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1. Introduction
The E2F genes encode a family of nine transcription factors 
with one or more conserved DNA binding domains. They 
bind promoters as either homo- or heterodimers and 
target distinct and overlapping promoters to regulate 
gene expression (Trimarchi and Lees, 2002; Attwooll 
et al., 2004). Proteins E2F1 through E2F6 also contain a 
conserved domain responsible for binding to dimerization 
partner proteins (de Brucin et al., 2003; Di Stefano et al., 
2003). The established paradigm from in vitro studies is 
that a network of signals converges on retinoblastoma 
(Rb) and related proteins to cause E2F-dependent changes 
in transcription, which regulate progression through the 
cell cycle and thus contribute to cell proliferation. The 
E2F family members have also been shown to control 
the expression of genes implicated in DNA replication, 
DNA damage repair, cell fate, and mitosis (Trimarchi and 
Lees, 2002; Attwooll et al., 2004; Cam et al., 2004; Dimova 
and Dyson, 2005; Bieda et al., 2006; Buttitta and Edgar, 
2007; McClellan and Slack, 2007; Zalmas et al., 2008; 
Chen et al., 2009). Pathways regulated by E2Fs are clearly 
implicated in breast cancer and can be overexpressed in 
drug-resistant tumors (Johnson et al., 2016). E2Fs are 
also implicated in upregulating genes whose expression 
correlates with metastasis and poor prognosis in breast 

cancer (Thomassen et al., 2008; Thangavelu et al., 2017). 
Previously, it was thought that E2F1 to E2F3a and E2F3b 
act only as activators of transcription while E2F4 through 
E2F8 act as repressors; this has now been challenged and 
the activation or repression function is likely to be tissue- 
and context-dependent (Chong et al., 2009; Lee et al., 
2011; Weijts et al., 2012).  

E2F6 differs from other family members because it 
lacks the C-terminal sequences required for transcription 
activation and interaction with pocket protein family 
members such as Rb protein (pRb) (Morkel et al., 1997; 
Gaubatz et al., 1998; Trimarchi et al., 1998). E2F6 is not 
regulated by pRb or its homologues p107 or p130, but 
it forms a complex in proliferating cells with polycomb 
group proteins, counteracting the activity of the other E2F 
complexes and causing transcriptional repression of E2F 
responsive genes (Trimarchi et al., 1998, 2001; Ogawa et al., 
2002; Attwooll et al., 2005). E2F6 is, therefore, thought to 
be a pocket protein-independent transcriptional repressor 
(Morkel et al., 1997; Cartwright et al., 1998; Trimarchi et 
al., 1998, 2002). E2F6 is expressed throughout the cell cycle 
but accumulates during G1, reaching a peak at the G1/S 
transition (Kherrouche et al., 2004). During the S-phase, 
E2F6 interacts with E2F target genes that are activated 
at G1/S, thus restricting their expression and promoting 
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progression through the cell cycle (Giangrande et al., 2004; 
Bertoli et al., 2013).  

Although E2F genes are not frequently mutated 
in cancer, amplification and/or dysregulation of E2F 
expression is correlated with abnormal expression of 
tumor suppressors and malignancy (Polanowska et al., 
2000; Fang and Han, 2006; Chen et al., 2009). There 
is known redundancy for E2F proteins in normal cell 
proliferation (Gaubatz et al., 2000; Danielian et al., 2008; 
Tsai et al., 2008; Zalmas et al., 2008), but it has been 
suggested that tumors may become addicted to specific 
E2F activators during oncogenic proliferation (Chen et al., 
2009). A logical prediction would be that in tumors there 
could be overexpression of E2F activators (functioning 
as oncogenes) and loss of E2F repressor activity (tumor 
suppressors). However, this does not always appear to 
be the case, with several studies suggesting a function 
for E2F4–8 (considered to be repressors) in promoting 
tumorigenesis (Polanowska et al., 2000; Reimer et al., 
2006; Bindra and Glazer, 2007; Endo-Munoz et al., 2009; 
Umemura et al., 2009).  

