression level of GPRC5D on MM cells and the
BM microenvironment-related factors contribute to a different degree of responses to JNJ-
7564 [109]. The early phase clinical trials of talquetamab (JNJ-64407564), as a monotherapy
(NCT03399799) or combined with other anti-MM agents (NCT04108195), are ongoing, with
already significant clinical activity.

Another potential antigen, integrin β7 (ITGB7), is associated with adhesion of MM
cells to extra-cellular matrix elements, migration, invasion, and drug resistance [110]. In
the in vitro study, novel ITGB7 targeting MMG49-derived CAR T cells showed specific
MM cell lysis without damaging normal hematopoietic cells [111].

Natural Killer Group 2D (NKG2D) ligand, expressed on about 80% of MM cells, can
bind to NKG2D on natural killer cells, leading to immune escape and tumor growth [112,113].
A BiAb targeting NKG2D and CS1 showed significant immune synapse between CS1+ MM
cells and NKG2D+ immune cells, leading to effective MM lysis [114]. NKG2D-CAR T cells
was also evaluated in a clinical trial, which showed good safety, but no objective response
was observed (NCT02203825) [115].

CD229, a member of the SLAM family, is highly and homogenously expressed on
MM cells and myeloma precursors, but not on other normal tissues [116,117]. A preclinical
study showed anti-CD229 CAR-T cells exhibited potent in vitro and in vivo activity to
against MM and MM-propagating cells, with minimal damage to normal T cells [118].

FcRH5 (or FcRL5, CD307), a membrane protein highly expressed on mature B cells and
plasma cells, was also evaluated in MM treatment [119]. A BiAb, cevostamab (BFCR4350A),
targeting FcRH5 and CD3, was constructed and showed significant in vitro and in vivo
anti-MM activity, as well as T cell activation/proliferation in a preclinical study [120].
The phase 1 trial evaluating the safety and efficacy of cevostamab in RRMM is ongoing
(NCT03275103).

Besides the above MM antigens, CD44v6 [121], immunoglobulin light chain [122],
and CD19 [123] was also evaluated previously. These antigens showed a significant
in vitro and in vitro anti-MM effect, or promising results as multi-target combination
immunotherapy [124].
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4. Potential Challenges and Strategies

Multiple factors are associated with lower treatment efficacy and immune resistance,
frequently seen in heavily pretreated patients. First, downregulation of tumor antigen
reduces the binding affinity of target agents, resulting in lower tumor killing. Low ex-
pression of CD38, together with increased membrane expression of CD55 and CD59, two
important immune inhibitory molecules in complement-mediated tumor cell lysis, were
associated with treatment resistance to daratumumab [41]. Second, increased shedding
of tumor antigens into a soluble form in the serum could act as a decoy, which natural-
izes the immune-targeted agents and negatively affects the pharmacokinetic profile and
treatment response. High serum levels of soluble SLAMF7 have been associated with a
poorer response to elotuzumab and shorter survival [125]. Likewise, sBCMA and sCD38
could reduce the anti-MM activity of anti-BCMA BiTE [102] or daratumumab [126], respec-
tively. Another mechanism contributing to resistance is antigen escape (or loss), which
was recently reported in plasma cells in relapsed MM patients with a very low level or
loss of BCMA expression, mostly in anti-BCMA CAR-T cell trials [90,91,127]. These low
or no antigen-expressing MM cells may be selected out and proliferate after normal or
high tumor antigen-expressing cells were eradicated by potent immunotherapy, leading to
disease progression. A study using a mouse model revealed that both CD28- and 4-1BB-
based CARs were able to induce reversible antigen loss by trogocytosis, which promote the
transfer of target antigens to T cells [128]. Most recently, two correlative studies using a se-
quencing technique to analyze patient samples sequentially collected revealed that biallelic
loss or homozygous gene deletion of BCMA play a critical role in antigen escape [129,130].
In MM patients who have not been previously treated with BCMA-targeting therapies,
BCMA loss or monosomy 16 was observed in 22% (37/168) of them. Moreover, a signif-
icantly higher percentage was noted in patients with hyperdiploid cytogenetics (84.8%,
28/33) [130]. Furthermore, the immunocompromised BM microenvironment is aggravated
by MM cell-induced abnormal increased Treg cells, MDSCs, OCs, and/or Breg cells, as
well as upregulation of their secretory immunosuppressive cytokines, i.e., IL-6, IL-10, and
TGFβ. Enhanced PD-L1 expression on MM cells and other BM accessory cells engages
PD-1 on activated effector T cells to suppress their proliferation and production of cytolytic
cytokines, leading to a functionally exhausted state and further apoptosis [9,11,19,131,132].
In addition to PD-1, aberrant enhanced or prolonged expression of other immune check-
point molecules, i.e., TIM-3, CTLA-4, and LAG-3, in NK and T effector cells further inhibit
their number and effector function upon binding to their cognate ligands upregulated in
MM cells [133].

