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Metabolism describes the life-sustaining chemical reactions in organisms that provide

both energy and building blocks for cellular survival and proliferation. Dysregulated

metabolism leads to many life-threatening diseases including obesity, diabetes, and

cancer. Mitochondria, subcellular organelles, contain the central energy-producing

metabolic pathway, the tricarboxylic acid (TCA) cycle. Also, mitochondria exist in a

dynamic network orchestrated by extracellular nutrient levels and intracellular energy

needs. Upon stimulation, mitochondria undergo consistent interchange through fusion

(small to big) and fission (big to small) processes. Mitochondrial fusion is primarily

controlled by three GTPases, mitofusin 1 (Mfn1), Mfn2, and optic atrophy 1 (Opa1), while

mitochondrial fission is primarily regulated by GTPase dynamin-related protein 1 (Drp1).

Dysregulated activity of these GTPases results in disrupted mitochondrial dynamics and

cellular metabolism. This review will update the metabolic roles of these GTPases in

obesity, diabetes, and cancer.
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INTRODUCTION

The word mitochondrion comes from the Greek words mitos (thread in English) and chondrion
(granule in English) (1). The field of mitochondrial dynamics has a history of over 100 years
(1–3). In 1914, Mrs. and Mr. Lewis published “Mitochondria in Tissue Culture” as a special
article in Science (2) and stated, “The mitochondria are almost never at rest, but are continually
changing their position and also their shape.” The full picture of mitochondrial dynamics
includes fusion, fission, transportation, and degradation, which have been covered in other
reviews (1, 4–6). Mitochondria exist widely in most eukaryotic organisms and have a double
membrane structure. The outer mitochondrial membrane contains large quantities of integral
membrane proteins called porins, which form channels allowing for small molecules to freely
diffuse from one side of the membrane to the other. In contrast, the inner mitochondrial
membrane is highly impermeable, even to small metabolites. Three mitochondrial membrane–
located GTPases regulate the mitochondrial fusion process, among which Mfn1 and Mfn2 control
outer mitochondrial membrane fusion (7), while Opa1 regulates inner mitochondrial membrane
fusion (8–10). In contrast, the cytosol-located GTPase Drp1 mediates the mitochondrial fission
process (11). Mutations of these GTPases are closely related to human disease, such as Charcot–
Marie–Tooth disease type 2A (12) and optic atrophy (13, 14). In this review, we primarily
focus on these small GTPases and their influences on metabolic alterations in obesity, diabetes,
and cancer.
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SMALL GTPASES CONTROL
MITOCHONDRIAL FUSION AND FISSION

Mfn1 and Mfn2, homologs of the drosophila protein fuzzy
onion (Fzo) (15), are the first reported mammalian GTPases
to mediate mitochondrial fusion (16, 17). Mice lacking Mfn1
or Mfn2 are embryonically lethal, which suggests their essential
role in embryonic development (7, 18). In mouse embryonic
fibroblasts (MEFs), Mfn1 or Mfn2 single-knockout results in
fragmented mitochondria (7), while Mfn1 and Mfn2 double-
knockout completely blocks mitochondrial fusion (18, 19).
Conversely, overexpression of either Mfn1 or Mfn2 can rescue
the mitochondrial fusion (7). These genetic studies show that
Mfn1 and Mfn2 have redundant and collaborative roles in
mitochondrial fusion.

