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Abstract
Background: The importance and power of isotope-based metabolic flux analysis and its
contribution to understanding the metabolic network is increasingly recognized. Its application is,
however, still limited partly due to computational inefficiency. 13C metabolic flux analysis aims to
compute in vivo metabolic fluxes in terms of metabolite balancing extended by carbon isotopomer
balances and involves a nonlinear least-squares problem. To solve the problem more efficiently,
improved numerical optimization techniques are necessary.

Results: For flux computation, we developed a gradient-based hybrid optimization algorithm.
Here, independent flux variables were compactified into [0, 1)-ranged variables using a single
transformation rule. The compactified parameters could be discriminated between non-identifiable
and identifiable variables after model linearization. The developed hybrid algorithm was applied to
the central metabolism of Bacillus subtilis with only succinate and glutamate as carbon sources. This
creates difficulties caused by symmetry of succinate leading to limited introduction of 13C labeling
information into the system. The algorithm was found to be superior to its parent algorithms and
to global optimization methods both in accuracy and speed. The hybrid optimization with tolerance
adjustment quickly converged to the minimum with close to zero deviation and exactly re-
estimated flux variables. In the metabolic network studied, some fluxes were found to be either
non-identifiable or nonlinearly correlated. The non-identifiable fluxes could correctly be predicted
a priori using the model identification method applied, whereas the nonlinear flux correlation was
revealed only by identification runs using different starting values a posteriori.

Conclusion: This fast, robust and accurate optimization method is useful for high-throughput
metabolic flux analysis, a posteriori identification of possible parameter correlations, and also for
Monte Carlo simulations to obtain statistical qualities for flux estimates. In this way, it contributes
to future quantitative studies of central metabolic networks in the framework of systems biology.

Background
In recent years, metabolic flux analysis (MFA) has become
an important tool for quantifying metabolic pathways
which is essential for in-depth understanding of biologi-

cal systems. Among the developed tools, 13C flux analysis
utilizing 13C labeling patterns of metabolic products that
result from feeding 13C-labeled substrates provides
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detailed information about intracellular pathway fluxes in
vivo [1-3]

13C-based MFA requires carbon flux modeling through
the metabolic network, which describes the mathematical
relationship between unknown fluxes and the available
measurement data set. It requires modeling two con-
nected equation systems, which describe reaction stoichi-
ometry between metabolites and between carbon
isotopomers, respectively. Using the model, fluxes can be
computed from the measurements by solving a nonlinear
least-squares problem (NLSP). The stoichiometric net-
work is a linear equation system of material balances
given for the reactions between metabolites, i.e., S·ν = 0
with S denoting the stoichiometric matrix and ν the
fluxes. The fluxes consist of non-measured intracellular
fluxes νu and measured effluxes νm, i.e., ν = (νu, νm)T. Typ-
ically, realistic models are underdetermined, that is, the
rank of S is smaller than the number of entries in νu [1].
This difference between rank(S) and the number of entries
of νu equals the number of fluxes that have to be chosen
as the design parameters Θ (independent flux variables)
and are required when parametrizing the network such
that ν = Fflux(Θ).

Typically, modeling carbon isotopomer networks
involves an equation system containing a few to several
hundred variables to balance reactions between iso-
topomers [1,3,4]. The equation system of carbon iso-
topomer reactions is an implicit function Fcarbon(x, ν) = 0,
bilinear but square with respect to carbon isotopomer
fractions (x) and nonlinear with respect to fluxes, where x
consists of non-measured xu and measured xm. Among the
available tools, the cumomer concept developed by
Wiechert et al. (1999) provides explicit solutions for car-
bon isotopomer fractions (x) by transforming the bilinear
system into a cascade of linear systems [5]. In addition to
this, the explicit partial derivatives of the cumomer net-
work with respect to fluxes are obtainable, which is useful
for gradient-based optimization algorithms. When 13C
labeling information is applied, intracellular fluxes are
determined by means of numerical optimization that
seeks a constrained minimum of independent flux varia-
bles (Θ) to an objective function, e.g.,

Here f(Θ) denotes the objective function to be minimized

with respect to Θ and  (Θ) signifies the model function

corresponding to the measured data set η = (η1, η2,..., ηn)T

consisting of measured 13C labeling data (xm). Such data

are typically received as mass isotopomer distributions
measured by mass spectrometry (MS) and/or fractional

carbon labeling measured by nuclear magnetic resonance

(NMR) techniques, and effluxes (νm). The measurement

error ε is typically assumed to have a normal distribution

such that ε ∈ N(0, Ση), where Ση is the covariance matrix

of measurements.

For 13C-based MFA, the applied algorithms for numerical
flux estimation are mainly gradient-based local optimiza-
tion [6,7] or gradient-free global optimization [8-11] such
as simulated annealing (SA) or genetic algorithms (GAs).
Also, a hybrid technique of global-local optimization has
been applied [12]. Such algorithms are described in detail
elsewhere [13-15]. The stochastic global optimization
methods can be inefficient due to the time required to
obtain the so-called asymptotic convergence or reachabil-
ity in high dimensional parameter spaces [11,16-21].
Moreover, such algorithms of random nature may fail to
find the global solution unless the number of samplings
tends to infinity, which is practically impossible [21,22].
In comparison, the gradient-based local optimizations
have a much higher convergence speed, but the solution
quality depends heavily on starting points [14,19]. Fur-
ther to this, reaching the global optimum is ensured only
for convex problems, whereas it is nontrivial to determine
the convexity of general nonlinear problems with nonlin-
ear constraints [23]. Thus, one may obtain solutions that
are not necessarily global [14] and that might vary
depending on starting points.

In this regard, a robust method is highly desirable which
guarantees a convergence with speed and accuracy for the
nonlinear flux estimation problem. In the present work,
we developed a method for efficient parametrization of
metabolic network by compactification. Additionally, a
mathematical method is suggested for model identifica-
tion that solves a priori flux identifiability problems
regarding 13C labeling experiments in terms of model lin-
earization. On this basis, an optimization algorithm was
developed that hybridizes two gradient-based optimiza-
tion tools. The developed approaches were evaluated
using the central metabolism of Bacillus subtilis with succi-
nate and glutamate feeding as the only carbon sources. We
examined whether global flux solutions are obtainable
using the gradient-based deterministic algorithm.

Results
In this section, we describe the mathematical and compu-
tational procedures developed and their application to the
nonlinear problem of metabolic flux estimation in a real-
istic metabolic network of Bacillus subtilis. The model rep-
resents an inherent difficulty arising from only succinate
and glutamate feeding as carbon sources. Succinate is a
symmetric molecule having only two distinguishable car-
bon atoms. On the other hand, glutamate is also con-
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verted into succinate. Due to this, the information that is
introduced by the 13C-labels of the substrates is severely
limited.

