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Aims: The gut hormone peptide tyrosine tyrosine (PYY) is critical for maintaining islet integrity

and restoring islet function following Roux-en-Y gastric bypass (RYGB). The expression of PYY

and its receptors (NPYRs) in islets has been documented but not fully characterized. Modula-

tion of islet PYY by the proteolytic enzyme dipeptidyl peptidase IV (DPP-IV) has not been

investigated and the impact of DPP-IV inhibition on islet PYY function remains unexplored.

Here we have addressed these gaps and their effects on glucose-stimulated insulin secretion

(GSIS). We have also investigated changes in pancreatic PYY in diabetes and following RYGB.

Methods: Immunohistochemistry and gene expression analysis were used to assess PYY,

NPYRs and DPP-IV expression in rodent and human islets. DPP-IV activity inhibition was

achieved by sitagliptin. Secretion studies were used to test PYY and the effects of sitagliptin

on insulin release, and the involvement of GLP-1. Radioimmunoassays were used to measure

hormone content in islets.

Results: PYY and DPP-IV localized in different cell types in islets while NPYR expression was

confined to the beta-cells. Chronic PYY application enhanced GSIS in rodent and diabetic human

islets. DPP-IV inhibition by sitagliptin potentiated GSIS; this was mediated by locally-produced

PYY, and not GLP-1. Pancreatic PYY was markedly reduced in diabetes. RYGB strongly increased

islet PYY content, but did not lead to full restoration of pancreatic GLP-1 levels.

Conclusion: Local regulation of pancreatic PYY, rather than GLP-1, by DPP-IV inhibition or

RYGB can directly modulate the insulin secretory response to glucose, indicating a novel role

of pancreatic PYY in diabetes and weight-loss surgery.
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1 | INTRODUCTION

Peptide tyrosine tyrosine (PYY) is an appetite-regulating hormone

that has been shown to play a critical role in the restoration of

impaired islet secretory function in diabetic rats and following Roux-

En-Y gastric bypass (RYGB).1 The physiological relevance of PYY in

pancreatic islets has been demonstrated by dramatic disruption of

islet structure and beta-cell function in mice following selective abla-

tion of PYY-expressing islet cells and by restoration of beta-cell func-

tion by exogenous application of PYY in streptozotocin-treatedJoint first authors: Claudia Guida and Laura J. McCulloch.
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mice.2,3 Similarly, overexpression of PYY in mouse pancreatic beta-

cells results in improved glucose tolerance.4 Marked elevations in

plasma PYY levels have been reported following RYGB in both

humans and rats.1 Moreover, PYY pre-treatment of islets isolated

from severely diabetic GK rats has been shown to restore impaired

insulin and glucagon responses to glucose.1 Collectively, these find-

ings demonstrate that PYY may play an important function in islet

physiology, extending beyond its classical role as an appetite regula-

tor.5 PYY expression has been documented previously in islets from

rodents and other mammals,3,6–8 but its expression in human islets

has not been explored. Recent reports suggest that acute adminis-

tration of PYY reduces insulin secretion in isolated mouse islets and

human/rodent beta cell lines.3 On the other hand, insulinotropic

effects of PYY have been reported in 2 transgenic mouse models as

well as in mouse and human islets.1,2,4 PYY signals through a cluster

of receptors belonging to the neuropeptide Y (NPY) family, of which

there are 4 subtypes; NPY1R, NPY2R, NPY4R and NPY5R. How-

ever, PYY receptors in islets have been studied only at the tran-

script level,3,9 and whether or not they are actually present remains

unknown. The proteolytic enzyme di-peptidyl peptidase IV (DPP-IV)

is an abundantly occurring serine protease. The efficacy of DPP-IV

inhibition therapy in diabetes is thought to result from the prolonga-

tion of active glucagon-like peptide-1 (GLP-1).10,11 However, DPP-

IV also degrades a number of endogenous peptides including

PYY.12,13 As DPP-IV is expressed both in human and mouse

islets,14–16 DPP-IV inhibition therapy could impact on islet PYY

function. We have compared gene and protein expression of PYY

and its receptors and DPP-IV in mouse and human islets and inves-

tigated potential roles of DPP-IV inhibition in pancreatic islet func-

tion. To further explore the role of PYY in islet physiology, we have

also investigated changes in islet PYY content in diabetes and

upon RYGB.