Opa1 is named after a neurogenic disease optic atrophy.
Patients with mutant Opa1 have degenerated retinal ganglion
cells and atrophy of the optic nerve (13, 14). Opa1 is
the mammalian ortholog of Mgm1, which is essential for
mitochondrial fusion in yeast (20, 21). Opa1 is encoded by a
complicated set of at least eight mRNA splice forms, and each
long Opa1 forms (L-Opa1) peptides that can be further cleaved
into short forms (S-Opa1) by proteases Yeast Mitochondrial
Escape 1 Like 1 ATPase (YME1L1) and metalloendopeptidase
Oma1 (22, 23). YME1L1 and Oma1 double-knockout MEFs only
contain L-Opa1 (24). Importantly, YME1L1 and Oma1 establish
a near-balance of L-Opa1 and S-Opa1 under basal conditions,
and they regulate this balance in response to metabolic changes
or mitochondrial dysfunction (24–26). Moreover, the distinction
between L-Opa1 and S-Opa1 lies in their different locations
withinmitochondria, namely, L-Opa1 in the inner mitochondrial
membrane and S-Opa1 within the mitochondrial matrix.
Consistent with their respective locations, L-Opa1 promotes
mitochondrial inner membrane fusion, while S-Opa1 enhances
mitochondrial fission (27).

Drp1, a cytosolic protein, plays a crucial role in regulating
mitochondrial fission (4). A newborn girl with a dominant-
negative mutation in Drp1 had abnormal brain development
and several other diseases, which were associated with a severe
defect in the fission of both mitochondria and peroxisomes (28).
Drp1 knockout mice also exhibit abnormal brain development
and die around day 12 of embryonic development (29, 30). Upon
activation, Drp1 relocates to the outer mitochondrial membrane
and forms a ring structure to constrict mitochondrion.
This translocation of Drp1 is regulated by several outer
mitochondrial membrane proteins, including fission protein 1
(Fis1), mitochondrial fission factor (Mff), and mitochondrial
dynamics proteins of 49 and 51 kDa (MiD49 and MiD51)
(31, 32). In mammals, overexpression of Fis1 in mammalian cells
promotes mitochondrial fission, while inhibition of Fis1 results
in elongation (fusion) (33–35). Knockdown of Mff results in
mitochondrial elongation in mammalian cells (35) and reduces
the amount of Drp1 recruited to mitochondria (36). In 2011,
Palmer et al. reported that a double knockdown of MiD49
and MiD51 leads to mitochondrial elongation and reduces
recruitment of Drp1 to mitochondria (37). Subsequently, MiD49
and MiD51 proteins were found to promote mitochondrial

fission independent of both Fis1 and Mff (31, 38). Furthermore,
the activity of Drp1 could be controlled by its phosphorylation.
The cyclin-dependent Drp1 phosphorylation at serine 585
(S585) is essential to promote mitochondrial fission in
mitotic cells (39). The cyclic adenosine monophosphate
(cAMP)-dependent protein kinase (PKA)–dependent Drp1
phosphorylation at S656 inhibits mitochondrial fission, and
the calcineurin-dependent dephosphorylation of Drp1–S656
promotes mitochondrial fragmentation (40). Furthermore,
mitogen-activated protein kinase 1 (MAPK1, also known as
Erk2)–dependent Drp1 phosphorylation at S616 activates Drp1
and promotes mitochondrial fission (41, 42). In HeLa cells, Drp1
was found to be phosphorylated by protein kinase A (PKA) at
S637, and this phosphorylation attenuated the Drp1 GTPase
activity (43). Besides, calcineurin-dependent dephosphorylation
of Drp1 at the S637 site drives its translocation to mitochondria
and promotes mitochondrial fission (44). Genetical and chemical
inhibition of Drp1 both result in elongated mitochondria (45).

IMBALANCED MITOCHONDRIAL
METABOLISM RESULTS IN OBESITY AND
DIABETES

Given the essential role of mitochondria in energy metabolism,
mitochondrial dysfunction acts as a key regulator in the
pathophysiology of obesity and diabetes. Mutations in some
mitochondrial genes have been demonstrated to be the main
causes of these metabolic diseases, such as Charcot–Marie–
Tooth disease (Mfn2 mutation) and dominant optic atrophy
(Opa1 mutation) (4). Interestingly, imbalanced mitochondrial
metabolism induced by mitochondrial proteins (especially
mitofusins, Opa1, and Drp1) in various tissues has been
implicated in the pathology of metabolic diseases (Table 1).