E2F6 was reported to be overexpressed in a series of 
ER-negative/P53-positive breast carcinomas (Palacios 
et al., 2005). Furthermore, expression of a potential 
negative regulator of E2F6 microRNA-185 (miR-185) 
is downregulated in triple-negative breast cancer (i.e. 
negative for estrogen ER, progesterone PgR, and human 
epidermal growth factor receptor HER2/ERBB2) and 
associated with poor prognosis (Tang et al., 2014). Here 
we confirm the overexpression of E2F6 in breast cancers 
and also test the idea that E2F6 overexpression could be 
important specifically to the survival of breast cancer cell 
lines. 

2. Materials and methods
2.1. Tissue array
Gene expression was analyzed in tumorous and normal 
breast tissues using the TissueScan Breast Tissue qPCR 
array (Cat. No. BCRT302, Origene Technologies, 
Rockville, MD, USA). This tissue scan is composed of a 
panel of 43 cDNAs from breast tumor tissues representing 
four different TNM stages of breast cancer and 5 cDNA 
samples from adjacent normal breast tissues. A detailed 
pathology report is provided for all the purchased cDNA 
samples, which can be reviewed on the website of the 
aforementioned company.  
2.2. Mammalian cell lines
All cell lines were obtained from ATCC, except Jurkat 
cells, which were a gift from Professor Holley, University 
of Sheffield. MCF-7, MDA-MB-231, MDA-MB-468, and 
T-47D cell lines were grown in DMEM containing 4.5 
g/L glucose with L-glutamine, 10% FCS (Seralab) and 1X 
nonessential amino acids (Bio Whittaker). Jurkat cells were 

grown in RPMI 1640 (Lonza) containing L-glutamine, 
10% FCS and 1X nonessential amino acids. MCF-10A cells 
were grown in DMEM containing 4.5 g/L glucose with 
L-glutamine with the addition of 1X nonessential amino 
acids, 5% horse serum (Invitrogen), 10 µg/mL insulin 
(Sigma-Aldrich), 0.1 µg/mL cholera toxin (Calbiochem), 
10 µg/mL epidermal growth factor (EGF; Sigma-Aldrich), 
and 50 µM hydrocortisone (Sigma-Aldrich). All cell lines 
were used within 20 passages and regularly checked for 
Mycoplasma.
2.3. qRT-PCR       
Total RNA was extracted using the RNeasy Mini Kit 
(QIAGEN). cDNA was obtained using 1 µg of total 
RNA and the Applied Biosystems High Capacity cDNA 
Reverse Transcriptase Kit (Thermo Fisher Scientific), and 
5 µL of cDNA was mixed with SensiMix SYBR (Bioline) 
and 10 mM primers. Primers were designed to amplify 
cDNA transcripts of 100–150 bp and were ordered from 
Eurofins. As a negative control for quantitative real-time 
polymerase chain reaction (qRT-PCR) assay, two sets of 
Fli1 primers were included to amplify the FLI1 gene, which 
is a protooncogene known to be upregulated in acute 
myeloid leukemia but underexpressed in breast cancer 
cell lines; therefore, it was used here to demonstrate that 
gene expression was not upregulated across the genome 
in breast cancer and also to validate qPCR results. The 
primers and the purpose of their use are shown in the Table 
below. Figure 1 shows a scheme that depicts positions of 
the amplification primers in E2F6 cDNA.

qRT-PCR was performed using the Corbett Robotics 
Rotor-Gene 6000 (QIAGEN). The cycling conditions were 
95 °C for 10 min followed by 40 cycles of denaturing at 95 
°C for 15 s and annealing at 58 °C for 15 s and finally 30 s at 
72 °C for extension. Using Rotor-Gene 6000 software, the 
C