2 | MATERIALS AND METHODS

2.1 | Animals

Female NMRI mice (Charles River Laboratories, Harlow, UK), aged

12 to 16 weeks, were used for functional and histological islet stud-

ies. Adult male 16 to 20 week-old Wistar rats were used as normo-

glycaemic controls and age- and sex-matched diabetic GK rats

(Taconic, Laven, Denmark) were used as a model of type 2 diabetes.

All animal experiments were conducted in accordance with the UK

Animals Scientific Procedures Act (1986).

2.2 | Human tissues

Human adipose tissue RNA for positive controls for gene expression

was available through existing collaborations within the Oxford Uni-

versity MolPAGE consortia. Adult human pancreas samples for histol-

ogy and islet samples for secretion studies were obtained with local

and regional ethical approval and clinical consent. Donor details are

provided online in Table S1, Supporting Information.

2.3 | Islet isolation

Mouse and Wistar rat islets were isolated by collagenase type V

(Sigma-Aldrich Ltd, Gillingham, UK) digestion as described previ-

ously.17 For optimal yield, GK rat islets were isolated by liberase as

before.1 A typical islet yield per mouse, Wistar rat and GK rat was

250, 400 and 200, respectively. Islets from GLP-1 receptor knockout

mice and wildtype controls were obtained from the University of Lau-

sanne (Switzerland). Human islets were isolated in the Diabetes

Research and Wellness Foundation Human Islet Isolation Facility by

collagenase digestion (Serva, Heidelberg, Germany), using modified

versions of published protocols.18

2.4 | Secretion studies

Islets from the dorsal part of the pancreas were hand-picked and

size-matched on the basis of conformation.19 Irregular-shaped and

very large islets from the ventral area of the pancreas were excluded.

Experiments were performed with 10 to 13 islets per tube, in tripli-

cate. Islets were pre-incubated in Krebs-Ringer buffer (KRB) contain-

ing 2 mg/mL BSA and 1 mmol/L glucose for 1 hour at 37�C, followed

by 1-hour test incubation in KRB supplemented with glucose as indi-

cated; 20 mM glucose was used for glucose-stimulated insulin secre-

tion (GSIS) unless otherwise described. Insulin content of the

supernatant was determined by radioimmunoassay (Millipore UK Ltd,

Livingstone, UK) as described previously.20 To allow comparison of

experiments, some secretion data are presented as mean % basal,

where basal is secretion at 1 mM glucose.

For the acute experiments, islets were treated with sitagliptin

(Stratech Scientific Ltd, Newmarket, UK), or with PYY (1-36) or PYY

(3-36) (Bachem, Bubendorf, Switzerland) for 1 hour during glucose

stimulation as described above. For the chronic experiments, human

or mouse islets were treated for 72 hours with sitagliptin (100 nM;

Stratech Scientific Ltd) in RPMI culture media (10 mM glucose) in the

presence or absence of exendin (9–39) (1 μM) or anti-PYY antibody

(1/500) (ab22663, Abcam, Cambridge, UK) or PYY (100pM or

100 nM; Bachem) or the NPY1R blocker BIBP-3226 (1 μM) (Tocris,

Bristol, UK). Secretion studies were conducted subsequently as

described above.

2.5 | RNA extraction and gene expression

Total RNA was extracted from rat islets using the phenol-chloroform-

guanidinium-thiocyanate method.21 Briefly, 100 islets were homoge-

nized in Tri Reagent (Life Technologies, Paisley, UK) before RNA iso-

lation using chloroform and isopropanol precipitation. RNA quantity

was determined spectrophotometrically using Nanodrop technology.

Turbo DNase (Life Technologies) was used to remove any residual

genomic contamination before 1 μg of RNA was reverse transcribed

in a random primed single-strand synthesis reaction.

Gene expression analysis was performed using Taqman technol-

ogy. cDNA was diluted 1:10 using 0.01 M Tris-HCl before amplifica-

tion with inventoried gene specific assays (Table S2, Supporting

Information) or assays against the housekeeping genes Hprt1, B2m or

Ppia for human and rat studies, and Gapdh, B2m, B-Actin and Gusb for

mouse studies. All samples were amplified in triplicate using gene
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expression mastermix (Life Technologies) and were run in parallel

with a standard curve to permit determination of assay efficiency.