In particular, type 2 diabetes (T2D) is related to the reduced
expression of Mfn2, which depresses oxidative phosphorylation
(OXPHOS) and impairs mitochondrial fusion in skeletal muscle
(46, 76). Also, liver and skeletal muscle deletion of Mfn2 in mice
both result in fragmentedmitochondrial networks and numerous
metabolic abnormalities, including glucose intolerance and
enhanced hepatic gluconeogenesis (47, 54). These confirm
the crucial regulatory role of Mfn2 in insulin signaling and
glucose homeostasis associated with obesity and T2D. Besides,
it was first reported that proopiomelanocortin (POMC)–specific
ablation of Mfn2 results in endoplasmic reticulum (ER) stress–
induced leptin resistance and decreased energy expenditure for
protection against obesity (49). Moreover, Mfn1 deficiency leads
to a highly fragmented mitochondrial network and enhanced
mitochondrial respiration capacity in the myocardium (53)
and liver (54) in diabetes. Interestingly, the liver from Mfn1
knockout mice demonstrates a preference for using lipids as
the main energy source and a more active complex I to
protect against insulin resistance (54). Also during the fast-to-
fed transition, mice lacking Mfn1 in POMC neurons exhibit
defective mitochondrial architecture and flexibility, which results
in defective insulin secretion and abnormal glucose homeostasis
by pancreatic β cells (56). Mfn2, but not Mfn1, deletion in brown
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TABLE 1 | The role of GTPases in obesity and diabetes.

GTPase Alterations in expression Tissue or cell Mitochondrial metabolism References

Mfn2 Reduced expression in obese subjects and

T2D patients

Skeletal muscle cells Reduce OXPHOS (46, 47)

Mfn2 knockout rat Skeletal muscle cells Reduce OXPHOS (48)

Mfn2 overexpression rat Skeletal muscle cells Enhance OXPHOS (48)

Mfn2 knockout mice POMC neurons Reduce OXPHOS (49)

Mfn2 knockout mice Liver Reduce OXPHOS and respiratory rate (50)

Mfn2 knockout mice Brown adipose tissue Reduce OXPHOS but enhance fatty acid

oxidation in female mice

(51, 52)

Mfn1 Reduced expression in diabetic patients Heart and myocardial Reduce OXPHOS in glucose utilization but

increase fatty acid utilization

(53)

Mfn1 knockout mice Liver Enhance lipid oxidation but not glucose

oxidation

(54)

Reduced expression in male mice Skeletal muscle cells Reduce OXPHOS (55)

Mfn1 knockout mice Brown adipose tissue No effect on energy expenditure (51)

Mfn1 knockout mice POMC neurons Reduce OCR and energy expenditure;

defective insulin secretion and abnormal

glucose homeostasis

(56)

Opa1 Opa1 knockdown cell Adipose tissue and

3T3-L1 adipocytes

Reduce lipolysis and glycerol release by

regulating phosphorylation of perilipin 1

(57)

Opa1 knockdown mice Skeletal muscle cells Reduce OXPHOS and destabilize the

respiratory chain supercomplexes

(58)

Opa1 knockdown mice Skeletal muscle cells Reduce OXPHOS (59)

Opa1 knockout mice Skeletal muscle cells Impair mitochondrial respiratory capacity and

disrupt lipid metabolism

(60)

Higher expression in ad libitum feeding dog Adipose tissue Enhance OXPHOS (61)

Opa1 knockout mice Pancreatic β cells Reduce OXPHOS, glucose-stimulated ATP

production, and insulin secretion

(62)

Opa1 knockdown cell Cardiomyocyte Reduce OXPHOS and intracellular ATP levels (63)

Drp1 Overexpression of Drp1 Skeletal muscle cells No deficiency in mitochondria bioenergetics (64)