Parametrization of stoichiometric network
To formulate a non-linear least squares problem (NLSP),
the system of interest has to be parametrized. The stoichi-
ometric network, which is a rank-deficient linear system
(S·ν = 0), was parametrized using the following three
steps.

Step (i)
The stoichiometric matrix S is transformed into its
reduced row echelon form SRRE using Gauss-Jordan elimi-
nation with partial pivoting. Subsequently, each row and
column of SRRE is analyzed to identify the dependent and
independent variables. The first non-zero element in each
row of SRRE that is always 1 is called 'leading 1'. If the ith

column of SRRE contains only zeros and one leading 1,
then the ith element of ν is dependent, otherwise it is inde-
pendent. The number of fluxes selected as independent
equals the degrees of freedom in the stoichiometric net-
work, that is, the difference between the number of varia-
bles and the rank of S. Once this step has been completed,
we will see that certain intracellular fluxes and all effluxes
(νm) are chosen as independent.

Step (ii)

Physiologically, metabolic fluxes are constrained such

that 0 ≤ ν < ∞, if reversible reactions are considered as two
independent reactions. For the effluxes, the correspond-
ing measurements are available. Hence, the effluxes can

be bounded, e.g., mean value ±  × standard devia-

tion, where  denotes the inverse of χ2-cumulative dis-

tribution function at a certain confidence level of φ, and

the resulting range covers 100 × φ % of possible experi-
mental observations.

The intracellular fluxes selected as independent can be
compactified using a single rule such that:

The above compactified flux variables ϕ, the [0, 1)-fluxes,
are a bijection of [0, ∞) domain onto [0, 1) range: if νi →
0, ϕi → 0 and if νi → ∞, ϕi → 1 for a certain real positive
number of the parameter scaling constant α. These [0, 1)-
fluxes can potentially elevate the output sensitivity and,
thus, the convergence speed. The output sensitivities of a
carbon flux system with respect to fluxes and [0, 1)-fluxes

are ∂xm/∂ν and ∂xm/∂ϕ, respectively, where the latter
equals (∂xm/∂ν)·(∂ν/∂ϕ) by the chain rule. Differentiating
νi with respect to ϕi results in

from (2). If α > (1 - ϕi)2 holds and, thus, dνi/dϕi > 1, the
sensitivity given by ∂xm/∂ϕ = (∂xm/∂ν)·(∂ν/∂ϕ) increases.
Particularly, a higher sensitivity can always be obtained by
setting α ≥ 1 due to finite values of fluxes, that is, 0 ≤ νi <
∞ or 0 ≤ ϕi < 1. Hence, setting the parameter scaling con-
stant α ≥ 1 is more preferable for numerical optimization
than α > 0. Moreover, the mapping such as (2) has proven
to yield an extremely low curvature of 13C labeling in the
parameter space and is advantageous for model lineariza-
tion [24]. The constant α can be adjusted during the opti-
mization. This is described in detail in the Appendix.

Step (iii)
By symbolically solving the equation system consisting of
stoichiometric balances and flux constraints such as (2)
for the dependent fluxes (νdepend), we get explicit expres-
sions for all dependent fluxes such that νdepend = Fflux(Θ)
with Θ = (ϕ1, ϕ2,..., νm1, νm2,...)T.

Flux identifiability by model linearization
One important question to be answered prior to the
numerical flux computation is the a priori parameter iden-
tifiability. To this end, the so-called Buchberger's algo-
rithm [25] can be applied to compute the Gröbner basis
[26]. However, this polynomial algebraic method can be
very time consuming and, thus, is restricted to small sys-
tems, corresponding to the fact that the Gröbner basis can
be extremely large for a metabolic carbon labeling system
[27,28].

In previous works [28,29], the Jacobian matrix of the
measurement model has been utilized for model identifi-
cation: the matrix determinant or rank were applied to the
flux identifiability analysis in carbon labeling systems.
However, these approaches do not tell how to sort out
identifiable flux variables in case not all fluxes are identi-
fiable.

As an alternative, the first order optimality condition and
null space analysis can be applied to model identification.
For this purpose, the linear algebra approach is now
extended to answer the question of the a priori flux identi-
fiability problem regarding 13C isotopomer analysis,
which begins with model linearization. At the solution of
the nonlinear problem (1), the gradient ∇f is expected to
be 0 by the first order optimality condition, as in:
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Here, J( ) represents the Jacobian matrix that equals

∂ /∂Θ evaluated at . Assuming that the parameter esti-

mate  is close to its true value , the above equation

can linearly be approximated in the neighborhood of 
by the first-order Taylor series expansion such that:

Solving the above equation for  gives the particular
solution of (1) as follows:

Assuming that the above linearization is a good approxi-
mation in the vicinity of solution, the a priori identifica-
tion problem can be answered using linear system theory,
similarly as applied for stoichiometric metabolite balanc-
ing [30]. The theory is now extended to the linearized car-
bon labeling system: the general solution of (1) can be
formulated as a linear combination of the particular solu-
tion (6) with its homogeneous part, i.e.,

Here, null(J( )) is the null space of J( ) and β is a vector
containing arbitrary non-zero values. The ith element of

the search step  whose corresponding row of

null(J( )) consists of zeros can be determined uniquely

from the measurement η. Thus, the unique solution of the
corresponding ith design parameter can be computed
numerically.

Hybrid optimization algorithm
Due to the parametrization introduced above, the flux
estimation problem (1) can now be formulated such that:

where f(Θ) denotes the objective function specified in (1)
and Θ = (ϕ1, ϕ2,...,ϕn, νm1, νm2,...)T the design parameter

vector consisting of the [0, 1)-fluxes ϕi. The effluxes νm
comprise substrate uptake as well as product and biomass
formation with known standard deviation σm, and νdepend
corresponds to all unknown intracellular fluxes.

To solve the above constrained NLSP, we developed a log-
ical algorithm (Figure 1) that interactively hybridizes two
gradient-based local optimization methods, that is, the
sequential quadratic programming (SQP) [31] and the
subspace trust-region method based on the interior-reflec-
tive Newton method (STRiN) [32]. The developed
method performs a series of sub-optimization trials by
interactively switching between SQP and STRiN using the
following features.

