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Abstract

A major goal of systems neuroscience is to decipher the structure-function relationship in
neural networks. Here we study network functionality in light of the common-neighbor-rule
(CNR) in which a pair of neurons is more likely to be connected the more common neigh-
bors it shares. Focusing on the fully-mapped neural network of C. elegans worms, we estab-
lish that the CNR is an emerging property in this connectome. Moreover, sets of common
neighbors form homogenous structures that appear in defined layers of the network. Simu-
lations of signal propagation reveal their potential functional roles: signal amplification and
short-term memory at the sensory/inter-neuron layer, and synchronized activity at the moto-
neuron layer supporting coordinated movement. A coarse-grained view of the neural net-
work based on homogenous connected sets alone reveals a simple modular network
architecture that is intuitive to understand. These findings provide a novel framework for
analyzing larger, more complex, connectomes once these become available.

Author Summary

How can we understand the function of gigantic complex networks (e.g. the brain) based
on connectivity data alone? We use the available full connectome of a nematode and apply
new approaches to find that the neural network is made of structurally homogeneous neu-
ral circuits. These sets of neurons also appear in defined regions of the network where they
may provide valuable functional roles such as signal integration and synchronization.
Moreover, if we redraw the network considering these homogeneous sets alone, we reveal
a simplified network layout that is intuitive to understand. As connectome data of higher
brain systems are soon to be released our novel approaches can be immediately applied to
studying these complex systems.
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Introduction

Systems neuroscience is reaching the stage where large connectomes are being mapped and
ambitious collaborative projects are established to decipher the fundamental questions relating
structure and function [1-4]. To name few are the current attempts to construct a large-scale
computer simulation of the human brain [5-7], the development of various methods for
obtaining whole-brain functional dynamics and connectivity maps [8,9], and others [10-12].
These massive efforts will yield gigantic networks composed of millions of inter-connected
neurons. This poses a genuine challenge: how to analyze these perplexing connectomes such
that functional principles can be extracted based on connectivity data alone.

Various approaches and theories had been developed to understand the structure—function
relationship in neural networks [13-18]. Analyses of network properties, such as clustering
coefficient and characteristic path length, revealed that neural networks are organized in a
small-world topology, where the path length between any pair of nodes is relatively short
[13,14]. In addition, neural networks, like many other biological networks, show a power law
degree distribution in which the majority of the neurons are connected to relatively few part-
ners, while a small fraction of the neurons are connected to exceptionally high number of other
neurons [14]. A different approach to analyzing networks was to focus on the recurring build-
ing blocks embedded in networks [19-23]. These studies revealed that defined small building
blocks, termed network motifs, are significantly overrepresented in biological networks, includ-
ing the neural network of the round worm C. elegans [19,22-27]. Focusing on these small
motifs allowed deciphering their potential functional roles in the network [20-23,25,28-30]. In
addition, linear systems analyses have been used to predict functional sub-circuits purely based
on network topology [26,31,32].

Recently, an intriguing observation was made in the rat somatosensory cortex. Using multi-
ple electrode recordings, Perin and colleagues [33] showed that the wiring in layer 5 pyramidal
cells obeys the common neighbor rule (CNR). According to this rule, the more common neigh-
bors a pair of neurons shares, the more likely for this pair to be connected (A neuron X is con-
sidered a neighbor of neuron Y if X shares a chemical synapse or a gap junction with Y. A
neuron is considered a common neighbor to a pair of neurons X,Y if it is connected directly to
both X and Y, either via a chemical synapse or a gap junction). A similar principle was also
observed in the rat visual cortex as simultaneous electrophysiological recordings from adjacent
layer 2/3 pyramidal cells showed that connected pairs of neurons are more likely to share a
common input [34,35]. Conversely, unconnected pairs share very little common inputs. Such
an organization is thought to generate relatively independent subnetworks that are embedded
within the larger-scale network architecture [33-36].

Here we aimed to elucidate whether the CNR is indeed an organizing principle in neural
networks, and if so, to elucidate the functional roles that common neighbor sets of neurons
may confer the network. To carry such analyses on the network-wide level, we focused on the
sole fully-mapped neural network that is currently available-the C. elegans neural network.
The connectome of C. elegans hermaphrodites consists of 302 neurons for which a complete
wiring diagram is available, including number of synapses, spatial anatomical position, and the
nature of these connections (chemical synapses or electrical gap junctions) [26,37-39]. Impor-
tantly, these data provide the unique opportunity for studying such structure-function relation-
ships at the network-wide level, rather than focusing on specific cell types of selected brain
areas only.