T
 (the threshold) value was determined for each cDNA 

sample in every reaction. Relative gene-expression value 
was calculated according to Livak and Schmittgen (2001) 
using the following formula: ΔCT = CT target gene – CT 
endogenous reference gene, using β-actin for tissue arrays 
and 18S for cell lines as the reference gene. The fold change 
compared to the reference sample was then calculated 
using the delta-delta CT method, also known as the 2–∆∆CT 

method, where ∆∆CT = ∆CT (tumor sample) – ∆CT (normal 
sample) (Livak and Schmittgen, 2001). In the case of cell 
lines, MCF-10A was taken as a reference sample. For tissue 
array samples the median value of 5 normal tissue samples 
was used as a reference sample. 
2.4. si-RNA transfection
Cells were reverse-transfected with 20 nM (final 
concentration) small interfering RNAs (si-RNAs) using 
Dharmafect 4 reagent (Dharmacon) and following the 
manufacturer’s instructions. All si-RNAs were purchased 
from Eurofins. Sequences were as follows: si-E2F6#1 
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AAGGAUUGUGCUCAGCAGCUG (Oberley et al., 
2003), si-E2F6#2 AGUUAAAGCUCCAGCAGAA, and 
si-E2F6#3 CUUAAGAAGUGCUCAAUAA (Lafta, 2016). 
Figure 2 shows the positions of the si-RNAs on the E2F6 
gene.
2.5. Survival assay (MTT)
Following si-RNA transfection, cells were left for 96 h, 
after which time 1 mg/mL MTT (3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide; Thermo Fisher) 
was added to each well and the cells left for 3 h at 37 °C. 
The medium was then aspirated off and replaced with 200 

µL of DMSO (Fisher Scientific), and the OD was measured 
at 595 nm on a plate reader. The experiment was repeated 
in triplicate on at least 3 separate occasions and the mean 
and standard error of the mean were calculated.
2.6. Cell cycle analysis
Twenty-four hours after transfection with si-RNA, 2 mM 
hydroxyurea (HU) was added to the cells, which were left 
for a further 24 h. Cells were then fixed in 70% methanol 
and left overnight at –20 °C. After washing in phosphate-
buffered saline, cells were stained with propidium iodide/
RNase A solution (50 mg/mL PI, 100 mg/mL RNase 

Table. The sequences of amplification primers and the purpose of their use.
 
Primer name Purpose Sequence 5’-----------3’

E2F6# com1 Common to all variants For-GGAAGATGCTTTGGATGAG 
Rev-GATAGGTCACATATGCTAGTC

E2F6# com2 Common to all variants For-TTCCAGCTCCCAGAGAAGAC
Rev-TTACTGGTCTGACCCTGCTCCA

E2F6# var a Specific to variant a For-GCGAGGAAGTTACCCAGTCTCCT
Rev-ATGGCAGCAGGCCCTCCACGTTGAT

E2F6# var b Specific to variant b For-CCAGCGATACATCAAAACGAGGTC
Rev-ATGGATCTTGTCAGATCTGCTCCC

β-Actin Internal control For-CAGCCATGTACGTTGCTATCCAGG
Rev-AGGTCCAGACGCAGGATGGCATG

18S Internal control For-AGAAACGGCTACCACATCCA
Rev-CACCAGACTTGCCCTCCA

FLI1#1 Negative control For-GAATTCTGGCCTCAACAAAAG
Rev-CCCAGGATCTGATACGGATCT

FLI1#2 Negative control For-ATCCAGCTGTGGCAATTCCT
Rev-CATCGGGGTCCGTCATTTTG

Figure 1. Scheme depicting positions of the amplification primers in E2F6 cDNA. Six transcript variants (a to f) of the 
E2F6 gene are shown parallel to its cDNA. Among the primers, two sets were common to all the transcripts and termed 
E2F6# com1 and E2F6# com2. While one primer set was specific for variant a (E2F6# var a), the other primer pair was 
specific for variant b (E2F6# var b).