Several strategies are and/or have been under preclinical or clinical investigations.
For decreased MM antigen expression, selective therapeutic agents are shown to en-
hance target expression on the MM cell surface. In preclinical studies, all-trans retinoic
acid, histone deacetylase (HDAC) inhibitors, and JAK/STAT3 inhibitors were reported
to induce CD38 expression, which was associated with enhanced CD38 targeting by
daratumumab [134–137]. Since CD38 is a NAD+-degrading enzyme producing ADO,
which is immunosuppressive, as mentioned in the above section, the depletion of NAD+
may decrease generation of ADO and allow more CD38 targeting by anti-CD38-based
immunotherapies [35]. Most recently, a new DNA-damaging drug specifically delivered to
MM cells through BCMA targeting was reported to increase the CD38 levels and further
overcome daratumumab insensitivity in MM cell lines and patient MM cells [40]. For
BCMA-based immunotherapies, gamma-secretase inhibitors could reduce the shedding of
BCMA from MM cells, associated with increased levels of cell membrane BCMA and MM
cell killing [87,138]. The preliminary result is promising in an early phase trial evaluating
the combination effect of anti-BCMA CAR-T cell therapy and gamma-secretase inhibitor in
RRMM patients (NCT03502577) [139].

Modification of the MoAb structure via protein engineering to increase the binding
affinity to the membranous form of the target antigens could significantly augment MM cell
targeting, as reported for a novel anti-BCMA ADC [140] and anti-CD138 VIS832 [82]. For
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antigen loss identified in patients refractory to BCMA CAR T treatment, preclinical studies
have demonstrated that targeting the new antigen GPRC5D using CAR-T or BiTE could still
effectively induce lysis of the BCMA knockout MM cell lines [106,108]. A preclinical study
evaluating bispecific CAR-T cells simultaneously targeting both BCMA and SLAMF7 on
MM cells showed promising results to prevent antigen escape and better control MM cells
heterogeneously expressing these antigens [141]. Significantly, BCMA/CS1 bispecific CAR-
T cells induce superior CAR expression and function compared to T cells co-expressing
individual BCMA and CS1 CARs. Furthermore, combination of an antagonistic anti-PD-1
MoAb with BCMA/CS1 bispecific CAR-T cells accelerates the rate of initial tumor clearance
in a murine model, while CAR-T cell treatment alone achieves durable tumor-free host
survival even upon tumor re-challenge.

A novel anti-BCMA pyrrolobenzodiazepine (PBD) ADC, MEDI2228, preferentially
binds to membrane BCMA [142] and further induces DNA damage-induced ATM/ATR-
CHK1/2, cGAS-STING-TBK1-IRF3, and STAT1-IRF1-signaling cascades to activate IFN-
related molecules [40,143] (Figure 3). Significantly, MEDI2228 upregulates expression of
CD38 and multiple NKG2D ligands on the MM cell membrane in vitro and in a xenograft
murine model of human MM. It overcomes CD38 downregulation triggered by IL6 via
activation of STAT1/IRF1 and further restores daratumumab-induced ADCC against resis-
tant MM cell lines and patient MM cells. Unlike daratumumab, which depletes NK cells
due to CD38 expression, MEDI2228 has no impact on NK cells. Upregulation of NKG2D
ligands as “eat me” signals, including MICA/B and ULBP2/3/5, further augment binding
of MEDI2228-treated MM cells to the NKG2D receptor on NK cells, resulting in increased
NK immune surveillance as well as enhanced daratumumab-induced MM cell killing in
in vitro and in vivo preclinical study models. Importantly, combination daratumumab
and MEDI2228 treatment led to all mice bearing MM1S tumors becoming tumor-free with
100% survival. These results further support clinical rationales to test the combination
CD38- and BCMA-targeting immunotherapies to achieve effective and durable anti-MM
activity. Such combination clinical studies are ongoing based on belantamab mafodotin,
the first approved BCMA ADC, in MM, including NCT04246047 with daratumumab and
NCT04643002 with isatuximab.