We show that the CNR is indeed an emerging property in the neural network of C. elegans.
Moreover, sets of common neighbors form homogenous structures that appear in defined lay-
ers of the network confer valuable functional roles. Focusing on these sub-circuits reveals a
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simple functional architecture of the network that is intuitive to understand, and establishes a
novel framework for studying functionality in, yet to come, bigger and more complex neural
networks.

Results

The Common Neighbor Rule is an emerging feature in the neural
network of C. elegans

We begin by asking whether the CNR is found in the C. elegans neural network. To address
this, we analyzed the available connectome of hermaphroditic C. elegans worms [26,37]. We
find that the CNR is a striking feature in the C. elegans neural network where the fraction of
connected pairs of neurons increase the more common neurons this pair of neurons shares
(Fig 1A and 1B). In fact, this relationship grows linearly (R* = 0.96) similarly to the relationship
observed in the rat cortex [33].

The CNR observed in the C. elegans neural network could have arisen solely due to the
degree distribution of the network. For example, the C. elegans neural network shows charac-
teristics of a small-world network with a heavy tail degree distribution that follows a power law
[14,26,38]. The CNR could have arisen merely because such networks contain hub neurons
that connect many others. To test this, we generated random networks based on the known
network topology but randomly shuffled the edges while preserving the in- and out- degree of
each node constant [19] (S1 Text). While such random networks show CNR properties, the
emergence of the rule in the genuine C. elegans neural network is significantly more prominent
(p<107'°, z-test; Fig 1B). Finally, we analyzed whether random networks with no degree distri-
bution constraints also obey the CNR. For this, we generated Erdés-Rényi random networks
(S1 Text) and found that the CNR does not emerge in such networks (p< 1079, z-test; Fig 1B).

In neural networks, neurons are linked via physical connections in the form of chemical
synapses or gap junctions. In particular, adjacent neurons are more likely to be connected than
distant neurons since such a wiring strategy minimizes wiring costs [40-43]. Indeed, our analy-
ses show a higher tendency to form connections between adjacent neurons (S1 Fig). Such dis-
tance-dependent connectivity may lead to local clusters in which neurons are more likely to be
connected and share multiple common neighbors. To test if the CNR could have emerged
solely due to this local clustering, we analyzed the number of common neighbors to a pair of
neurons as a function of their inter-somatic distance. We find no correlation between these
two parameters (Fig 1C, r = -0.13, p = 1; One tailed student's t-test for Pearson correlation coef-
ficient), thus excluding the possibility that physical proximity between neurons underlies the
emergence of the CNR. In fact, we find that geometrically distant neurons can equally share
multiple neighbors and that this feature depends on their degree (Fig 1C, notice the two peaks
at short and long inter-somatic distances are due to the major head and tail hub neurons).

Together, these results demonstrate that the CNR is significantly overrepresented in the
genuine neural network of C. elegans. Moreover, this rule cannot be explained by the networks’
degree distribution or by the spatial position of the neurons. This suggests that the CNR could
evolve in the neural network probably as it confers functional roles.

Sets of common neighbors are homogenous

We next studied the structure of individual sets of common neighbors, where a set is a pair of
neurons, X and Y, together with their common neighbors Z;, Z,,. . .Z,,. A set can be connected
or unconnected depending on the existence of a synapse between X and Y. Each set can be
decomposed into # triads, such that each triad contains X, Y, and a single Z (#n being the

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005021 September 8, 2016 3/16



COMPUTATIONAL

©PLOS

Connectomes with Homogenous Circuits and Defined Functional Roles

012 3 456 7 809+
Number of common neighbors to a pair

a - T b 60} e C. elegans .
@ 2 e Shuffled
s ® Erdos—Renyi
c 40
3
£
Q
5 20
. o

C

N
®© o)
€ o 23 g =
¥ : z
S 2 : 6 S
HC_) 9 ° L
o O H (@]
0 Qo R X 4 -
o . . "2, , Q
E 9 .: L] LJ [ ) :.. [ ) *9 .“.a.-“?.:.: -Q
=) I Ak A A e X - 2 €
Z < Sismsmeesients So3 T3S, Sudes enS oo S0t etesr esniells” | =)
Siattesanesen’ 3 sendlel Sedetted og 3° 30 g Se¥iieedtst le prd