Analytical gradient and Hessian
Typically, a gradient-based optimization problem is
solved more accurately and with higher efficiency when
analytical gradients are provided compared to numerical
gradients, which are calculated by finite-difference
approximation. By providing the analytical Jacobian
matrix consisting of ∂xm/∂ϕ and ∂νm/∂Θ, the gradient of
the objective function formulated in (A.1) of the Appen-
dix can be calculated. The analytical Hessian (A.2) is cal-
culated when STRiN is used. In comparison to this, SQP
updates the Hessian using the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) formula based on linearization of the gra-
dient [14].

Adjustment of tolerance and parameter scaling constant
Usually, the tolerances placed on parameters or on the
objective function which are utilized as termination crite-
ria for numerical optimization cannot clearly be defined
in advance. They depend on the errors associated with
user-supplied data as well as output sensitivities. Thus,
tolerances are set rather empirically. Here, we suggest a
method to adjust tolerance values and find a proper value
by repeatedly restarting optimization trials. The tolerance
adjustment by the restart is implemented in the developed
algorithm as shown in Figure 1-E. Due to this, the com-
plete process consists of a series of sub-optimization trials.
At each kth trials, tolerance values are adjusted.

Further to this, the parameter scaling constant α is also
adjusted during the optimization. As mentioned in the
previous section, α ≥ 1 is the preferable choice due to the
finite values of metabolic fluxes. In practice, α is regulated
to render the model's Jacobian matrix into better condi-
tion. This is obviously advantageous for the gradient-
based method, which typically involves matrix inversion
to compute the search direction as shown by (6). The
exact procedure how to adjust tolerance and the parame-
ter scaling constant is described in the Appendix.
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Hybridization
SQP represents the state-of-the-art for solving constrained
nonlinear optimization problems. By introducing the
Lagrangian function, SQP solves a series of quadratic pro-
gramming sub-problems, each involving the minimiza-
tion of a quadratic approximation of the objective
function subject to a linear approximation of the con-
straints. It shows its strength when solving problems with

significant nonlinearity and from remote starting points
[14,33].

STRiN solves a nonlinear large problem by linear approx-
imation and the method of preconditioned conjugate gra-
dients. This algorithm is based on the trust-region
algorithm, is computationally inexpensive, and provides
rapid convergence in the vicinity of the solution. A down-
side of STRiN is that it accepts any direction of negative

Developed hybrid optimization algorithm with tolerance adjustment consisting of the features: initialization within the feasible region (A); initial optimization using the SQP (B); interactive hybrid process using SQP (C); STRiN (D); and optimization con-trol algorithm (E)Figure 1
Developed hybrid optimization algorithm with tolerance adjustment consisting of the features: initialization within the feasible 
region (A); initial optimization using the SQP (B); interactive hybrid process using SQP (C); STRiN (D); and optimization con-
trol algorithm (E). f(Θ*k): objective function value at the current local minimizer Θ*k; χ2

UL: upper limit of f(Θ*k) to invoke 

STRiN (if fΘ*k) <χ2
UL; α: parameter scaling constant; Θ0: initial guess; Θ*: local minimizer from a successful sub-optimization; 

Θ°: iterate recorded for the smallest function value up to the current optimization trial; : ultimate minimizer.
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curvature, even when this direction gives an insignificant
reduction in the objective function [14]

The key concept of the developed algorithm is hybridizing
the merits of these two optimization algorithms, i.e., the
loose starting-point-dependency of SQP and the conver-
gence speed of STRiN in the solution vicinity. During the
optimization trails with the tolerance adjustment, we get
a feasible point that may be a more suitable initial guess
for the next trial. Accordingly, we initiate a few trials under
"relaxed" tolerance conditions using a robust algorithm
that is less dependent on the quality of the initial points.
Subsequently, the local minima obtained can be tested by
another algorithm whether it gives a significant improve-
ment with a rapid convergence.

In this context, the hybridization is carried out as shown
in the flow chart in Figure 1. The algorithm is forced to ini-
tiate within the feasible region by generating an arbitrary
starting point Θ0 subject to the inequality constraint νde-

pend(Θ0) ≥ 0 (Figure 1-A). This can be done by generating
random numbers of design parameters within their
bounds given by (8). For cases in which the random gen-
eration is expensive, e.g., when a design parameter has a
very narrow range that satisfies the constraints, a deter-
ministic method might be employed to get a starting
point in the physically possible region. This is discussed in
the Appendix.

As soon as a feasible set of initial values is obtained, the
optimization starts using the SQP algorithm under
relaxed tolerance criteria (Figure 1-B). After a few success-
ful trials, an upper limit (χ2

UL) that schedules the initia-
tion of STRiN is placed, e.g., half of the current objective
function value, χ2

UL = 1/2 f(Θ*k), where Θ*k is the local
minimizer isolated from the kth sub-optimization trial.
Afterwards, if the objective value f(Θ*k) resulting from the
current SQP trial (Figure 1-C) is smaller than χ2

UL, the
STRiN optimization is activated (Figure 1-D); otherwise,
the SQP is repeated. During the STRiN optimization, the
progress of trials is monitored to prevent the non-reduc-
ing problem associated with the STRiN algorithm men-
tioned above. As a criterion of the progress check, the
relative improvement of |f(Θ*k) - f(Θ*k-1)|/f(Θ*k) can be
measured at each STRiN termination. If the improvement
is insignificant, i.e., less than a user-specified value (e.g.,
0.05), the STRiN receives penalty. In case a few successive
trials show insignificant improvement, the algorithm sets
a new upperlimit χ2

UL and returns to the SQP optimiza-
tion. For the restart, the tolerance of the previous SQP trial
is reutilized. This prevents too large changes in tolerance,
which can be caused by the STRiN trials with insignificant
improvement.

As a termination criterion of the hybrid optimization, the
changes in local optima are measured (Figure 1-C), e.g.,
the absolute value of the slope resulting from the linear
regression of y = (f(Θ*k-4), f(Θ*k-3),...f(Θ*k))T with respect
to x = (1, 2,..., 5)T. If the absolute slope is less than a user-
specified small value for a few further trials, the optimiza-
tion can be terminated ultimately.

Application to Bacillus subtilis metabolic network
To evaluate the developed methods, a metabolic network
of the wild type B.subtilis was constructed as shown in Fig-
ure 2 based on the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database specified for the strain. The
network is composed of catabolic reactions of the central
metabolism incorporating glycolysis/gluconeogenesis,
pentose phosphate pathway, TCA cycle, C3/C4 inter-con-
version and anabolic reactions. All effluxes including the
biomass yield YXS in Figure 2 were assumed to be meas-
ured experimentally from a batch-cultivation on succinate
and glutamate as carbon sources. All flux values specified
in Figure 2 are generated from arbitrary values of Θdefault
and normalized by the glutamate uptake rate. Note that
each anabolic flux given in Figure 2 is the product of YXS
(biomass production [gDW L-1 h-1] normalized by gluta-
mate uptake [mM h-1]) and a value that specifies the pre-
cursor requirement for growth (mmol precursor per g
biomass) adopted from literature data [34]. For bidirec-
tional reactions, the fluxes in the gluconeogenetic direc-
tion were declared as forward.