Deletion of Drp1 Skeletal muscle cells Enhance oxidative metabolism and uncoupling

of OXPHOS

(65)

Decrease in Drp1 S616 phosphorylation in

obese subjects after exercise or in mice

Skeletal muscle cells Reduce ATP production but increase fat

oxidation and insulin sensitivity

(66)

Drp1 knockdown genetically or

pharmacological inactivation by mdivi-1

Human and mouse

pancreatic β cells

Not directly impair glucose-stimulated

OXPHOS, but instead limit mitochondrial ATP

synthesis by compromising substrate delivery

upstream of mitochondria

(67)

Drp1 pharmacological inactivation by mdivi-1 Diabetes-susceptible

cybrid cells

Enhance OXPHOS and insulin-mediated

glucose uptake

(68)

3T3-L1 adipocytes Not affect ROS production, lipid accumulation,

or lipid metabolism

(68)

Drp1 knockout mice Pancreatic β cells Normal OCR, but significantly reduce

second-phase insulin secretion and

glucose-stimulated amplification of insulin

secretion

(69)

Drp1 knockout mice Skeletal muscle cells Enhance insulin signaling and systemic insulin

sensitivity

(65, 66, 70)

Skeletal muscle cells Reduce activities of complexes I and III (71)

Liver Enhance energy expenditure (72)

POMC neurons, dorsal

vagal complex

Increase ROS content, leptin sensitivity, and

glucose responsiveness

(73, 74)

Overexpression of Drp1 Diabetes-susceptible

cybrid cells

Increase mitochondrial ROS; reduce IRS1–AKT

pathway and GLUT translocation

(75)

OXPHOS, oxidative phosphorylation; Mfn1 and 2, mitofusin 1 and 2; Opa1, optic atrophy 1; L-Opa1, long Opa1; S-Opa1, short Opa1; Drp1, dynamin-related protein 1; POMC,

proopiomelanocortin; ROS, reactive oxygen species; OCR, oxygen consumption rate; GLUT, glucose transporter; T2D, type 2 diabetes; mdivi-1, mitochondrial division inhibitor 1; ATP,

adenosine triphosphate; IRS, insulin receptor substrate 1; AKT, serine/threonine-specific protein kinase.
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adipose tissue (BAT) remodels the mitochondrial dysfunction,
leading to an increase in insulin sensitivity and resistance
to obesity (51, 52, 77). These observations have implicated
a crucial role of mitofusins in the control of mitochondrial
energy metabolism and insulin resistance. However, further
studies should determine the distinct regulatory mechanisms of
Mfn1 and Mfn2 targeting mitochondrial metabolism in diabetes
and obesity.

The expanding evidence also displays the involvement of
Opa1 in obesity and diabetes. With regard to adiposity, Opa1
has been reported to be involved in regulating lipolysis by
anchoring a pool of PKA that phosphorylates perilipin and
thereby triggers lipolysis in vitro (57) and in vivo (61). Further
studies show the translocation of Opa1 from mitochondria
to lipid droplets during human adipocyte differentiation (78).
Proteases YME1L1 and Oma1 can cleave L-Opa1 into S-Opa1
(79). The deficiency of Oma1 perturbs the mitochondrial fusion–
fission equilibrium, thereby reducing OXPHOS, enhancing
fatty acid oxidation and decreasing energy expenditure, all of
which collaboratively induce obesity in mice (79). Moreover,
Opa1 deletion in pancreatic β cells impairs glucose-stimulated
adenosine triphosphate (ATP) production and insulin secretion,
which subsequently develops into hyperglycemia (62). Also,
insulin increases Opa1 levels and promotes mitochondrial
fusion in cardiomyocytes, which enhances OXPHOS, whereas
Opa1 deletion suppresses the insulin-stimulated ATP synthesis
(63). A recent study reported that sedentary but not active
humans display an age-related decline in Opa1, which is
associated with muscle loss (58). Acute muscle-specific deletion
of Opa1 induces muscle inflammation, ER stress, and secretion
of fibroblast growth factor 21 (FGF21) (58–60). Apart from
these, a recent study addressed the physiological relevance
of the concomitant impairment of mitochondrial fusion and
fission machinery (80). These confirm the close relationship
between Opa1 and mitochondrial insulin-stimulated energy
metabolism, which provides a basis for its regulatory role in
obesity and diabetes. Therefore, it is urgent to elucidate how
Opa1 processing regulates mitochondrial metabolism in obesity
and diabetes.