O 9000000000 0009 ¢ ¢ :‘.‘. * .n. .' .‘..-“-.....: P—

2 0.4 0.6 0.8

Normalized distance between a pair
Fig 1. The common neighbor rule is an emerging property in the C. elegans neural network. (a) A set of
common neighbors. According to the common neighbor rule, the more common neighbors (Z’s) a pair of nodes (X,
Y) shares, the more likely for the pair to be connected (dashed, red). (b) The common neighbor rule is significantly
more prominent in the C. elegans neural network (red) than in various random networks. Blue: random networks
generated with the same degree distribution as the C. elegans neural network; Black: Erd6s—Rényi random
networks. Each random network has been fitted to a linear function, and the slopes were compared to the C.
elegans slope (blue: R% = 0.96, p<107'%; black: R? = 0.94, p<107'°; z-test). Error bars indicate standard deviation of
1,000 random networks. (c) The number of connected common neighbors to a pair is not biased by the physical
distance between the pair of neurons (r=-0.13, p = 1; One tailed student's t-test for Pearson correlation coefficient).
Note the log scale of the color bar indicating that a large fraction of the connected pairs have zero common
neighbors. The two peaks at short and long inter-somatic distances are due to the major head and tail hub neurons.

doi:10.1371/journal.pcbi.1005021.g001

number of Z's; Fig 2A; S2A Fig). Theoretically, each set of common neighbors can be made of a
mixture of the different triad types (for example, any of the triads 1-15 shown in Fig 2A for
connected sets), resulting in a heterogeneous set structure. In such heterogeneous sets, the
prospect to assign the entire set with a concrete functional role becomes virtually impossible
since each triad type potentially carries distinct functional tasks. Surprisingly, however, we
observed that most of the sets are not heterogeneous as randomly expected (examples of typical
sets are shown in Fig 2B and S2 Table). To understand the tendency of a pair to become con-
nected the more common neighbors it shares (the CNR) we continued by focusing on con-
nected sets only (data concerning unconnected sets is shown in S2 Fig). Importantly, we
focused on sets containing at least five common neighbors to minimize false positive homoge-
nous sets formed by chance due to the small number of common neighbors.
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Fig 2. The C. elegans connectome is enriched with connected homogeneous common neighbor sets. (a) All possible connected triads when
preserving the identity of connected X and Y pair of neurons and their mutual neighbors (Z’s). In triads 1-9, X and Y are connected uni-directionally, and in
triads 10-15 X and Y are connected bi-directionally. (b) An example of a homogenous set of common neighbors where PHAL and PHAR are the X and Y
neurons connected bi-directionally. Both PHAL and PHAR connect to multiple downstream neurons forming mainly type 10 triads. (c) The neural network of
C. elegans is significantly enriched with homogenous sets when comparing to sets generated randomly by shuffling the existing sets (Hyper-geometric test p-
value threshold is set to 0.05; p<10~2° for connected sets with five or more common neighbors). (d) Results of the same analysis shown in panel (c), but here
the connected sets are grouped according to their specific type (according to panel (a)). The positive (left) y-axis represents the number of homogeneous
sets in shuffled (grey) and real (red) sets. The negative (right, blue) y-axis depicts the significance of the difference between the shuffled and the real sets (z-
test; after Bonferroni correction).

doi:10.1371/journal.pcbi.1005021.g002

To provide a quantitative measure for sets’ homogeneity we performed a statistical hyper-
geometric test that takes into account the relative abundance of the triad type in all sets (S1
Text). Moreover, to extract the most significant homogeneous sets of common neighbors we
introduced a second criterion on top of that defined by the hyper-geometric test: only sets of
which at least half of their triads are of the same type are considered homogeneous. When fil-
tering using these two very strict criteria, we find 231 (out of the 1,150 in total, ~20%) signifi-
cantly homogeneous connected sets (hyper-geometric test p-value threshold is set to 0.05; S1
Text). The significance of sets’ homogeneity is further underscored when performing the same
statistical analyses on randomly shuffled sets (p<10~>° when comparing C. elegans homogene-
ity to the homogeneity calculated for randomly shuffled sets, Fig 2C, S1 Text). Strikingly, these
homogeneous connected common neighbor sets make a significant portion of the neural net-
work comprising ~70% of the total synapses of the network. Of note, the vast majority of the
homogeneous sets are not due to the bilateral symmetry of the neural network (we consider
bilateral symmetric neurons only pairs of neurons of the form XXXR, XXXL; S3 Fig).

We next asked whether these homogenous connected sets of common neighbors are pre-
dominantly made of specific triad types. We find that only specific triad types are significantly
overrepresented in homogenous sets (Fig 2D). In particular, sets homogenous with triads #10,
#1,#2, #11, #14 and #13 make the top list among all sets that appear in the network
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significantly more than randomly expected, (triad #10 being the most significant and the others
follow in descending order; p<10"° for all; z-test after Bonferroni correction).