Parametrization
The metabolic network in Figure 2 has 27 intracellular
fluxes (10 bidirectional and 17 unidirectional fluxes), 5
effluxes, and 10 anabolic fluxes expressed in terms of YXS.
For 15 intracellular metabolites defined in the network,
15 flux balances were set up that are linearly independent
of each other (Appendix). The stoichiometric matrix S was
obtained by symbolic differentiation of the balances with
respect to the whole fluxes including YXS. When consider-
ing that the flux of glutamate uptake is unity due to the
normalization, the network owns 17 degrees of freedom.
Accordingly, 12 intracellular fluxes ν2r, ν3r, ν4r, ν5r, ν6r, ν7r,
ν8r, ν14, ν14r, ν15r, ν16, ν17r, 4 effluxes, and YXS were recog-
nized as independent variables from the reduced row ech-
elon form SRRE of S. These independent intracellular fluxes
were transformed into [0, 1)-fluxes as given by (2). Note
that the counterpart of a backward flux of a bidirectional
reaction can also be selected as an independent variable.
This just depends on how to arrange the entries in the flux
vector. For instance, when ν2r is followed by ν2 in the flux
vector, ν2 will be recognized as an independent variable
instead of ν2r.

Solving the equation system of the flux balances (Appen-
dix) and the [0, 1)-flux equations for the dependent fluxes
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(page number not for citation purposes)



BMC Systems Biology 2008, 2:29 http://www.biomedcentral.com/1752-0509/2/29

Page 7 of 17
(page number not for citation purposes)

Metabolic network of the central metabolism of Bacillus subtilis utilizing glutamate and succinate as co-substratesFigure 2
Metabolic network of the central metabolism of Bacillus subtilis utilizing glutamate and succinate as co-substrates. All flux values 
denoted in parentheses were generated by obeying the given stoichiometry. Effluxes and biomass yield were measured experi-
mentally. The symbol 'ν' indicates the flux, the subscript 'r' the reverse flux of the bidirectional flux pair, the subscript 'ex' 
extracellular pools of substrates and products and YXS the biomass yield in g(biomass)/mmol(glutamate). All flux values are nor-
malized by the glutamate uptake rate.
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gives their explicit analytical expressions with respect to
design parameters, i.e., νi = nflux(Θ) with 19 design param-
eters of Θ = (ϕ2r, ϕ3r, ϕ4r, ϕ5r, ϕ6r, ϕ7r, ϕ8r, ϕ14, ϕ14r, ϕ15r,
ϕ16, ϕ17r, succinateex, acetateex, α-ketoglutarateex, fumara-
teex, YXS, pCO2,1, pCO2,2)T. The parameters pCO2,1 and
pCO2,2 estimate the CO2 labeling pattern for each 13C
labeling experiment: CO2 has only one carbon and is
incorporated into other metabolites by carboxylation.
Thus, its labeling state can simply be determined from
other 13C labeling data as an additional parameter of
NLSP in case it is not measured.

For flux re-estimation studies, the default values of the
design parameter were Θdefault = (0, 0.6341, 0.4337,
0.3148, 0.5162, 0.3436, 0.5884, 0.7066, 0.0643, 0.6835,
0.7125, 0.6756, 1.164, 0.021, 0.006, 0.02, 0.0859,
0.5601, 0.5601) at α = 1, which results in the flux values
given in Figure 2.

Model identification
For the identifiability studies, the main question was
whether Θ has one unique solution set that can be esti-
mated from the available mass isotopomer measurements
in terms of the gradient-based optimization. The effluxes
(succinateex, acetateex, α-ketoglutarateex, fumarateex) and
YXS are excluded for the identifiability analysis because
they can be estimated as long as the corresponding meas-
urements are available. To examine various flux scenarios,
200 stochastic simulations were performed for each of the
630 possible 13C-experimental designs. To this end, uni-
form random numbers between 0 and 0.95 were created
for Θ. At each simulation the null space of J(Θ) was calcu-
lated.

According to the stochastic simulations, none of the
designs had an empty null space and the entry of
null(J(Θ)) corresponding to ϕ2r was always non-zero dis-
regarding the flux state and designs. Most designs, includ-
ing the design considered here, yielded an identical null
space of:

null(J(Θ)) = (1 0 0 0 0 0 0 0 0 0 0 0 0 0)T. (9)

Accordingly, the design parameter ϕ2r is not expected to
have a unique solution, i.e., it has infinitively many solu-
tions. Except ν2 and ν2r, other fluxes were not functions of
ϕ2r. This means that the bidirectional glucose 6-P isomer-
ase cannot be determined from any 13C substrates or dual
substrate combinations. Only the net flux of the reaction
can be calculated from the stoichiometry. Therefore, one
can either regard the glucose 6-P isomerase as a unidirec-
tional reaction or set ϕ2 as an arbitrary constant. This
renders the carbon flux network to have an empty null
space of J(Θ), i.e., full rank for J(Θ), and all other design
parameters are theoretically expected to have unique solu-

tions. This theoretical expectation is examined later using
the developed algorithm.

Hybrid optimization with tolerance adjustment
To evaluate the efficiency of the developed optimization
algorithm, the flux values calculated in advance were re-
estimated numerically from the carbon mass isotopomer
distributions (MDVs) of output metabolites matching the
default flux values (νdefault). To this end, the default flux
values, depicted in Figure 2, were calculated by the flux
function Fflux(Θdefault) obtained by parametrization. Sub-
sequently, the 13C labeling data of output metabolites
were calculated from νdefault and Θdefault. The default fluxes
were re-estimated by solving the constrained NLSP (8)
whose inputs (η) were the effluxes, YXS, and the MDVs.