Amplification was performed using an ABI7900HT thermalcycler at

95�C – 10 minutes, 50 cycles (95�C – 15 seconds, 60�C – 1 minute).

Gene expression levels were calculated using the 2^-ΔΔCT method

modified by Pfaffl22 and are presented in arbitrary units (au).

2.6 | Histological analysis

Pancreases or isolated islets from Wistar rats, GK rats and human

subjects were fixed in 4% formalin, paraffin embedded and cut into

5-μm sections. For immunofluorescence, sections were dewaxed

and rehydrated as described above. All samples were subjected to

antigen retrieval by heating in 0.01 M sodium citrate solution

before immunolabelling. Sections were incubated overnight using

antibodies targeting PYY (ab22663), insulin (in house), glucagon

(G-2654, Sigma, Gillingham, UK), somatostatin (sc-25262, Santa

Cruz, Insight Biotechnologies, Wembley, UK), PP (ab77192),

NPY1R (ab91262, Abcam, Cambridge, UK), NPY2R (ab31894,

Abcam), NPY4R (HPA027863, Sigma), NPY5R (ab32886, Abcam) or

DPP-IV (ab28340, Abcam). The tyramide amplification system

was used as a secondary antibody system to improve visualization

of PYY in human samples, all NPYR proteins and DPP-IV

(ThermoFisher, Loughborough, UK). All other proteins were visual-

ized using fluorescently- and HRP-labelled secondary antibodies

for immunolocalization as follows; anti-rabbit 488 (A11034, Life

Technologies, Loughborough, UK), anti-mouse TRITC (F5262,

Sigma), anti-guinea pig 648 (ab150187, Abcam), anti-rabbit HRP

(P0448, Dako, Cheadle, UK). Images were visualized using a

BioRad (Radiance 2100) confocal microscope.

2.7 | Electron microscopy

Samples for immuno electron microscopy were fixed in 2.5% glutar-

aldehyde, post-fixed in 2% uranyl acetate and embedded in London

Resin Gold (Agar Scientific, Stansted, UK). Ultrathin sections were

cut onto nickel grids for immunogold labelling. Anti PYY (Abcam)

binding was visualized with Protein A Gold (10 nm) (British Biocell

International, Cardiff, UK). Sections were contrasted with 2% uranyl

actetate and lead citrate and viewed in a Joel 1010 electron micro-

scope (Jeol, Tokyo, Japan) equipped with a digital camera (Gatan,

Pleasanton, California).

2.8 | DPP-IV activity in islets

Islets were isolated from NMRI mice and disrupted by sonication in

10 mM Tris-HCl buffer. The islet homogenate was centrifuged at

204 000G for 75 minutes at 4�C. The pellet was solubilized in

10 mM Tris-HCl buffer containing 0.01% Triton X-100 and 1 μg/mL

aprotinin. DPP-IV activity was determined using the H-Gly-Pro-AMC

(Bachem, I-1225) in the presence and absence of 5 nM sitagliptin.

The islet sample was incubated with 10 μM H-Gly-Pro-AMC for

120 minutes at 37�C. The amount of AMC liberated was compared

with a 1 μM AMC standard.

2.9 | Roux-en-Y gastric bypass model

Sham or RYGB surgery was performed on anesthetized rats as previ-

ously described.1 Briefly, the intestine was transected 10 cm distal to

the ligament of Treitz, creating a distal and a proximal end. The proxi-

mal end was anastomosed to the intestine and a gastric pouch was

created (2%-3% of total stomach). The distal end of the intestine was

anastomosed to the gastric pouch in an end-to-side fashion. For sham

operation the animals were opened through a midline incision and

the viscera were gently manipulated. Experiments were approved by

the Norwegian national animal research authority (FDU).

2.10 | Measurements of PYY and GLP-1 in islets
and in medium

Islets were lysed in acid ethanol and stored at -80�C until determination

of hormones. Total PYY was measured in islets and in the medium used

for culture by radioimmunoassay (Phoenix Pharmaceuticals, Burlingame,

California) and total GLP-1 was assayed using the highly sensitive

Total GLP-1 (v2) kit (K150JVC-1, Mesoscale Discovery, Rockville,

Maryland), as described previously.1 The secretion protocol did not

include an inhibitor to prevent the degradation of GLP-123 and, there-

fore, samples were not optimized for measurement of intact GLP-1.