The mitochondrial fission machinery protein Drp1 is also
involved in obesity and T2D through its effect on the
rate of mitochondrial oxidative metabolism. Drp1-mediated
mitochondrial fission results in mitochondrial fragmentation
along with decreased ATP content, which further leads to
reduced insulin-mediated glucose uptake in human skeletal
muscle (66) and significant loss of glucose-stimulated insulin
secretion in mouse pancreatic β cells (69). Also in pancreatic
β cells, Drp1 deletion largely impairs glucose-stimulated insulin
secretion without affecting oxygen consumption and intracellular
calcium mobilization (69). On the contrary, Drp1 regulates
insulin secretion via glucose-fueled respiration, and pyruvate
completely rescues the impaired insulin secretion of fission-
deficient β cells (67). These data appear inconsistent, and
the regulatory machinery of Drp1 affecting insulin secretion
requires further clarification. When used to treat mice,
mitochondrial division inhibitor 1 (mdivi-1), a Drp1 inhibitor,
rescues tubular mitochondrial network and membrane potential,

decreases oxidative stress, and increases insulin-mediated glucose
uptake in diabetes-susceptible cybrid cells (68). However, the
inhibition of Drp1 by mdivi-1 has no effect on reactive
oxygen species (ROS) production, lipid accumulation, or the
expression of adipogenic-related proteins in differentiated 3T3-
L1 adipocytes (75). In contrast, overexpression of Drp1 decreases
mitochondrial network formation and increases mitochondrial
ROS, subsequently suppressing the insulin receptor substrate 1
(IRS1) – serine/threonine-specific protein kinase (AKT) pathway
and glucose transporter (GLUT) translocation stimulated by
insulin (68). Also, the depressed phosphorylation of Drp1
at S616 in skeletal muscle is negatively correlated with
enhancement in fat oxidation and insulin sensitivity (66),
which is further supported by the observation that Drp1
deletion induced aberrant mitochondrial fission, improving
insulin signaling and systemic insulin sensitivity in skeletal
muscle of obese mice (70). Moreover, Drp1 deficiency reduces
fat mass, induces ER stress, and promotes energy expenditure
through increasing the expression of FGF21 in the liver, which
helps mice fed with a high-fat diet to be protected against
obesity (72). Mice lacking Drp1 in skeletal muscle develop
a lethal mitochondrial myopathy, and this muscle-specific
Drp1 deletion impairs mitochondrial function, including the
reduced activities of complexes I and III (71). In contrast,
Drp1 overexpression in skeletal muscle displayed a drastic
impairment in postnatal muscle growth, with reorganization
of the mitochondrial network and reduction of mitochondrial
DNA (mtDNA) quantity, without the deficiency ofmitochondrial
bioenergetics (64). Muscle-specific Drp1 heterozygote mice
have impaired muscle endurance and running performance
(65). The impaired mitochondrial remodeling induced by
Drp1 in skeletal muscle is also associated with derangements
in metabolism and insulin sensitivity (65, 66). Additionally,
inducible deletion of Drp1 in POMC neurons (73) and the
dorsal vagal complex (DVC) (74) increases ROS content,
leptin sensitivity, and glucose responsiveness. Thus, Drp1-
mediated mitochondrial fission may underlie the pathogenesis
of insulin resistance in obesity and T2D. However, further
studies are required to explore potential mechanisms for
therapeutic interventions.