Prior to testing the hybrid optimization with tolerance
adjustment (HATA), we examined whether the tolerance
adjustment is beneficial for optimization. This was
checked by performing the SQP optimization by provid-
ing the gradients for the objective function and for the flux
inequality constraints (∇c = (-∂νdepend/∂Θ)T) analytically.
As shown in Figure 3-A, the objective function value f(Θ*)
of each optimization trial decreased with respect to toler-
ance adjusted at each optimization restart. It was observed
that f(Θ*k) <f(Θ*k-1) always holds when starting the kth

trial from the (k - 1)th local minimizer Θ*k-1. Restarting the
failed (k - 1)th trial from the feasible iterate Θ° recorded
for the smallest function value up to the current trial and
increasing the tolerance was observed to give the same
result, i.e., f(Θ*k) <f(Θ°). The efficiency of tolerance
adjustment was further compared to the SQP optimiza-
tion carried out at a constant tolerance of 1 × 10-20 (Figure
3-B). The SQP using the tolerance adjustment was
observed to be more efficient in accuracy but more time-
consuming than the case without adjusting. The SQP
without adjustment reached a local minimum of around
10-7 much more rapidly but did not result in any further
improvement, whereas the SQP with adjustment made
slower but continuous progression. This gives an idea that
the tolerance adjustment strategy might be useful to
escape from possible local stationary regions and to
achieve a lower minimum.

Using the tolerance adjustment, the hybrid algorithm
consisting of SQP and STRiN (HATA, Figure 1) was com-
pared with its parent algorithms and two global optimiza-
tion methods. All optimizations except the genetic
algorithm (GA) were initiated from an identical starting
point for the numerical flux re-estimation. The GA
applied does not need an external initial value set. At each
initiation of the HATA trials, α was updated by choosing
an integer between 1 and 10 that yields the best-condi-
tioned Jacobian matrix of the model as mentioned previ-
ously. As shown in Figure 4-A, HATA accomplished the re-
Page 8 of 17
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estimation with the best efficiency regarding its accuracy
and speed. It took about 300 seconds until the objective
function became 10-16. The SQP optimization with ana-
lytical gradient (SQP ∇user) yielded the next satisfactory
result. In comparison, the SQP optimization using the
numerical gradient obtained by the finite difference (SQP
∇finite) resulted in a poorer progress and was much slower
and less accurate than HATA or SQP ∇user. During the
optimization using SQP ∇finite, we observed a discrepancy
between the gradient obtained by the finite difference and
the analytical approach (A.1). The inaccuracy of the finite
difference seemed to cause the poorer result of SQP ∇finite.

The worst algorithm among the local methods was the
STRiN using analytical gradient and Hessian (STRiN ∇user
Huser). It was rapid at the beginning but improved the
objective only from 107 to 105. Afterwards, the optimiza-
tion crashed with the carbon labeling system becoming
completely singular. As previously mentioned, this seems
to be due to the STRiN limitation of accepting any direc-
tion of negative curvature even if it does not give signifi-
cant reduction in the objective function. Also, the global
optimization methods tested, which were the GA and the
SA, were notably time-inefficient compared to the local
methods. For 1500 seconds of optimization time, the
objective function was very slowly decreased by two
orders of magnitude only. SA decreased f(Θ) only to 1 ×
103 after 5.1 hours and GA to 2 × 102 after 6.7 hours. Thus,

global optimization is expected to demand much greater
time to get the equivalent result as HATA.

HATA optimization from different starting points
The flux re-estimation was also performed from 200 dif-
ferent starting points created randomly and by simultane-
ously generating uniform random numbers for the [0, 1)-
flux ϕ2r = ν2r/(α + ν2r). This was to examine whether the
quality and speed of convergence has any starting-point-
dependency and whether ϕ2r, which a priori expected to
have infinite solutions, has any influence on optimization
results.

All 200 optimization runs using the hybrid algorithm
were terminated successfully. On average, HATA required
5.3 ± 1.6 min to converge to a weighted objective function
value smaller than 1 × 10-10, which equals the non-
weighted sum of squares less than 2 × 10-18. As shown in
Figure 4-A, 99.5 % of the flux re-estimations were com-
pleted within 10 min and about 76 % in less than 6 min.

Further to this, the flux re-estimates resulting from the 200
random simulations were compared with the true flux
solutions calculated from Θdefault in advance. As shown in
Figure 5-A, all fluxes except the flux pairs of transketolase
1 (TK1; ν3, ν3r) and transaldolase (TA; ν4, ν4r) could be re-
estimated correctly. When plotting the flux re-estimates
versus the true flux values given in Figure 5, the data

Decrease of the objective function at each termination of SQP sub-optimization using tolerance adjustment (A) and its com-parison with SQP carried out at a constant tolerance during optimization (B)Figure 3
Decrease of the objective function at each termination of SQP sub-optimization using tolerance adjustment (A) and its com-
parison with SQP carried out at a constant tolerance during optimization (B).
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points except ν3, ν3r, ν4, and ν4r lie exactly on a line with a
slope of 1 (1:1 line). In comparison to this, only the net
fluxes of the TK1 (ν3 - ν3r) and TA (ν4 - ν4r) reactions could
be recalculated properly: the net fluxes could be calculated
from stoichiometric relations with other flux re-estimates.
The same was observed for the net flux of glucose 6-P iso-
merase, of which [0, 1)-flux ϕ2r had an arbitrary value at
each simulation run.

By the null space investigation (9) based on (7), the

design parameters ϕ3r and ϕ4r were not expected to be cor-

related. In accordance with this, the fluxes could rarely be
re-fitted in case one or both of these parameters were set

arbitrarily. This indicates that the parameters ϕ3r and ϕ4r

have a certain significant correlation that must be fulfilled
at termination to yield unique solutions for other fluxes.
As expected, the flux estimates of TK1 and those of TA
were found to be nonlinearly correlated with each other as

depicted in Figure 5-B for ν3r and ν4r. The true solution,

(ϕ3r, ϕ4r) = (0.6341, 0.4337) also lies on the curve. At the

termination, it is obvious that the output sensitivities of

∂xm/∂ϕ3r and ∂xm/∂ϕ4r are low: the objective function

reached a very small value of nearly zero (f( ) < 1 × 10-

10) and we get arbitrary but correlated values for ϕ3r and

ϕ4r. Due to this, we cannot practically get ϕ3r and ϕ4r esti-

mated correctly and, accordingly, ν3, ν3r, ν4, and ν4r, while

the corresponding net fluxes can always be calculated
from other correct flux estimates in terms of stoichiome-
try.

We observed that a unique estimation of all four fluxes
would be possible only if the mass isotopomers of sedo-
heptulose 7-phosphate were additionally measured. It
was observed that providing these mass isotopomers
renders the output sensitivities of ∂xm/∂ϕ3r and ∂xm/∂ϕ4r
much less dependent on starting points. In contrast, the
output sensitivities vary strongly and even become zero
when the mass isotopomers of sedoheptulose 7-phos-
phate are not involved in the objective.