2.11 | Statistical analysis

Unpaired Student's t test, two-tailed and assuming unequal variance,

was used to determine significance between diabetic and control ani-

mals, and between islets incubated with different treatments. For all

statistical analyses, P < .05 was regarded as significant.

3 | RESULTS

3.1 | PYY is expressed in rodent and human islets

Using tissue from rats and healthy human subjects, we confirmed that

PYY is detectable at both the mRNA (Figure S1A, Supporting Informa-

tion) and protein level in islets (Figure 1A). To localize PYY to islet cells,

sections of rat and human pancreas were labelled with antibodies

against insulin, glucagon, somatostatin and PYY. Antibody efficiency

was confirmed by detection of PYY-positive cells within rat ileum and

human duodenum (Figure S1B, Supporting Information). In rat islets, no

co-localization of PYY with either insulin or glucagon was observed, but

co-localization with somatostatin and PP was seen in most specimens,

suggesting that in rats PYY is located predominantly within delta and

gamma cells (Figure 1A, upper panel). In contrast, a different pattern of

expression was observed in human islets (Figure 1A, lower panel). No

co-localization was observed with insulin or somatostatin. However,

PYY immunoreactivity was co-localised with glucagon and PP. The

specificity of the antibody was confirmed by blocking antibody binding

by pre-incubation with exogenous PYY; no labelling was observed

(Figure S1C, Supporting Information). No cross-reactivity was seen

between the antibodies to PP and PYY; however, in rat samples most

PP cells were immuno-positive for PYY. Additional analysis of PYY

localization by electron microscopy (Figure 1B) showed that, in mouse

islets, PYY (upper panel) is expressed in somatostatin and PP-positive
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cells and a subpopulation of glucagon-positive cells. A lower amount of

PYY was detected in human islets (lower panel), confirming the pres-

ence of PYY in alpha cells and a small percentage of PP cells. However,

dense labelling for PYY was found in lysosome in human beta-cells.

3.2 | PYY receptors are expressed in rodent and
human islets

NPY1R and NPY4R mRNA expression was detected in rat islets

(Figure S2A, Supporting Information), which is consistent with

previous reports.5 The presence of NPY1R immunoreactivity was

identified in rat islets (Figure 2) and this receptor was localized exclu-

sively to beta-cells. However, immunolabelling was not positive for

NPY4R in islets, although the antibody labelled specific tracts of rat

jejunum and subcutaneous adipose tissue (Figure S4A and B, Sup-

porting Information). Neither NPY2R nor NPY5R mRNA was

expressed in rat islets. These staining data show that NPY1R localizes

to the beta-cells in rat islets.

In human islet samples we detected mRNA expression of NPY1R,

NPY4R and NPY5R but not NPY2R (Figure S3, Supporting

PYY+INS(A)

(B)

PYY+GCG PYY+SST PYY+ PP

rat

human

mouse

human

FIGURE 1 PYY protein localization in rat, mouse and human islets. A, Representative confocal microscopy images from rat (upper panel) and human

sections (lower panel) stained with PYY (green) and insulin, glucagon, somatostatin or PP. B, Immungold labelling for PYY on mouse islets (upper
panels) and human islets (lower panels). The density of gold labelling was much higher in mouse islets compared to human islets. In the mouse,
labelling was present over glucagon granules (GGN, electron dense with no halo and an additional very dense core), somatostatin granules (SST,
electron pale and slightly angular) and pancreatic polypeptide granules (PP, similar to glucagon but smaller and more variable in size) but not on
insulin granules (Ins, dense core and clear halo). In insulin-containing β-cells primary and secondary lysosomes (Ly, inset in middle panel) were densely
labelled with immunogold for PYY. In human islets no convincing labelling of any granule type was found. Lysosomes were identified by their pale
electron density and different sizes, usually bounded by a clear membrane. M, mitochondrion; n, nucleus. Scale bars, 0.5 μm
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Information), in agreement with previous reports.5 Antibodies to both

NPY1R and NPY4R labelled insulin-positive beta-cells in the human

pancreas (Figure 3A and B). No co-localization of either NPY1R or

NPY4R with glucagon or somatostatin was observed. NPY5R was not

detected in human islets (data not shown), despite its presence at the

mRNA level. Using human subcutaneous adipose tissue, we were able

to confirm that antibodies to NPY1R, NPY4R and NPY5R showed

positive immunolabelling in human tissues (Figure S4C, Supporting

Information).