MITOCHONDRIAL FUSION AND FISSION
SHAPE CANCER METABOLISM

Most studies of the cancer-related mitochondrial dynamics focus
on their functions in apoptosis, which have been well-reviewed
(1, 6). Therefore, here we focus on energy metabolism in cancer,
another important function of mitochondria (Table 2). Cancer
metabolism also has a history of about 100 years. In 1925, Dr.
Otto Warburg first described that cancer cells tend to favor
metabolism via aerobic glycolysis rather than the much more
efficient OXPHOS pathway, which is widely known as the
“Warburg effect” (93–96). Although Dr. Warburg hypothesized
that dysfunctional mitochondria were the source of anaerobic
glycolysis, more recent studies found that cancer cells often have
intact mitochondrial metabolism (97, 98).
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TABLE 2 | The role of GTPases in cancer metabolism.

GTPase Approach Cancer type Mitochondrial

metabolism

References

Mfn2 Knockdown Lung Induce sucrose

metabolism

(81)

Knockdown Ovarian Reduce OCR (82)

Knockdown Breast Reduce OCR (83)

Knockdown Melanoma Reduce OCR (84)

Knockdown Pancreatic Enhance

mitochondrial

metabolism

(85)

Knockout Liver Reduce OXPHOS;

enhance lipid

metabolism

(86)

Mfn1/2 Knockdown iPSCs Reduce ATP

content

(87)

17β-estradiol Breast Increase ATP

content

(88)

Opa1 Overexpression MAFs Enhance ATP

synthase

oligomerization

(89)

IF1 mutation Cervical Reduce OCR (90)

Drp1 S637A mutation Liver Reduce OCR (91)

Knockdown Brian Reduce OCR (92)

Knockdown Melanoma Increase OCR (42)

Knockdown Kidney Reduce maximal

OCR

(41)

Knockdown Melanoma Maintain OCR (84)

mdivi-1 Melanoma Maintain OCR (84)

mdivi-1 Breast Increase OCR (83)

iPSCs, induced pluripotent stem cells; MAFs, mouse adult fibroblasts, IF1, inhibitory

factor 1.

Mitochondrial morphology undergoes a dynamic balance
between fusion and fission in response to the altered extracellular
nutrient level (5). Meanwhile, cancer metabolism is also known
for its flexibility to the surrounding nutrient composition
(99), and cancer cells acquire different metabolic programs
corresponding to their development stages. Rapid proliferating
cancer cells have a high glycolytic activity and fatty acid
synthesis rate, which provide the building blocks for cell
growth (100). Metastatic cancer cells have high oxidative
metabolism, which maintains the energy need for mobility
(101, 102). In general, oxidative metabolism is less active in
the fragmented mitochondria when compared to the tubular
mitochondria. Limited mitochondrial oxidation preserves
glycolytic intermediates, which can be used as the building blocks
for cancer cell proliferation. The highly activated glycolysis has
been linked to mitochondrial fission in many types of cancer,
including lung cancer (103), metastatic breast cancer (104),
ovarian cancer (105), colorectal cancer (106, 107), pancreatic
cancers (41), and melanoma (42). In the meantime, active
oxidative metabolism has also been connected to mitochondrial
fusion in some metastatic cancer models, including pancreatic
cancer (108).