Further to this, the fluxes were not found to be influenced
by the glucose 6-phosphate isomerase fluxes represented
by ϕ2r. Disregarding the random values of ϕ2r, the fluxes
except ν3, ν3r, ν4, and ν4r converged to their true values.
Also ϕ3r and ϕ 4r did not show any correlation with ϕ2r as
depicted in Figure 5-C and Figure 5-D, respectively.

Q̂Q

Comparison of the hybrid optimization with tolerance adjustment (HATA) with its parent algorithms of the SQP with user-supplied analytical gradient (SQP ∇user) and the STRiN with user-supplied analytical gradient and Hessian (STRiN ∇user Huser) as well as with other algorithms, such as SQP with numerical gradient by finite differentiation (SQP ∇finite), genetic algorithm (GA), and simulated annealing (SA) (A)Figure 4
Comparison of the hybrid optimization with tolerance adjustment (HATA) with its parent algorithms of the SQP with user-
supplied analytical gradient (SQP ∇user) and the STRiN with user-supplied analytical gradient and Hessian (STRiN ∇user Huser) as 
well as with other algorithms, such as SQP with numerical gradient by finite differentiation (SQP ∇finite), genetic algorithm (GA), 
and simulated annealing (SA) (A). All algorithms were initiated from an identical starting point. The objective function value at 
the ith iterate is registered only if f(Θi) ≤ f(Θi-1). Time efficiency of the HATA represented by histogram plot of time taken for 
termination of 200 runs of optimization using different starting points (B).
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Hence, we can conclude that the observed nonlinear cor-
relation between ϕ3r and ϕ4r becomes visible solely from
using the different starting points for the optimization. In
addition, including ϕ2r as an additional design parameter
gives the same result for the fluxes, whereas ϕ2r results in
randomly distributed values without any obvious pattern.
This shows that the flux identification carried out by the

model linearization and null space investigation is appro-
priate for its practical use.

Discussion
The tradeoff between robustness and convergence speed is
a central issue in numerical optimization [14]. The devel-
oped method fulfills both criteria and enables exact met-

Flux re-estimation initiated from 200 random starting pointsFigure 5
Flux re-estimation initiated from 200 random starting points. The fluxes which were successfully re-estimated lie on the 1:1 
line when plotted against true flux values (A). Correlation analysis by plotting the transaldolase (TA) [0, 1)-flux re-estimates 
(ϕ4r) versus those of transketolase 1 (TK1) (ϕ3r) (B) and the [0, 1)-flux re-estimate of TK1 (C) as well as of TA (D) versus ϕ2r 
of glucose 6-P isomerase. The dotted line indicates the solution of ϕ3r = 0.4337 and ϕ3r = 0.6341, respectively.
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abolic flux estimation. This was accomplished on the
basis of parametrizing the metabolic flux network by
compactification and hybridizing the merits of two differ-
ent gradient-based algorithms. Interestingly, HATA, which
hybridizes the worst local method with SQP ∇user and uti-
lizes the tolerance adjustment strategy, has proven to be
superior to other approaches. This may be by virtue of
providing STRiN with a more appropriate starting point
advanced by SQP. Thus, because STRiN is computation-
ally inexpensive and rapid in the vicinity of solution, it
achieves a fast convergence. Furthermore, the interactive
switching between the algorithms prevents STRiN from
accepting an unfavorable search direction without signifi-
cant objective improvement.

Further to this, we observed that the parametrization by
the compactification of independent [0, ∞)-fluxes into [0,
1)-variables is advantageous compared to the non-com-
pactified case. When the optimization was performed by
selecting the [0, ∞)-fluxes (ν2r, ν3r, ν4r, ν5r, ν6r, ν7r, ν8r, ν14,
ν14r, ν15r, ν16, ν17r with upper bounds of 200) directly as
design parameters, the convergence took drastically
longer (27 ± 45 min) than the cases using the compacti-
fied fluxes. Moreover, optimization runs often failed to
converge or terminated at suboptimal points. In compar-
ison to this, introducing [0, 1)-fluxes improved both the
robustness and speed of convergence as demonstrated

above. The same advantage is probably achieved when
using the [0, 1)-compactifications such as exchange fluxes
or flux partitioning ratios applied elsewhere [9,24,35].
Our compactification approach allows a straight para-
metrization because independent fluxes can easily be rec-
ognized from the stoichiometric matrix and compactified
using a single rule of (2). Moreover, it is straightforwardly
differentiable when considering that compactified [0, 1)-
fluxes are continuous and smooth in the [0, ∞)-flux space
and vice versa.

The parameter scaling constant α introduced during the
compactification provides a way to implement numerical
flux estimation with efficiency. In particular, the parame-
ter scaling constant α is updated during optimization to
render the model's Jacobian matrix into better condition.
This is advantageous for the gradient-based methods for
computing the search direction because it typically
involves the inverse of the Jacobian matrix as given by (6).
We examined whether different α values affect the effi-
ciency of optimization. The α value was observed to affect
the convergence speed but not the accuracy of the optimi-
zation. When starting from the same initial guess applied
to the optimization trial in Figure 4, the fastest conver-
gence speed was obtained when α is fixed at 10 (about
200 s for f(Θ) < 10-14). The speed efficiency decreased if α
is smaller or larger than 10. A trial with α adjustment ini-

Behaviors of the objective function in the parameter space of non-correlated ϕ5r and ϕ6r (A) as well as correlated ϕ3r and ϕ4r (B)Figure 6
Behaviors of the objective function in the parameter space of non-correlated ϕ5r and ϕ6r (A) as well as correlated ϕ3r and ϕ4r 
(B). Two parameters were varied from 0.05 to 0.95 with a step of 0.005 while other parameters were fixed at the default solu-
tion Θdefault.
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tiated at α = 1 automatically updated α to 10 after a few
sub-optimization trials and took about 300 s to achieve
f(Θ) < 10-14. Although it was slower than when α was fixed
at 10, the proposed strategy with α adjustment recognized
the optimal value. Among the 200 HATA optimization
runs with α adjusting between 1 and 10 initialized with α
= 1, 112 cases updated α to 10 after a few to several sub-
optimization trials while α remained 1 in 78 cases. More-
over, the time taken for the optimization runs using differ-
ent starting points was not necessarily shorter when α was
updated to 10. This indicates that the most adequate α
value for the optimization may depend on starting condi-
tions.