Many ongoing investigations (mainly CAR-T cell therapy) are to evaluate dual-
targeting strategies with various combinations based on BCMA, CD19, CD138, and CS1
(SLAMF7), together or in sequence (Table 1), and some already showed improved clinical
activity in early phase clinical studies [27,124]. Regarding treatment approaches to aug-
ment anti-MM activity of a single targeted immunotherapeutic agent or to overcome an
immunosuppressive BM microenvironment, a combination of different anti-MM agents
with distinct mechanisms of action remains very attractive strategies. For example, IMiDs,
which enhance immune effector cell function and block immunosuppressive BM accessory
cells, have been commonly combined with many current anti-MM treatments [144,145].
A preclinical study has shown that lenalidomide enhances cytotoxic effect anti-CS1 CAR-
T cells in in vitro and in vivo MM models [146]. Recent studies also demonstrated that
lenalidomide or pomalidomide, as well as an PD-L1 inhibitor, further augment T-cell medi-
ated MM cell lysis and immune modulatory function of half-life-extended anti-BCMA BiTE
AMG 701 [100,101]. IMiDs further upregulated AMG 701-induced patient T-cell differentia-
tion toward memory phenotypes, associated with increased CD8/CD4 ratios and stem-like
T cells (Tscm), as well as decreased IL-10+ T and Treg cells that downregulate T effector
cells. Importantly, the combination of AMG 701 with lenalidomide further prolonged host
survival following sustained inhibition of MM cell growth in SCID mice reconstituted with
human T cells. As previously mentioned, bortezomib or daratumumab also enhance the
anti-MM effect of an anti-BCMA ADC MEDI2228 in preclinical studies [40,143]. Further-
more, VIS832 with superior CD138-binding affinity, significantly augments MM cell killing
in vitro and in vivo when combined with lenalidomide or bortezomib [82].
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Figure 3. Molecular and cellular mechanisms for enhanced MM cell killing by simultaneously targeting BCMA and CD38.
Combination BCMA- and CD38-directed therapies hold great promises to improve the potency and durability of current
targeted immunotherapies in MM. For instance, as shown here, the additional immunomodulatory effects and molecular
mechanisms of the BCMA-specific ADC, MEDI2228, could augment NK cell killing of drug-resistant MM cells in the
presence or absence of daratumumab (dara) via enhanced MM cell recognition and destruction by effector cells. Although
only showing NK cells here, T and macrophages also will be activated by inflammatory cytokines (i.e., IFN I molecules) and
chemokines secreted from MM cells, to further boost the anti-MM immune function of this ADC. Significantly, MEDI2228
activates DNA-damage-related ATM/ATR-CHK1/2 and cGAS/STING/TBK1/IRF3, as well as STAT1/IRF1 signaling
cascades followed by the induction of downstream type I IFN and IFN-stimulated genes in MM cells (right panel). Cell
membrane expression of CD38, an IFN-associated gene, and NKG2D ligands (MICA/B, ULBP2/3/5) are elevated in
MEDI2228-treated MM cells, thereby further restoring CD38 targeting by Dara.

Table 1. Selected clinical trials of combination therapy or multi-target immunotherapy.