Mfn1/2 shows altered expression in human tumors (109,
110). Lower Mfn2 expression is observed in breast cancer (111),
lung cancer (103), urinary bladder cancers (112), hepatocellular
carcinoma (113), colorectal cancer (106), and gastric cancer
(114), compared to the normal tissue. In line with the lower
Mfn2 expression in cancer, several studies demonstrate that
Mfn2 overexpression inhibits cancer cell proliferation and colony
formation and weakens the invasion and migratory ability (106,
114–116). It is worth noting that the higher expression of
Mfn2 has also been reported in lung adenocarcinoma tissues
as compared to adjacent normal tissues, and Mfn2 knockdown
results in impaired cancer cell proliferation (81). In ovarian
cancer (82), breast cancer (83), and melanoma (84), Mfn2
knockdown suppresses oxygen consumption rate (OCR). In
pancreatic cancer cells (PANC-1), Mfn2 knockdown enhances
mitochondria-dependent energy metabolism by promoting
activity of electron transport chain complexes (85). Besides,
Mfn2 knockdown induces mitochondrial biogenesis and elevates
OXPHOS in Ras-transformed mice fibroblasts (117). A recent
study reported that liver-specific ablation of Mfn2 in mice
provoked inflammation, triglyceride accumulation, fibrosis, and
liver cancer (86). As both knockdown and overexpression of
Mfn2 impair cancer cell survival in certain cancer types, further
studies need to further explore the different roles of Mfn2 in
various tumor types.

Opa1 and its proteolytic processing are important to
maintain mitochondrial fusion. Studies have displayed a
significant decrease in the expression of Opa1 along with
high mitochondrial fragmentation in hepatocellular carcinoma
(118). Tumor suppressor p53 is involved in Oma1-mediated L-
Opa1 processing and mitochondrial fragmentation in ovarian
and cervical cancer cells (119), the role of which is further
supported by the close relationship between S-Opa1 and the
p53 signaling pathway (120). Interestingly, in mouse adult
fibroblasts (MAFs), Opa1 interacts with mitochondrial F1F0-
ATP synthase, favors ATP synthase oligomerization, and finally,
protects mitochondria from respiratory chain inhibition by
modulating crista shape (89). Subsequent studies have discovered
that the ATPase inhibitory factor 1 (IF1), a mitochondrial
protein, prevents apoptotic remodeling of mitochondria by
inhibiting Oma1 activation and Opa1 processing in HeLa cells,
which further decreases OCR and intracellular ATP synthesis
(90). Furthermore, Oma1 is dependent on the IF1 protective
activity against apoptotic processing of Opa1 in HeLa cells
(90). These observations display an essential role of ATP
synthase in Opa1 processing to ensure normal mitochondrial
bioenergetics. Since Opa1 processing complicates its function
in maintenance of mitochondrial metabolism, future studies are
required to focus more on the distinct regulatory machinery of
Opa1 and its processing involved in mitochondrial metabolism
within various cancer cells. This will provide insights into
anti-tumor pharmaceutical therapy targeting Opa1-regulating
mitochondrial metabolism.

Drp1 expression and activity have been associated with
mitochondria fragmentation, which facilitates glycolysis in
cancer cells. High Drp1 expression has been detected in
lung cancer (103), breast cancer (104), thyroid cancer (121),
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glioblastoma (92), and hepatocellular carcinoma (91). In 2015,
two back-to-back studies demonstrated the essential role of Drp1
activation in MAPK-driven tumor growth (41, 42). Moreover,
Drp1 can be activated and phosphorylated by extracellular
signal-regulated kinase (ERK1/2) on S616, which is required
for Ras-induced transformation in MEFs (42). This S616
phosphorylation and mitochondrial fragmentation is enhanced
in human pancreatic cancer (41) and brain tumor initiating cells
(BTICs) (92). Similarly, the inhibition of Erk signaling promotes
mitochondrial fusion and increases mitochondrial metabolism
but reduces the Drp1 activity in A375, SK-MEL-28, and BT-
474 cells (42). On the contrary, the reduced expression of Drp1
exerts different effects on oxidative metabolism in different cells.
For instance, Drp1 knockdown increases OCR and promotes
ATP production in Ras-transformed MEFs and the SK-MEL-
28 cells (42). However, Drp1 knockdown decreases the maximal
OCR in the HRas-transformed HEK-TtH cells (41) and in the
T387 BTICs (92), which further prevents cell growth and tumor
formation. A recent study shows that in lung cancer cells, sirtuin
4 (SIRT4, an nicotinamide-adenine dinucleotide+ (NAD+)-
dependent protein deacetylase) inhibits Drp1 phosphorylation at
the S616 site and weakens Drp1 recruitment to the mitochondrial
membrane via an interaction with Fis1 (122). Besides, Drp1 can
also be phosphorylated on S637, which subsequently represses
its activity and mitochondrial translocation. Particularly, S637-
mediated mitochondrial elongation under energy stress is
essential for hepatocellular carcinoma cell survival both in vitro
and in vivo (91). Interestingly, lung cancer cell lines have higher
S616 and lower S637 phosphorylation, when compared to human
bronchial epithelial cell (hBEC) (103).