LAFTA et al. / Turk J Biol

296

A) for at least 30 min. Samples were analyzed by flow 
cytometry (Becton-Dickenson FACSort, 488-nm laser). 
Quantification of the percentage of cells in individual 
cell cycle phases was performed using the CellQuest 
IX flow cytometry software package. Each experiment 
was repeated on 3 separate occasions and the mean and 
standard deviation were calculated.
2.7. Western blotting
Cells were lysed in RIPA buffer in the presence of 1X 
protease and phosphatase inhibitor cocktails (Roche). 
An aliquot of 30 µg of total protein was run on sodium 
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) gel and transferred to Hybond ECL membrane 
(GE Healthcare). This membrane was immunoblotted 
with antibodies against E2F6 (1:1000, Santa Cruz), β-actin 
(1:5000, Sigma), and β-tubulin (1:5000, Sigma), each 
diluted in 5% milk and incubated at 4 °C overnight. After 
the addition of the appropriate horseradish peroxidase-
conjugated secondary antibody and further washes, the 
immunoreactive protein was visualized using ECL reagents 
(GE Healthcare) following the manufacturer’s instructions. 
Protein on western blots was quantified relative to actin 
or tubulin using ImageJ software. Tubulin was used as a 
loading control to compare expressions between cell lines 
and actin used within each cell line.
2.8. Statistical analysis
Results were determined to be normally distributed using 
the Shapiro–Wilk test for normality prior to analysis 
with a paired 2-tailed Student t-test or an unpaired 
2-tailed Mann–Whitney U test as indicated. P < 0.05 was 
considered representative of data that were significantly 
different. GraphPad Prism 7 software was used for analysis 
of all data.

3. Results 
3.1. E2F6 expression is greater in breast cancer than 
normal tissue 
We tested the expression levels of E2F6 by qPCR on an 
array of 43 breast adenocarcinoma cDNAs and 5 normal 

breast cDNAs. Using primers common to all E2F6 
transcript variants, high levels of cDNA were found in the 
tumor samples relative to the normal tissue. Similarly, the 
same samples showed significant levels of E2F6 variant 
a. However, variant b was significantly underexpressed 
(Figure 3A; Mann–Whitney U test). Comparing the E2F6 
cDNA levels at different tumor stages (Figure 3B) revealed 
each stage to have significantly more cDNA than normal 
tissue, especially when using E2F6 common primers (P < 
0.001; Mann–Whitney U test), with a trend to suggest that 
expression may increase further as the tumor progresses. 
We also examined expression in ER-positive compared 
to ER-negative samples, and importantly there was a 
significant difference between these groups (Figure 3C).
3.2. E2F6 is highly expressed in breast cancer cell lines
In order to establish a system to investigate the importance 
of E2F6 overexpression, we determined whether or not 
the high expression of E2F6 mRNA from the tumor array 
was also seen in breast cancer cell lines. qRT-PCR analysis 
demonstrated that E2F6 mRNA is more highly expressed in 
breast cancer cell lines than in a nontumor breast epithelial 
cell line (Figure 4). The amount of E2F6 protein present 
was then assayed in a range of cell lines using MCF-10A 
to represent noncancer breast cells and using Jurkat cells 
known to overexpress E2F6 as a positive control. In the 
four breast cancer cell lines studied, we found that levels 
of E2F6 protein were higher compared to MCF-10A cells 
(Figures 5a and 5b). 
3.3. Overexpression of E2F6 is important to breast cancer 
cell viability
To determine whether or not the high expression levels of 
E2F6 in breast cancer cell lines were important for their 
survival, we set out to reduce protein levels and looked for 
any impact on viability. Three si-RNAs were designed to 
be specific to E2F6 (si-E2F6) and one scrambled si-RNA 
served as a negative control. In MCF-10A cells, for which 
expression was already low compared to the tumor cell 
lines, E2F6 became almost undetectable after transfection 
with each of the specific si-E2F6s (Figure 6a). In the tumor 