Clinical Trials Agents Format Status

Anti-CD19/BCMA Bispecific CAR-T Cell Therapy for R/R MM
(Phase 1, NCT03706547) BCMA/CD19 CAR-T CAR-T Active, not

recruiting

Anti-BCMA or/and Anti-CD19 CART Cells Treatment of Relapsed
Multiple Myeloma (Phase 1, NCT03767725) BCMA/CD19 CAR-T CAR-T Recruiting

Targeting CD19 and BCMA CAR-T Cells Immunotherapy in Patients
with Relapsed or Refractory Multiple Myeloma (Phase 1+2,

NCT04714827)
BCMA/CD19 CAR-T CAR-T Recruiting

A New Study Evaluating the Activity of Modular CAR T for
mYeloma (MCARTY) (Phase 1, NCT04795882) BCMA/CD19 CAR-T CAR-T Recruiting

A Feasibility and Safety Study of Dual Specificity CD38 and BCMA
CAR-T Cell Immunotherapy for Relapsed or Refractory Multiple

Myeloma (Phase 1+2, NCT03767751)
BCMA/CD38 CAR-T CAR-T Recruiting

BCMA-CS1 Compound CAR (cCAR) T Cells for Relapsed/Refractory
Multiple Myeloma (Phase 1, NCT04156269) BCMA-CS1 cCAR T CAR-T Recruiting

Safety and Efficiency Study of BCMA-PD1-CART Cells in
Relapsed/Refractory Multiple Myeloma (Phase 2, NCT04162119) BCMA-PD1-CART CAR-T Recruiting
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Table 1. Cont.

Clinical Trials Agents Format Status

BCMA-CD19 cCAR in Multiple Myeloma and Plasmacytoid
Lymphoma (Phase 1, NCT04162353) BCMA-CD19 cCAR CAR-T Recruiting

A Study of BCMA/CD19 Dual-Target CAR-T Cell Immunotherapy
for Relapsed or Refractory Multiple Myeloma (Phase 1,

NCT04182581)
BCMA/CD19 CAR-T CAR-T Recruiting

Humanized CAR-T Cells of Anti-BCAM and Anti-CD19 Against
Relapsed and Refractory Multiple Myeloma (Phase 1, NCT04194931) BCMA/CD19 CAR-T CAR-T Recruiting

A Study of BCMA/CD19 Dual-Target CAR-T Cell Immunotherapy
for Relapsed or Refractory MM (Phase 1, NCT04412889) BCMA/CD19 CAR-T CAR-T Recruiting

Up-front CART-BCMA with or without huCART19 in High-risk
Multiple Myeloma (Phase 1, NCT03549442) CART-BCMA, huCART19 CAR-T Recruiting

Study of T Cells Targeting CD19/BCMA (CART-19/BCMA) for
High-Risk Multiple Myeloma Followed with Auto-HSCT (Phase 1+2,

NCT03455972)
BCMA/CD19 CAR-T CAR-T Recruiting

CAR-T Cells Combined with Dasatinib for Patients with Relapsed
and/or Refractory B-cell Hematological Malignancies (Phase 1,

NCT04603872)
BCMA/CD19 CAR-T CAR-T Recruiting

A Feasibility and Safety Study of Dual Specificity CD38 and BCMA
CAR-T Cell Immunotherapy for Relapsed or Refractory Multiple

Myeloma (Phase 1/2, NCT03767751)
CD38/BCMA CAR-T CAR-T Recruiting

BCMA-CS1 Compound CAR (cCAR) T Cells for Relapsed/Refractory
Multiple Myeloma (Phase 1, NCT04156269) BCMA-CS1 CAR-T CAR-T Recruiting

Study of T Cells Targeting CD138/BCMA/CD19/More Antigens
(CART-138/BCMA/19/More) for Chemotherapy Refractory and

Relapsed Multiple Myeloma (Phase 1, NCT03196414)
Multiple targets CAR-T Recruiting

The status of each trial is based on the description on the Clinicaltrials.gov website by 20 October 2021.

5. Perspectives

Since the approval of daratumumab and elotuzumab in 2015, more targeted ap-
proaches based on the highlighted antigens above have been generated and investigated in
different phases of clinical development, as monotherapy and/or in combination (Figure 4,
Table 1). To date, BCMA-based immunotherapy represents the most promising targeted
approach, as many clinical studies of different immunotherapeutic formats have showed
impressive overall response rates (>70–90%) with prolonged disease control duration,
achieving minimal residual disease (MRD) negativity in RRMM patients [27,104,147]. How-
ever, a significant portion of patients still suffered from progression or relapse of disease;
thus, further optimization of the current treatment approaches, using various immunother-
apeutic forms targeting single, dual, or multiple antigens and/or in combination, are
urgently needed to prevent disease recurrence and deepen treatment responses.