3.3 | Time and dose-dependent effects of PYY on
islet secretory function

The time-dependent effects of PYY application on GSIS were exam-

ined in mouse islets. Incubation of islets for 1 hour or up to 24 hours

with PYY (100 nM) did not affect GSIS. However, 72-hour pre-

treatment of islets with PYY (100 nM) resulted in a significant eleva-

tion in GSIS (Figure 4A), without significant change in the basal secre-

tion compared to islets without PYY incubation. PYY pre-treatment

also resulted in a marked increase in total insulin content in rodent

and human islets (Figure S6, Supporting Information).

Dose-dependent effects of PYY peptides on insulin secretion

were also examined in mouse islets. A low, but physiologically-rele-

vant, concentration of PYY (100 pM) enhanced GSIS and there was

no further enhancement at a higher concentration (100 nM)

(Figure 4B).

Similarly, in human islets from healthy donors, acute (1 hour)

application of PYY, as either the full length or the truncated peptide,

had no significant effect on GSIS (Figure 4C).

We have reported previously that chronic PYY pre-treatment can

enhance GSIS in non-diabetic human islets.1 However, the chronic

effect of PYY on diabetic human islets has not been investigated.

Chronic PYY treatment (72 hours) of human islets from 2 donors with

type 2 diabetes resulted in potentiation of GSIS (Figure 4D).

3.4 | DPP-IV is present in islets and is inhibited by
sitagliptin

DPP-IV was identified in mouse and human islets by immunoreactiv-

ity on pancreatic sections. In mouse islets, DPP-IV was found mostly

in islet beta-cells (Figure S5A, Supporting Information). However, in

human islets from healthy subjects, immunoreactivity for DPP-IV was

found co-localized with glucagon, but not with insulin (Figure S5B,

Supporting Information). To demonstrate DPP-IV activity in islets, an

assay was developed to measure enzyme activity. DPP-IV activity

was present in mouse islets and was significantly inhibited by 5 nM

sitagliptin (Figure S5C, Supporting Information).

NPY1R insulin merge

NPY1R glucagon merge

NPY1R somatostatin merge

FIGURE 2 NPY receptor expression in

rodent islets. Representative confocal
microscopy images of NPY1R staining in
rat islets co-stained with insulin, glucagon
or somatostatin
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3.5 | DPP-IV inhibition improves GSIS via PYY (1-
36) action

Mouse and human islets treated acutely (1 hour) with sitagliptin, at

concentrations ranging from nM to μM, showed no improvement in

GSIS (Figure 5A and B). However, when mouse and human islets

were pre-cultured (72 hours) with 100 nM sitagliptin, determined to

be the optimal concentration in these islets, there was a significant

improvement in secretion at 20 mM glucose without a significant

change in basal secretion compared to control islets (Figure 5C and

D). These data suggest that islet function is enhanced by chronic

exposure to a local factor which is normally degraded by DPP-IV.

To determine whether the beneficial effects of DPP-IV inhibi-

tion on GSIS were due to locally-produced GLP-1 or PYY, experi-

ments were performed on rodent islets with sitagliptin in the

presence of either the GLP-1R antagonist, exendin (9-39; 1 μM), or

an antibody specific to PYY. In the presence of exendin (9-39), the

potentiating effect of sitagliptin pre-treatment (72 hours) on GSIS

was not significantly affected. When islets were cultured concomi-

tantly with sitagliptin plus the anti-PYY antibody, insulin secretion

at 20 mM glucose was significantly reduced compared to islets

treated with sitagliptin alone (Figure 5E). Addition of exendin (9-39)

or the anti-PYY antibody on its own had no effect on GSIS (data

not shown). Total PYY and GLP-1 were both secreted into the

medium by islets during culture conditions. However, sitagliptin

application increased total PYY release only, while no changes in

GLP-1 were detected in the same samples (Figure S7, Supporting

Information). On the other hand, co-application of sitagliptin and

exendin (9-39) did not increase total PYY release, potentially

explaining why the potentiating effect of sitagliptin on GSIS was

not fully retained in this condition. To further test that PYY, as

compared to GLP-1, is targeted by local DPP-IV action, the effects

of sitagliptin on islets from GLP-1 receptor knockout (GLP-1R KO)

mice were investigated. These mice do not respond to GLP-1 with

potentiated GSIS.24 However, chronic treatment with sitagliptin

resulted in enhanced GSIS and the response was similar to that

observed in islets from wildtype mice (Figure 5F). In addition, immu-

noneutralization of PYY resulted in a complete reversal of

sitagliptin-mediated GSIS in islets from both the wildtype and GLP-

1R KO mice, demonstrating an important role of islet-derived PYY

in the enhancement of insulin secretion in response to DPP-IV inhi-

bition (Figure S8, Supporting Information).