Figure 2. Positions of the si-RNAs on the E2F6 gene. The gene map shows the distribution of exons on it with the locations 
of the three si-RNAs specific to E2F6 targeting different regions. 
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Figure 3. E2F6 expression is increased in breast cancer compared to normal breast tissue: (A) 48 breast tissue cDNAs were used to 
investigate the fold change in cDNA levels of E2F6 using three sets of primers: E2F6# com2 (common to all E2F6 variants), E2F6# var 
a (specific for variant a), and E2F6# var b (specific for variant b). Results were first normalized to β-actin and then shown relative to the 
median E2F6 expression level across 5 normal breast cDNAs. The same data are displayed according to tumor stage (B). The same data 
were stratified according to ER status (C). Each point represents the average of two technical repeats. Dots are individual samples; the 
lines refer to the median value. P-values (*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001) were measured by Mann–Whitney U 
test.
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Figure 4. E2F6 cDNA levels were increased in breast cancer cell lines and Jurkat cells relative to MCF-10A. 
cDNAs prepared from cancer cell lines (MCF-7, T-47D, MDA-MB-231, MDA-MB-468, and Jurkat cells) and 
normal breast cells (MCF-10A) were subjected to qRT-PCR for E2F6. In this experiment we used four different 
primer pairs. The primer pairs (E2F6# com2, E2F6# var a, and E2F6# var b) are the same primers used in Figure 
1. Primer pairs E2F6# com1 and E2F6# com2 detect a conserved region across E2F6 transcript variants, while 
primer pair E2F6# var a is designed to detect only E2F6 transcript variant a and primer E2F6# var b detects only 
E2F6 transcript variant b. In each case expression was first normalized to 18S rRNA. The level of each cDNA 
is shown relative to that of the same gene in MCF-10A (fold change). FLI1 cDNA level was checked using 
primers Fli1#1 and Fli1#2 as a negative control. Mean expression and error bars representing the corresponding 
standard deviation of 5 independent repeats are shown. The stars represent the P-values for the significant 
difference between the normal and cancer cell lines using unpaired Student t-tests. 

Figure 5. E2F6 protein levels are increased in breast cancer cell lines compared to normal tissue. Protein lysates from breast cancer cell 
lines (MCF-7, T-47D, MDA-MB-231, and MDA-468), Jurkat cells and nontumorigenic breast cells (MCF-10A) were western-blotted for 
detection of E2F6 and β-tubulin. (a) Representative example of western blots, (b) E2F6 protein levels quantified relative to β-tubulin. 
Mean and standard deviation of 4 independent repeats are shown.
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cell lines, the impact of transfection varied among the 
three si-E2F6s, but in all cases there was a reduction in 
detectable E2F6 compared to scrambled si-RNA.

The MTT assay was used to determine cell viability 
following transfection with the three si-E2F6s compared 
to transfection with scrambled si-RNA (Figure 6b). The 
viability of all three breast cancer cell lines was reduced by 
E2F6 depletion, while the MCF-10A control cells remained 
viable. Among the tumor cells lines, MCF-7 cells were the 
most sensitive to E2F6 depletion and T-47D was the least 
affected, with no significant difference in viability for two 
of the si-E2F6 knockdowns in that cell line. In T-47D 
cells, where survival was not significantly affected, protein 

depletion was also less efficient. Thus, like MCF-7 and 
MDA-MB-231 cells, T-47D cells may also be susceptible to 
a reduction in E2F6 expression if E2F6 levels drop below a 
certain threshold. This was clear upon transfecting T-47D 
cells with si-E2F6#2, which caused a severe decrease in the 
level of E2F6 leading to significant cell death. 
3.4. Cell death from reduced E2F6 levels during G1 or 
S-phase of the cell cycle
The previous section tested in the importance of E2F6 
expression on the viability of unperturbed exponentially 
growing cell cultures. Fluorescence-activated cell sorting 
(FACS) analysis was used to indicate at which stage 

Figure 6. Depletion of E2F6 selectively kills breast cancer cell lines compared to normal cells. Normal (MCF-10A) and breast cancer 
(MCF-7, T-47D, MDA-MB-231) cell lines were transfected with scrambled si-RNA or one of three si-RNAs against E2F6 (si-E2F6#1-3). 
(a) Western blot confirmed E2F6 depletion after 48 h. Graphs represent protein quantification of E2F6 normalized to β-actin. (b) 
Cell viability relative to scrambled si-RNA transfected control as measured by MTT assay 96 h after si-RNA transfection. Means and 
standard errors of means of at least three independent experiments are depicted. Statistical significance (*P < 0.05, **P < 0.01, or ns - not 
significant) was calculated using a 2-tailed paired Student t-test comparing viability in each breast cancer cell line following each E2F6 
si-RNA to the same si-RNA treatment in MCF-10A.
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of the cell cycle death might be occurring (Figure 7; 
Supplementary Figure 1). Consistent with the MTT results, 
we noticed that si-E2F6 caused a small but significant 
increase in the proportion of cells with sub-G1 DNA 
content in MCF-7 cells but not MCF-10A cells. However, 
no significant alteration in cell cycle profile was observed. 