We could find unique flux solutions except the fluxes rec-
ognized a priori as non-identifiable or those that were a
posteriori found to have a significant nonlinear correlation.
Such nonlinear parameter correlation can be identified
only by the tedious process of executing flux estimation
using different sets of starting values a posteriori [36]. The
non-correlated [0, 1)-fluxes of which true values could be

re-estimated, e.g., ϕ5r and ϕ6r, give a unique minimum of

f(Θ), which is obviously achieved disregarding starting
points (Figure 6-A). In comparison to this, the nonlinearly

correlated [0, 1)-fluxes ϕ3r and ϕ4r result in an infinite

number of minima that meet the correlation shown in
Figure 5-B depending on starting points (Figure 6-B).
Because the objective function value is nearly zero at each

minimum (f( ) < 1 × 10-10 with a weighting factor of
108), the system can be considered to have an infinite
number of global minima when parameters are nonline-
arly correlated. In this case, a global optimization method
can be extremely expensive for identifying such unknown
parameter correlations due to its time-inefficiency. As a
consequence, a fast and reliable numerical method of flux
estimation is highly desirable to repeat optimization runs
at different starting points.

One interest of numerical optimization is whether the
global solution can be obtained by the algorithm applied.
We observed that the local minimizers from 200 random
simulations agreed with each other and also with the true
flux values, the global solution. Depending on experimen-
tal noise or metabolic state, the problem may contain a
few to several local saddle points. In this case, one can
consider a further hybridization with a global optimiza-
tion approach. Global optimization algorithms are ineffi-
cient in terms of convergence speed. On the other hand,
gradient-based algorithms can converge rapidly but lack a
global perspective for non-convex problems. Also in other
cases, the combination of global and local search proce-
dures has proven to offer the advantages of both methods

while offsetting their disadvantages [17,37-39]. Such
hybridization with a global optimization algorithm is use-
ful for non-convex problems containing several local
minima and can be done in many ways [17,39,40]. For
instance, the local minima obtained from a gradient-
based method can be used to update the individuals in the
population to prepare the next generation when combin-
ing with the GA [17,40,39,41]. Because we could prove
the speed and accuracy of the developed optimization
method, we consider it very useful for investigating meta-
bolic fluxes and for developing efficient algorithms com-
bined with a global optimization method.

In practice, the quality of the flux fitting can be judged by
the χ2-test [42,43] when using noisy measurement data.
In our case, the upper critical χ2 limit is 206 at 95 % con-
fidence level at the given degree of freedom of 174 (188
13C labeling data + 5 effluxes - 19 design parameters).
Hence, if the weighted objective value (1) is smaller than
the critical value of 103 (this is due to the factor 1/2 in the
objective function), the fit can be regarded as acceptable.
This value can also be used as a termination criterion for
the optimization control in Figure 1-E. As shown in Figure
4-A, the value was achieved at 150 s by HATA, at 170 s by
SQP with ∇user, and at 750 s of optimization time by SQP
with ∇finite. In comparison to this, GA or SA was expected
to achieve the acceptable f(Θ) after 7-8 hours or more (by
extrapolation of log10 f(Θ)with respect to optimization
time). Hence, an efficient Monte Carlo simulation cannot
be carried out by the global optimization approaches.

Further, we compared HATA with SQP with ∇user by con-
ducting 100 stochastic simulations under identical condi-
tions. At each simulation run, normal random numbers
were generated for the experimental data set (13C mass
isotopomer fractions and extracellular fluxes) by assum-
ing a unit standard deviation of 1 × 10-3 and uniform ran-
dom numbers for the starting points of design parameters.
Subsequently, parameter re-estimation was performed in
terms of HATA and SQP with ∇user, respectively. Each opti-
mization run was stopped if f(Θ) becomes smaller than
the critical χ2 limit of 103 or does not give any further
improvement. On average, f(Θ) at termination was 102 ±
26 for HATA and 167 ± 567 for SQP with ∇user, and the
time taken for the optimization was 353 ± 216 s for HATA
and 1234 ± 1356 s for SQP with ∇ user. The results support
that the developed hybrid algorithm using tolerance
adjustment will be more efficient and robust when com-
puting metabolic fluxes from noisy experimental data in a
real-case application. In contrast, the efficiency of the SQP
algorithm seems to be affected by initial conditions (start-
ing points and experimental data set) when considering
the large variation in f(Θ) as well as in the computation
time. In this regard, HATA will also achieve the most effi-
cient optimization in the practical sense whenever

Q̂Q
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repeated optimization runs are necessary. A further reduc-
tion in computation time can be obtained by utilizing a
minimal set of isotopomer balances described by
Antoniewicz et al. (2007) [3].

Conclusion
We developed and examined a developed hybrid algo-
rithm for numerical 13C flux estimation using a metabolic
network model parametrized using a single compactifica-
tion rule. We could prove its practical usefulness using the
central metabolic network of Bacillus subtilis, which is a
prokaryotic model organism and an industrially relevant
strain. Based on the parametrization by compactification
and model identification, the hybrid algorithm with toler-
ance adjustment allowed a fast and robust flux computa-
tion from the 13C labeling data created from 13C-labeled
succinate and glutamate feeding. Such fast optimization
was also found to be essential for the a posteriori identifi-
cation of possible parameter correlations and also for the
Monte Carlo approach to obtain statistical qualities for
metabolic flux estimates. Therefore, this work represents
an important contribution to the quantitative study of
metabolic networks in the framework of systems biology.

Methods
For the flux re-estimation simulations of the central met-
abolic network of B. subtilis, the following inputs and out-
puts were applied.

13C Input Substrates
The choice of input tracer substrates was made by means
of the D-optimality criterion [44]. Since parallel experi-
ments using different 13C input labels yield more informa-
tion as theoretically shown for the respirometric flux
analysis utilizing CO2 labeling measurement [4]. There-
fore, experimental designs for two parallel cultivations
were also considered here. Among the investigated exper-
imental designs (630 possible designs from commercially
available 13C glutamate and 13C succinate species; refer to
Additional file 1!), a design combining data from a 13C
labeling experiment using non-labeled glutamate and
[2,3-13C2] succinate with those from an experiment using
[1,2-13C2] glutamate and [1,4-13C2] succinate was
expected to provide the richest information at a reasona-
ble expense. This design was selected to study flux identi-
fiability and to examine the developed hybrid
optimization.

13C Output Metabolites
For simulation studies, we assumed that the mass iso-
topomers of proteinogenic amino acids such as alanine,
valine, serine, threonine, glycine, aspartate, isoleucine,
leucine, phenylalanine, tyrosine, arginine, histidine, and
glutamate are measurable. In addition, the mass iso-
topomers of ribose 5-phosphate from RNA hydrolysate

and hexose from carbohydrate hydrolysate are also
assumed to be measurable. This totally gives a mass iso-
topomer data size of 188 for the parallel experiment. The
measurements of mass isotopomer distributions were
assumed to have a unit standard deviation of 1 × 10-4.