To determine the receptor bound by PYY, the effects of the

NPY1R blocker BIBP3226 were tested in the presence of sitagliptin

in mouse islets. Application of the antagonist completely reversed the

potentiating effects of sitagliptin (Figure 5G). Taken together, these

data suggest that the PYY may be an important islet-derived factor

which is responsible for enhanced GSIS upon sitagliptin treatment.

Full-length PYY (1-36) is cleaved by DPP-IV to form the degrada-

tion product, PYY (3-36), which is unlikely to be affected by sitaglip-

tin. However, both recombinant versions of PYY potentiate GSIS to a

similar extent. To determine whether, in islets, both endogenous PYY

forms modulate insulin secretion equally, mouse islets were treated

chronically with PYY (1-36) or PYY (3-36), with or without sitagliptin.

NPY1R insulin merge NPY4R insulin merge
(A) (B)

NPY1R glucagon merge NPY4R glucagon merge

NPY1R somatostatin merge NPY4R somatostatin merge

FIGURE 3 NPY receptor expression in human islets. Representative confocal microscopy images of A, NPY1R and B, NPY4R staining in human

islets co-stained with insulin, glucagon or somatostatin
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As observed previously, sitagliptin application on its own markedly

enhanced GSIS by ~3-fold (Figure 5C). This stimulation index was

comparable to responses obtained by PYY (1-36) or PYY (3-36) alone

(Figure 4B). However, co-application of sitagliptin with PYY (1-36)

significantly elevated GSIS by ~50%. Addition of sitagliptin to PYY (3-

36) had no additive effects on GSIS compared to PYY (3-36) alone

(Figure 5H), thus indicating that the locally produced uncleaved form

of PYY is the main modulator of islet function.

3.6 | Increased levels of PYY in islets contribute to
diabetes remission after RYGB

Circulating PYY levels are known to be lower in type 2 diabetes in

humans compared to non-diabetic individuals.25,26 Consistently, total

PYY concentrations in plasma were lower in diabetic GK rats com-

pared to healthy Wistar rats (Figure 6A). We have reported previ-

ously that circulating PYY levels are markedly higher in GK rats

following RYGB and are associated with restoration of islet function

following the surgery.1 However, it remains unknown whether RYGB

can also affect PYY content levels in the pancreatic islets. PYY con-

tent was measured in islets obtained from healthy Wistar controls

and diabetic sham- and RYGB-operated GK rats. Islet PYY content

was significantly lower in the diabetic GK rats, compared to the

healthy Wistar control rats. In islets from the RYGB GK rats, total

islet PYY content was increased to higher levels than in the Wistar

rat islets (Figure 6B). On the other hand, a much smaller increase in

GLP-1 content was observed in the same islets from RYGB GK rats.

However, this increase in GLP-1 failed to reach the levels in the Wis-

tar control islets (Figure S9, Supporting Information).

4 | DISCUSSION

PYY is a classical appetite-regulating hormone secreted from the gut

that exerts a major action in the brain. However, evidence from a

number of recent studies demonstrates that PYY can also modulate

insulin secretion,2,3 as well as restore impaired islet function in dia-

betic rats following RYGB surgery.1 The expression of PYY in islets,

in addition to its main site of production in the gut and specific sites

of action in the central nervous system, points to a potential auto-

crine role of the peptide in the pancreas. Moreover, PYY is a sub-

strate for DPP-IV, which is highly expressed in islets, and its activity
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is subject to change under diabetic conditions.14 This suggests that

PYY may be prone to local regulation by islet DPP-IV, which can

potentially impact on islet function under physiological and pathologi-

cal conditions.