Then we considered that E2F6 might have a role in 
responding to endogenous replication stress in breast 
cancer cells. To test this idea, we looked at the effect 
of E2F6 depletion on cell cycle profiles and cell death 
following exposure to HU to increase DNA replication 

fork stress. A level of HU was used that is considered to 
induce fork collapse and thus DNA damage in S-phase 
cells. We predicted that further replication stress in 
cancer cells would increase the proportion of cells with 
sub-G1 DNA content when E2F6 expression was reduced. 
Addition of HU 24 h after transfection with E2F6 si-RNA 
led to a large increase in the proportion of MCF-7 cells 
with sub-G1 DNA content (Figure 7a), consistent with an 
inability to stabilize and/or resolve perturbed replication 
forks. In contrast, the proportion of sub-G1 DNA content 
cells in MCF-10A cultures was unaffected despite the HU-

Figure 7. Replication stress increases dependency on E2F6 in breast cancer cells: (a) breast cancer (MCF-7) and (b) normal (MCF-
10A) cell lines were transfected with scrambled, si-E2F6#1, or si-E2F6#2 si-RNA. Twenty-four hours after transfection 2 mM HU 
was added to the cells, which were left for a further 24 h prior to cell cycle analysis by propidium iodide staining. Mean and standard 
deviation of three independent experiments is shown. Statistical significance was calculated using the paired Student t-test, comparing 
the proportion of cells in each stage of the cell cycle following each E2F6 si-RNA treatment with the corresponding stage of the cell cycle 
following transfection with the scrambled control.
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induced increase in S-phase cells (Figure 7b). In addition, 
depletion of E2F6 combined with HU-induced replication 
stress in MCF-7 cells resulted in a reduced proportion of 
cells in G1 and S-phase but no increase in G2/M cells. This 
suggests that without E2F6, MCF-7 cells under increased 
replication stress are dying during G1 or S-phase. S-phase 
death seems more likely as this is where the HU-induced 
stress occurs.

4. Discussion
E2F6 is an important regulator of transcription, binding 
to the promoters of a wide range of genes (Oberley 
et al., 2003; Griagrande et al., 2004; Xu et al., 2007). 
Normally, it acts as a transcriptional repressor of E2F-
responsive G1/S genes during the S-phase of the cell cycle 
(Griagrande et al., 2004; Bertoli et al., 2013). However, in 
cancer cells, E2F6 has been shown to play a dual role as 
a transcriptional activator and repressor (Xu et al., 2007). 
Here, we show that expression of E2F6 in breast tumor 
tissues and breast cancer cell lines is higher than in normal 
cells, supporting the view that E2F6 can be overexpressed 
in breast carcinomas (Palacios et al., 2005). Nevertheless, 
many studies have frequently exhibited conflicting E2F 
expression patterns and prognostic impacts, even in the 
same carcinoma type (Lu et al., 2004; Reimer et al., 2006; 
De Meyer et al., 2009). Recently, Li et al. (2018) investigated 
the mRNA expression patterns of E2Fs in breast cancer 
using Oncomine and The Cancer Genome Atlas (TCGA) 
data and found that E2F6 expression had no difference 
between tumor and normal tissues. 

In the current research, the expression of E2F6 splice 
variants was investigated. To our knowledge, this study is 
the first to look for the mRNA level of E2F6 variants in 
breast cancer. Interestingly, the expression of the transcript 
variant E2F6-a was abundant in the breast tumor cDNAs, 
unlike variant E2F6-b, which was underexpressed in 
almost all of the samples relative to the normal tissue. 
However, the breast cancer cell lines showed different 
expression pattern with regard to variant E2F6-b, whose 
level was higher than normal in the studied cancer cell 
lines except for MDA-MB-231. This discrepancy in 
E2F6-b expression between the tumor samples and the 
cancer cell lines can be interpreted according to the notion 
that says it is unclear how well tumor subtypes truthfully 
represent counterparts of cell line subtypes at the genomic 
level (Kao et al., 2009). While primary tumors frequently 
display numerical abnormalities, metastatic breast 
cancer cell types commonly show structural changes and 
amplifications (Willman and Ra, 2006).   