mdivi-1 is widely used as a Drp1 inhibitor (30, 123).
In 2008, Dr. Nunnari’s group first utilized mdivi-1 to study
mitochondrial dynamics (45), and most of the studies have
followed this application of mdivi-1 to examine the metabolic
role of Drp1. mdivi-1 treatments result in both increased and
decreased OCR, depending on different cell types. In most
conditions, mdivi-1 treatment induces mitochondrial fusion
and increases mitochondrial activity, which further enhances
OCR (124). In MDA-MB-231 cells and H1299 cells, mdivi-1
treatment significantly depresses OCR, without changing the
cellular ATP level (125). Interestingly, a study shows that mdivi-
1 represses OCR to a similar degree in both wild-type and Drp1
knockout MEF cells (126). This Drp1-independent role of mdivi-
1 is further supported by the finding that mdivi-1 works as
mitochondrial complex I inhibitor, to induce ROS and repress
OCR (126). In the highly oxidative estrogen receptor–positive
breast cancer cells, mdivi-1 reduces cellular mitochondrial
bioenergetics and increases glycolysis without any influence on
mitochondrial morphology (127). Overall, mdivi-1 has potential
therapeutic avenues in suppressing tumor progression. Further
studies are required to explore its effects on the oxidative
metabolic alterations in cancer.

SUMMARY

Dysregulated metabolism is a common feature of the metabolic
diseases, including obesity, diabetes, and cancer, which can

FIGURE 1 | Dysregulated mitochondrial dynamics and metabolism in obesity,

diabetes, and cancer.

be regulated by mitochondrial dynamics (Figure 1). Obese
and diabetic patients have pathology in multiple tissues, such
as fat, muscle, liver, kidney, and pancreas. Cancer patients
also have tumors from different origins, and all cancer types
undergo different stages. Moreover, the specific mitochondrial
dynamics under these pathology conditions are in response
to different metabolic states, and thus, it is important to
discuss the mitochondrial dynamics and metabolism in
a context-dependent manner. For example, mild nutrient
deprivation induces mitochondrial fusion and increases energy-
producing efficiency to compensate the energy demand for
growth, while severe nutrient deprivation drives mitochondrial
fission and promotes cell apoptosis to preserve energy for
neighbor cells. As demonstrated here, the GTPases (Mfn1,
Mfn2, Opa1, and Drp1) have strong regulatory effects in
balancing mitochondrial fusion and fission, and these GTPases
control the aforementioned metabolic diseases predominantly
through orchestrating oxidative metabolism. It is essential to
explore how the GTPases orchestrate metabolic alterations
under certain nutrient environments. Since mitochondrial
morphology undergoes a dynamic process balanced by
the above GTPases, knockdown and knockout of these
result in abnormal chronical inhibition and can potentially
cause indirect metabolic effects. Therefore, it is important
to develop new chemical inhibitors to acutely block the
function of these GTPases. Oxygen consumption is only a small
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fraction in metabolism, and more direct metabolomics and
metabolic flux analyses will provide a clearer picture of the
mitochondrial dynamics and metabolism in obesity, diabetes,
and cancer.
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