Several studies have confirmed pancreatic expression of PYY in

rodents,3,6,8,27 as well as cats, dogs, pigs and cows.7 Whilst it is well-

established that PYY does not co-localize with insulin-producing cells,

controversial results have been reported concerning its expression in

other islet cell types. Thus, PYY immunoreactivity in alpha-cells has

been reported to be species-specific in the adult pancreas7 and

almost lost during development.8 We show PYY gene expression in

rat, mouse and human islets and, for the first time, demonstrate PYY

co-localization with glucagon and PP in mature human islet cells, but

with somatostatin and PP in rodent islets, probably indicating a spe-

cies difference. These data are consistent with single-cell messenger

RNAseq studies that demonstrate the expression of PYY in alpha-

cells in human pancreatic islets.28–30 Differences in cellular PYY local-

ization between the rat and human samples were influenced by the

differences in PYY content. Human islets contained much less PYY

than rodent islets and this was evidenced by the observation that

successful immunolabelling in human islets required signal amplifica-

tion methods, and that the labelling of human EM sections (which is a

less sensitive method than labelling for light microscopy) revealed lit-

tle or no granule labelling. However, dense labelling for PYY in β-cells

lysosomes indicated successful reactivity to the antibody and sug-

gested that PYY had been internalized into β-cells during peptide

signalling.

Similarly, we observed a different localization pattern between

rodent and human islets for DPP-IV, in agreement with previous pub-

lications. The species specificity of PYY and DPP-IV expression, and

its impact on islet physiology, remain unexplained and call for further

investigation. Nevertheless, we found that application of PYY or

DPP-IV inhibition by sitagliptin consistently modifies insulin response

to glucose in rodent and human islets, thus suggesting a common

mechanism that may be explained by a conserved receptor

distribution.

NPY receptor mRNA expression in islets has been documented,

but the actual presence of the receptors has not been shown.3,9 Our

staining data show that NPY1R localizes to beta-cells in rat islets,

while NPY1R and NPY4R are expressed on human beta-cells. With

our immunohistochemical detection system we were unable to detect

NPY4R in the rat islets although the antibody positively identified this

receptor in the neuronal tracts in the rat hypothalamus. These results

show that NPY1R receptor distribution is conserved in both rat and

human islets. PYY-mediated effects on GSIS have been shown to

occur via NPY1R in both species, suggestive of consistency in PYY

signalling and action in rodent and human islets.1 Both species display

no detectable levels of NPY2R, which mediates the anorectic effect

of PYY and is highly selective for PYY (3-36); this implies that the

effects of PYY on islet secretory function are mediated through a

pathway distinct from appetite regulation.

We show that acute application of PYY to rodent or human iso-

lated islets has no effect on basal or glucose-stimulated insulin secre-

tion. We have reported previously that PYY pre-treatment enhances

glucose-stimulated insulin secretion in rat and human islets.1 In agree-

ment with these findings, the potentiating effects of PYY peptides on

GSIS in mouse islets were observed only following chronic application

(>24 hours). Islets in culture over time (72 hours) undergo cellular

stress which can affect insulin content. Thus, our results indicate that

PYY pre-treatment preserves insulin content and secretory responses

in cultured islets. Inhibitory effects of PYY (10−8 to 10−6 M) on

glucose-mediated insulin release have been reported recently under

acute (1 hour) conditions in beta-cell lines and mouse islets.3

Although the discrepancy in the effects of PYY on insulin release may

be the result of differences in experimental conditions (eg, peptide

source and concentrations), our data suggest that the glycaemic ben-

efit of PYY results from its long-term, rather than acute, effects. The

physiological relevance of PYY in the pancreatic islets and diabetes

has been illustrated by several independent studies. Thus, drastic dis-

ruption of islet structure and beta-cell function has been demon-

strated following selective ablation of PYY-expressing cells in islets

and by restoration of beta-cell function by exogenously applied PYY

in streptozotocin-treated mice2,3 and immunoneutralization of PYY in

rat islets treated with serum obtained from RYGB GK rats.1 Impor-

tantly, we demonstrate that PYY can also enhance GSIS in human

islets from diabetic donors, indicating that our observations in rodent

islets can be extended to man. In support of this, chronic administra-

tion of PYY (3–36) in rats has been shown to induce a significant

reduction in HbA1c level, as well as improvements in glycaemic

parameters, whereas no effect on plasma glucose was observed fol-

lowing an acute (60 minutes) treatment with PYY.31 However, a role

for pancreatic polypeptide (PP) in this process cannot be excluded,

and future studies should be undertaken to explore this hypothesis.