High expression levels of E2F6 have previously 
been associated with ER-negative/P53-positive breast 
carcinomas (Palacios et al., 2005) and triple-negative 
breast cancer, in which the negative regulator miR-185 is 

downregulated (Tang et al., 2014). Therefore, this study set 
out to analyze the expression of E2F6 in breast tumor and 
breast cancer cell lines and further test its correlation with 
ER level. Our data show overexpression of E2F6 in both 
ER-positive and ER-negative breast tumors compared to 
normal breast tissue, although the expression in the ER-
positive samples was significantly higher than that in 
ER-negative. Concerning cancer cell lines, E2F6 was also 
found to be highly expressed in MCF-7 and T-47D cells 
(both are ER-positive) as well as MDA-MB-231 cells (ER-
negative).  

Examining protein levels from breast cancer cell lines, 
we found high levels of E2F6 protein, as predicted from the 
cDNA levels found in tumors. Thus, these cell lines can be 
used as a good model for the study of E2F6 dependence in 
breast cancer. It has been indicated that overexpression of 
a particular protein in a cancer can indicate a dependence 
on that protein for tumor cell viability (Li et al., 2014). 
Whether this high expression of E2F6 is important to the 
viability of breast cancer cells was further tested in the 
present study using three specific si-RNAs targeting E2F6 
at various regions. Gene knockdown revealed varying 
degrees of depletion in the normal and cancer cell lines. 
Si-E2F6#2 was the best in decreasing E2F6 in all the 
studied cancer cells. However, all si-RNAs successfully 
depleted E2F6 in MCF-10A cells. Then the cell viability 
following si-RNA treatment was determined using the 
commonly used MTT assay, which is a colorimetric assay 
for assessing cell metabolic activity and can also be applied 
to measure cytotoxicity (loss of viable cells) as the dead 
cells lose their metabolic activity. While survival of MCF-
7 cells was the most sensitive to knockdown of E2F6, 
T-47D cells, on the other hand, were the least influenced. 
Although these cell lines share mutual characteristics, i.e. 
both are luminal A (ER-positive, PgR-positive, and HER2-
negative) (Kao et al., 2009; Holliday and Speirs, 2011), a 
difference between the cell lines is that the tumor type 
of MCF-7 cells is metastatic adenocarcinoma, while that 
of T-47D is invasive ductal carcinoma (Kao et al., 2009). 
From another point of view, looking carefully at the 
protein levels following treatment with si-RNAs suggests 
that more E2F6 protein remained present in T-47D cells. 
We suggest that the reduced impact on viability, compared 
to MCF-7 and MDA-231 cells, is because E2F6 remained 
above a critical threshold in T-47D cells. The viability of 
MDA-MB-231 cells was reduced upon E2F6 depletion. It is 
known that MDA-MB-231 is triple-negative, and its tumor 
type is metastatic adenocarcinoma (Kao et al., 2009). 

In contrast, MCF-10A cells, which are not cancer cells, 
remained viable even though the E2F6 protein levels were 
reduced the most. Thus, different sensitivities to si-E2F6 
might be because E2F6 shows cell-type specificity and 
target-gene selectivity (Oberley et al., 2003). In agreement 
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with this, E2F6 possibly targets different gene promoters 
in each of the studied normal and cancer cell lines; this 
needs to be extensively investigated using chromatin 
immunoprecipitation for further confirmation of this idea, 
at least in breast cancer. Oberley et al. (2003) compared 
the occurrence of E2F6 in the promoter of its target gene 
(ART-27) between HEK293 and HeLa cells and found 
that the ART-27 gene promoter was enriched with E2F6 
in the first cell line, but not in the second one, in spite of 
the higher levels of E2F6 protein being expressed in HeLa 
than HEK293 cells (Ogawa et al., 2002). Similarly, Xu et al. 
(2007) demonstrated that E2F6 targeted different genes in 
various cell types. In the same study, MCF-10A cells were 
found to have a very low number of E2F6 target genes. 