For the anti-CD38 treatment, the MoAbs recognizing the distinct epitope of CD38,
such as isatuximab and MOR202, have been under several clinical investigations, with
isatuximab approved in August 2021. Like daratumumab, isatuximab is characterized by
multiple effector-dependent anti-MM mechanisms (ADCC, ADCP, and CDC). In contrast,
isatuximab, in the absence of effector cells, can further induce apoptosis of MM, Treg,
and Breg cells, expressing even higher CD38 levels, while daratumumab cannot [148,149].
A new humanized IgG1 anti-CD38 MoAb, mezagitamab (TAK 079), also showed robust
anti-MM activity in RRMM samples and immunomodulatory effects, including activation
of NK and T cells, as well as suppression of immune inhibitory cells [150]. The early result
of a phase 1 study (NCT03439280) is encouraging, with overall response rate of 31% and a
good safety profile [151]. Another novel anti-CD38 ADC, TAK-169, using deimmunized
Shiga-like toxin A subunit as the payload, also demonstrated a remarkable in vitro anti-
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MM effect [152]. TAK-573, a humanized, anti-CD38, IgG4 MoAb genetically fused to two
attenuated IFN alpha-2b molecules, showed further increased cytotoxic potential of CD8 T
cells via modulation of the IFN-α receptor pathway after treatment in an early phase clinical
study [153]. Strategies to modulate the glycosylation of the Fc portion (glyco-engineering)
may enhance the affinity of the antibody for FcγRs, thereby resulting in more potent direct
and immune effector cell-mediated cytotoxicity. A novel, hexamerization-enhanced human
IgG1 anti-CD38 antibody (GEN3014) with an E430G mutation to enhance intermolecular
Fc–Fc interactions showed potent CDC activity and ADCC in a preclinical study [154]; an
early phase clinical study was recently initiated (NCT04824794). Furthermore, a preclinical
study evaluated a BiAb targeting CD38 and CD59 showed a significant increased CDC
activity, which was mediated by simultaneously binding to CD38 and neutralization of
CD59, which is associated with daratumumab resistance [155].
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Figure 4. Statuses of various targeting immunotherapeutic agents under development in MM.
Statuses of different immunotherapeutic formats based on the indicated MM target antigens
were summarized from the ClinicalTrials.gov website (data cut-off: 14 October 2021). * CAR
T therapy has moved to allogeneic strategies, including BCMA CAR T (NCT05000450 (ALLO-
605), NCT04093596 (ALLO-647), NCT04960579 (P-BCMA-ALLO1)) and CS1/SLAMF7 CAR T
(NCT04142619 (UCARTCS1A)). ** The BCMA CAR-NK trials are ongoing, including NCT03940833
in phase 1/2 and NCT05008536 in phase 1.

Next-generation modalities targeting SLAMF7 are also under development. ABBV-
838, the first anti-SLAMF7/CS1 ADC, is characterized by cytotoxic MMAE as the payload
and an enzymatic cleavable valine-citrulline linker, despite the first-in-human clinical trial
of this ADC showing a low response rate in RRMM patients [156]. Other anti-CS1 agents,
such as CAR-T cell therapy or anti-CS1/NKG2D BiAb, also showed significant in vitro
and in vivo anti-MM activity in preclinical studies [114,146]. Anti-CS1 CAR-T cell therapy,
including allogeneic CAR-T cells (NCT04142619), is currently under clinical investigation.

For further improvement of anti-BCMA immunotherapy, the novel ADC MEDI2228
preferentially binds to membrane BCMA showed significant clinical activity in RRMM
patients, with an overall response rate of 61% and no keratopathy reported in an early
phase clinical study [157]. MEDI2228 can be combined with bortezomib and further
upregulates CD38 in MM cells and increased immune surveillance via NK cells to over-
come daratumumab resistance [40]. Regarding BiTE therapy, a novel half-life-extended
anti-BCMA (AMG 701), with a better pharmacodynamic profile, has demonstrated re-
markable anti-MM activity in vitro and in vivo [100,101]. The early phase clinical trial
investigating weekly dosing of AMG 701 showed promising results and a good safety
profile in heavily pretreated RRMM patients (NCT03287908) [147]. For better outcome of
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Cancers 2021, 13, 6136 15 of 23