The beneficial effects of DPP-IV inhibitors as therapeutic agents

for type 2 diabetes are thought to be primarily related to their ability to

prolong the half-life of active GLP-1.10 However, it is well-established
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that GLP-1 is not the only substrate for DPP-IV action.32 Thus, PYY in

circulation is prone to rapid proteolysis by DPP-IV.33 Consistently,

Aaboe and colleagues have demonstrated that 12 weeks of sitagliptin

therapy prevents PYY degradation, resulting in a significant increase in

PYY (1-36) levels.34 We confirm DPP-IV expression and activity in pan-

creatic islets in agreement with previous reports.14,16 We also demon-

strate that chronic treatment with the DPP-IV inhibitor sitagliptin leads

to enhancement of GSIS in mouse as well as human islets. However,

this effect is independent of endogenously-occurring pancreatic GLP-1,

as it is preserved in the presence of the GLP-1 receptor antagonist and

in islets from GLP-1R knockout mice. In contrast, inhibition of PYY

action by immunoneutralization of the peptide or antagonism of NPY1R

significantly blunts glucose-induced insulin stimulatory responses.

These data demonstrate for the first time that DPP-IV has a role in

intra-islet PYY degradation. Although these findings indicate that the

modulating effect of the inhibition of DPP-IV activity in islets is the

result of preservation of intact endogenous PYY, and not full length

GLP-1, the role of other DPP-IV substrates such as GIP cannot be ruled

out. Thus, the locally-produced, uncleaved form of PYY may be an

important modulator of islet function. This is consistent with the

expression pattern of NPY receptors in rodent and human islets, con-

firming a major role of NPY1R in maintaining glucose homeostasis.35.

Overexpression of PYY in mouse islets has been associated with

increased lean mass and improved energy metabolism and glucose

tolerance,4 suggesting that islet-derived PYY can also affect whole

body physiology. Loss of PYY in the pancreas also results in impaired

islet morphology and marked reductions in insulin secretion,2 indicat-

ing that PYY plays a key role in maintaining islet integrity and beta-

cell function. Interestingly, diabetic GK rats exhibit a characteristic

disrupted islet morphology, which is significantly restored following

RYGB, in association with improved insulin and glucagon secretion.1

Circulating PYY levels are known to be lower in diabetic patients and

strongly elevated following bariatric surgery. However, it is not

known whether intra-islet PYY levels are also affected by diabetes

and RYGB.

Consistent with the changes in plasma PYY, we show for the first

time that islet PYY content is markedly lower in the diabetic GK rats,

and is significantly increased following RYGB, in agreement with

recent reports of improved islet secretory functions.1 These results

suggest that RYGB-induced restoration of impaired islet morphology

and function may actually be associated with islet-derived PYY rather

than PYY in circulation. Although it is not possible to differentiate the

effects of circulating PYY from those of islet-derived PYY on islet

function, the peptide is probably one of several factors that alter pan-

creatic islet function following RYGB. Importantly, gastric bypass

does not restore GLP-1 in islets to levels that occur in healthy rats.

The small increase in islet GLP-1 content may be the result of recov-

ery in islet morphology post-surgery. This reiterates findings from

several studies; that is, there is no elevation in fasting plasma GLP-1

levels within days or months after RYGB, corroborating a negligible

effect of GLP-1 on islet secretion improvements.1,36–38 Several mech-

anisms may account for the elevation of PYY in islets after bariatric

surgery, including changes in bile acids and microbiota-derived

metabolites. Quantitative and qualitative modification of these fac-

tors has been well documented post gastric bypass in rodents and

humans39–42 and, in some cases, they have been shown to directly

regulate PYY expression in gut cells.43,44 Whether PYY content in

islets is also affected by these factors remains an interesting avenue

to explore. In addition, a reduction in plasma DPP-IV activity after

gastric bypass has been reported in obese patients with type

2 diabetes,45 supporting the hypothesis that a local decrease in pan-

creatic DPP-IV activity after surgery may enhance intra-islet PYY

levels and subsequently affect glucose responses. Future studies are

warranted to explore these possibilities and the relevance of pancre-

atic PYY in the surgical correction of diabetes.

Taken together our results indicate that local regulation of pan-

creatic PYY by DPP-IV inhibition or by gastric bypass can directly

modulate islet function and insulin secretory responses to glucose.

This may have a direct impact on the restoration of diabetes and may

represent a novel therapeutic strategy for the treatment of the

disease.
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