Overall, the above data show that depletion of E2F6 
is deleterious in breast cancer cells with little effect in 
noncancerous breast cells, suggesting that E2F6 can 
become essential in highly proliferative tissue. These 
results are consistent with the evidence that overexpression 
of E2F family members correlates with metastasis and 
poor prognosis in breast cancer (Thangavelu et al., 2017). 
Likewise, many members of the E2F family with increased 
expression have been found to be significantly correlated 
with decreased overall survival in breast cancer patients 
(Li et al., 2018).

Recently, a mathematical model on how E2F6 functions 
to promote ovarian cancer stemness has been described. It 
has been shown that treatment of immortalized ovarian 
surface epithelial cells with estrogen upregulated E2F6, 
which, in turn, competitively inhibited the activity 
of microRNA-193a (which usually prevents cancer 
stemness), thereby stimulating ovarian cancer stemness 
and tumorigenesis (Cheng et al., 2019). However, another 
route through which E2F6 may work was suggested to 
be competing with E2F1-3, which promotes cell cycle 
progression and apoptosis (Muller et al., 2001). Cancer 
cells are known to have higher levels of replicative stress 
than nontumorous cells (Macheret and Halazonetis, 
2015). Recent work has demonstrated that E2F-dependent 
transcription also allows cells to tolerate such replication 
stress (Bertoli et al., 2016), reducing levels of DNA damage 
and stabilizing replication forks. In the present study, we 
considered it possible that E2F6 plays a role in responding 
to endogenous replication stress in breast cancer cells. 
Consequently, in response to replication stress, CHK1 
phosphorylates E2F6, preventing binding to E2F 
promoters and thus allowing transcription of hundreds 
of genes important for protecting the genome, including 
replication fork integrity factors (Xu et al., 2007; Bertoli 

et al., 2013). It is thus suggested to function as an essential 
negative feedback mechanism during replication stress. 

From FACS analysis we determined that MCF-7 cells 
treated with si-E2F6 accumulate a higher proportion 
of sub-G1 cells than the scrambled control. Treating the 
cells with HU caused a significant (more than 2-fold) 
further increase of the proportion of cells with sub-G1 
DNA content. Moreover, E2F6 depletion combined with 
HU-induced replication stress in MCF-7 cells caused 
a decrease in cell proportions in G1 and S-phase but no 
increase in G2/M cells. This suggests that MCF-7 cells 
devoid of E2F6 and under increased replication stress 
are dying during G1 or S-phase. Death in the S-phase 
seems more likely as this is where the HU-induced stress 
occurs. The current study proposes that in MCF-7 cells 
depleted of E2F6, replication forks may collapse, resulting 
in DNA damage and inducing cell death in the S-phase. 
In cancer cells, E2F6 overexpression might be favored as 
a bypass mechanism during replicative stress, facilitating 
increased proliferation. This idea is supported by our 
finding that HU-treated MCF-7 cells (expressing E2F6) 
do not accumulate in the S-phase, whereas MCF-10A 
cells do. Furthermore, we do not fully understand the 
oncogenic specific contribution to replication stress, and it 
is possible that cell line-specific differences may contribute 
to the response. Therefore, our data further highlight the 
importance of the E2F pathways in response to replication 
stress and the need for increased understanding of this 
pathway. 

Taken together, the above data suggest that in breast 
cancer cell lines, E2F6 activity during endogenous and 
induced replication stress helps the cells avoid apoptosis, 
supporting the idea that in vivo E2F6 is oncogenic. In 
conclusion, these findings raise the possibility that E2F6 
could be developed as a therapeutic target in cancers, 
where its expression is essential.
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Supplementary Figure 1. Example cell cycle profiles, generated by propidium iodide staining and FACS 
analysis, in breast cell lines: (A) MCF-7 and (B) MCF-10A following transfection with scrambled, si-
E2F6#1, or si-E2F6#2 si-RNA for 48 h with or without addition of 2 mM HU for the last 24 h.