Software implementation
All simulations were carried out on a PC equipped with a
CPU of 2.4 GHz. The hybrid optimization algorithm
depicted in Figure 1 was implemented in MATLAB (The
Mathworks Inc., Natick, MA). Numerical optimization
was carried out using the Optimization Toolbox (Version
3.0.4) and the Genetic Algorithm and Direct Search Tool-
box (Version 2.1) of MATLAB. The symbolic operations
required for parametrization and for computing partial
derivatives were conducted using the Symbolic Math
Toolbox (Version 3.1.4) of MATLAB. During simulations,
random numbers were generated using the Statistics Tool-
box (Version 5.2) of MATLAB. The random numbers for
[0, 1)-fluxes (ϕi) were bounded such that the relative val-
ues of the corresponding dependent fluxes (νdepend) lie
between 0 and 20.

An example of the hybrid optimization for the problem
described in the current work was coded using MATLAB
(Hybridoptimizer.m) and supplemented (see Additional
file 2). The method can be incorporated with any isotopo-
meric models [2,3,5,8] that are analytically differentiable.
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numerical gradient obtained by finite difference; STRiN:
subspace trust-region method based on the interior-reflec-
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Appendix
Gradient and Hessian

At each kth iteration of (1), the model function  is eval-

uated at the kth iterate Θk to get the values corresponding

to η = (νm, xm)T. This is done by generating a certain flux

state by νk = Fflux(Θk) and, subsequently, solving Fcarbon(xk,

νk) = 0 for xk at the kth flux state νk. Since  is differentia-

ble with respect to Θk, the gradient ∇f can be computed

analytically by:

Further to this, the Hessian matrix H that specifies the cur-
vature of the search surface can be obtained by lineariza-
tion [14,15], i.e.,

In practice, the constrained problem (1) is formulated as
the Lagrangian function, a linear combination of the
objective function and the constraints [14].

Adjustment of tolerance and parameter scaling constant
The tolerance adjustment by the restart in Figure 1-E
requires a series of sub-optimization trials. The first opti-
mization trial starts with "sufficiently relaxed" tolerances
both placed on parameters and objective function, e.g., of
100. When the kth trial is acceptable (e.g., first order opti-
mality conditions are satisfied to the specified tolerance or
changes in parameters or function are smaller than the
specified tolerance), the (k + 1)th trial restarts with a 10-
fold decreased tolerance, where the kth local minimizer
Θ*k is used for the new starting point. The previous trial
provides a more adequate starting point for the next, and
it can be advantageous for local search methods. This is
because the efficiency of local methods depends heavily
on the quality of starting points [14,19]. In case the cur-
rent trial fails (e.g., by exceeding the maximum number of
iterations allowed in the estimation process), the toler-
ance is increased and the next trial starts from the iterate
Θ° recorded for the smallest function value up to the cur-
rent trial in the feasible region (Figure 1-E). The tolerance
at which an optimization trial fails is registered. In case
optimization trials successively fail, which is rarely the
case, the step of tolerance increase is set smaller such as 5-
, 10-, 50-, or 100-fold, etc., of the registered value. Corre-
spondingly, the tolerance decrease is also made by this
reduced step until the current tolerance matches the regis-
tered. This allows finding an appropriate tolerance value
for NLSP.

At the beginning and at every failed trial, α is re-adjusted
by referencing the condition number of the model's Jaco-
bian matrix. When the new starting point for the kth trial
is Θ° that is isolated from the previous (k - n)th trial with
αk-n, the [0, 1)-fluxes have to be rescaled in accordance
with the new scaling constant αk. Since ν = αk-nϕk-n/(1 - ϕk-

n) from (2), substituting ν in ϕk = ν/(αk + ν) results in:

Deterministic Method of Feasible Starting Point 
Generation
When the random generation of starting points (see Fig-
ure 1-A!) is difficult, the feasible starting points can be
found deterministically by minimizing a suitable objec-
tive. For instance, one can minimize the following objec-
tive:

Here, Nneg.flux signifies the number of negative-valued
fluxes, bflux the steady-state stoichiometric flux balances
set up for metabolites (see the next section!) evaluated at
the current iterate Θk, and n the number of the balances.
By the first term in the objective and the first constraint,
the minimization is directed such that all fluxes become
non-negative. The second term is to prevent flux values
calculated that may not obey stoichiometry due to the
limited floating-point accuracy (round-off error). This
approach is useful for preparing initial values while pre-
serving random nature for Monte Carlo simulations. In
practice, the upper bound of ϕi can be set to a value
smaller than 1 that gives sufficiently large flux values so
that ϕi has a closed interval.

Stationary State Stoichiometric Balances are set up around
15 metabolites specified in Figure 2 as follows. The values
multiplied with YXS equals the strain specific precursor
demand for growth (mmol precursor per gram biomass).

glucose 6-P: ν2 - (ν1 + ν2r + 0.4217YXS) = 0

fructose 6-P: (ν2r + ν4 + ν5 + ν6) - (ν2 + ν4r + ν5r + ν6r) = 0

glyceraldehyde 3-P: (ν3 + ν4r + ν5 + 2ν6r + ν7) - (ν3r + ν4 +
ν5r + 2ν6 + ν7r +0.4659YXS) = 0

3-phosphoglycerate: (ν7r + ν8) - (ν7 + ν8r + 0.2209YXS) = 0

phosphoenolpyruvate: (ν16 + ν8r) - (ν8 + ν9 + 1.7854YXS) =
0
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pyruvate: (ν9 + ν15) - (ν10 + ν15r + 0.9964YXS) = 0

pentose 5-P: (ν1 + 2ν3r + ν5r) - (2ν3 + ν5 + 1.1622YXS) = 0

erythrose 4-P: (ν4 + ν5r) - (ν4r + ν5 + 0.4659YXS) = 0

sedoheptulose 7-P: (ν3 + ν4r) - (ν3r + ν4) = 0

acetyl-CoA: ν10 - (ν11 + acetateex + 3.1585YXS) = 0

isocitrate: ν11 - ν12 = 0

α-ketoglutarate: (ν12 + ν17) - (ν13 + ν17r + α-ketoglutarateex)
= 0

glutamate: (ν17r + glutamateex) - (ν17 + 1.4769YXS) = 0

succinate: (ν13 + ν14r + succinateex) - (ν14 + fumarateex) = 0

oxaloacetate: (ν14 + ν15r) - (ν11 + ν14r + ν15 + ν16 +
1.3131YXS) = 0
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