anti-BCMA CAR-T cell therapy, structural or protocol modification are also under evalu-
ation. First, a fully humanized and smaller size scFv may reduce the immune response
against murine scFv, to improve post-infusion persistence and overcome treatment fail-
ure [158]. For example, CART-ddBCMA, a CAR-T cell characterized by utilization of
73 amino acids as the binding domain rather than conventional scFv to reduce immuno-
genicity, also showed a high response and good safety profile in RRMM patients with
high tumor burden (NCT04155749) [159]. Second, a recent study evaluating the pre- and
post-infusion sample in the bb21217 trial revealed that the presence of early memory-like
T cells in peripheral blood mononuclear cells may be linked to high peak expansion and
better disease control, but highly differentiated or senescent T cells exhibited a negative
effect [160]. For better treatment safety, novel mRNA-generated CAR-T cells (Descartes-08),
to limit excessive proliferation to reduce the risk of cytokine-releasing syndrome (CRS), has
shown robust in vitro and in vivo anti-MM activity [161]. The early phase clinical study is
ongoing (NCT03448978). In addition to autologous CAR-T cells, the clinical investigation
of allogeneic CAR-T cell ALLO-715 is ongoing to test whether off-shelf CAR-T products
are feasible to reduce the cost, time, and success of CAR-T generation (NCT04093596).
Moreover, NK-based cellular therapy may also exhibit potent anti-MM killing but with a
lower risk of fetal CRS than CAR-T cell treatment, since NK cells tend to survive shorter
than T cells after infusion (NCT03940833, NCT05008536).

Several strategies to further optimize anti-MM immune targeted therapy are also
under exploration. In the BiAb approach, novel treatment approaches, such as BiAb-armed
T cells, are emerging in MM treatment. To avoid antigen-loss-related treatment failure,
bicistronic CAR, bivalent “tandem CARs”, or CARs with three specificities are under
development [162]. Clinical studies of the above novel concept using these validated MM
antigens are expected.

Moreover, the first off-the-shelf multiplexed engineered NK cell therapy (FT538)
generated from a clonal master engineered-induced pluripotent stem cell is character-
ized with CD38 knock-out to avoid damage from anti-CD38 MoAb. An early phase
of FT538 combined with daratumumab or elotuzumab in RRMM patients is ongoing
(NCT04614636) [163].

Besides the therapeutic role, the exclusive expression of MM-specific antigens on MM
cells provides a rationale to develop diagnostic tools. ImmunoPET imaging, which utilized
the conjugation of deferoxamine-p-benzyl-isothiocyanate to elotuzumab or daratumumab
to enable radiolabeling of zirconium-89, showed the optimal detection ability of MM
cells in preclinical studies [164,165]. The clinical study to explore the diagnostic role of
this novel technique is ongoing (NCT04814615). The combination of these state-of-the-
art imaging tools with minimal residual disease assessment may provide more valuable
clinical information.

6. Conclusions

Landscapes of targeted treatments using immunotherapeutic approaches is continu-
ously evolving, with increasing numbers of novel effective agents granted for approval.
Research areas continue to be focused on identification of more specific new target anti-
gens, inhibition of shedding and/or escape/loss of target antigens, modulation of binding
affinity to validated and/or new target antigens on MM cells and immune molecules on
immune effector or suppressive cells using various immunotherapeutic platforms, and
blockage of immune inhibitory cytokines, as well as reprogramming the tumor immune mi-
croenvironment in favor of persistent anti-MM immunity. Combinations within individual
targeted reagents and/or with broad immunoregulators (IMiDs), or chemotherapies with
distinct mechanisms of action, remain the most promising strategies due to complex bi- or
multi-directional interactions between MM cells with heterogenous genetic backgrounds
and different accessory cells via multiple regulatory levels of ligand–receptor engagements
in the BM microenvironment. Moreover, using more comprehensive next-generation pro-
teomic and transcriptomic analysis from data longitudinally collected from patients in
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ongoing trials, novel druggable molecules will be discovered and new subsets of immune
cells with more potent activity in regulating intrinsic and/or acquired immune resistance
will be further identified.
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