Interestingly, sets #1, #2 and #5 are made of triads forming a feed-forward loop (FFL), a
known network motif in the C. elegans neural network [19,22,23,25]. Moreover, a topological
generalization of the FFL circuit shows that these FFLs are embedded in larger clusters of multi
FFLs [24]. These generalized FFLs resemble the homogenous connected sets of common neigh-
bors that we observe in the network. One of the generalized FFL overrepresented in the C. ele-
gans neural network is the multi-input FFL which corresponds to the homogenous common
neighbor set made up primarily of triad #5. Indeed, and in agreement with Kashtan et al [24],
our analyses show that this homogenous set is significantly overrepresented in the network
(p<0.0001; z-test; after Bonferroni correction; Fig 2D). In addition, we find that the other FFLs
are significantly overrepresented: multi-output and multi-inter FFLs which correspond to sets
homogenous with triads #1 and #2, respectively (p<10~'; z-test; after Bonferroni correction;
Fig 2D).

FFLs as well as their generalized multi-FFL forms had been previously studied emphasizing
their potential functional roles in information processing in biological networks
[19,24,29,30,44-46]. We find new homogenous set structures that appear significantly more
than randomly expected and which had not been hitherto described in the context of neural
networks. Among those, sets of type #10 and #13 are the most enriched with homogeneous sets
(both in terms of the total number of sets, and in the difference from the shuffled sets; Fig 2D).
The interesting feature in these two sets is the bidirectional connection between X and Y neu-
rons. In triad #10, the X and Y neurons synapse one another and both are presynaptic to their
mutual Z neurons, a structure termed mutually regulating (X and Y mutually regulate the Z
neurons). In contrast, in triad #13, the bi-directionally connected X and Y neurons are post-
synaptic to their mutual Z neurons, a structure termed mutually regulated (X and Y are mutu-
ally regulated by the Z neurons; Fig 2A).

Connected homogeneous sets of common neighbors are confined to
specific layers of the neural network

We proceeded by analyzing whether these sets appear in defined areas of the network. The
rationale is that a circuit location can often hint of its potential functional role. For this, we
defined four functional layers in the network and assigned each neuron to one of these layers
based on its known function: sensory, inter, pre-motor, and motor neuron layers (for a com-
plete list of neurons and their corresponding layers see S1 Table). Specifically, for each homo-
geneous connected common neighbor set, we analyzed whether the X and Y neurons are
located on the same layer or on different layers of the network (Fig 3A and 3B). Interestingly,
we found that X and Y neurons tend in general to reside on different layers, with the exception
of the homogenous sets consisted of triads #10 and #13, the mutually regulating and mutually
regulated sets, respectively (Fig 3B). In these two sets, the X and Y neurons are predominantly
confined to the same layer. Moreover, in the mutually regulating sets (set type #10) both X and
Y appear significantly more in the sensory layer than would be randomly expected (p = 0.009,
hypergeometric test; after Bonferroni correction; Fig 3C and S4 Fig). In the mutually regulated
sets (set type #13), X and Y appear almost exclusively in the motor neuron layer (p<107"°,
hypergeometric test; after Bonferroni correction; Fig 3C and S4 Fig). Analysis of the type of the
bidirectional synapse between X and Y reveals that in mutually regulating sets the bidirectional
connection is enriched with chemical synapses, while in mutually regulated sets the bidirec-
tional connection is made primarily of gap junctions (Fig 3D). Similarly, set #15, a fully bidirec-
tional connected set (Fig 2A), that is significantly enriched with pre-motor and motor neurons
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Fig 3. Connected sets of common neighbors are confined to specific layers of the neural network. (a) A common partitioning of the C.
elegans neural network into layers. Black arrow indicates a neural connection between layers. A red arrow indicates a connection within the same
layer. (b) For each connected homogeneous set type, the histogram shows how many times the pair of neurons {X,Y} are located either in the
same layer or on different layers. (c) The significance (P-values of a hypergeometric test) of set type enrichment across the different layers. Note
that only few (X-Y layers & set type) combinations crossed the significance threshold (p<0.005, hyper-geometric test, after Bonferroni correction).
Layer notations: Sensory (S); Inter (I); Pre-Motor (PM); Motor (M). (d) Distribution of chemical synapses and gap junctions across all homogeneous
sets of common neighbors in which X and Y have bidirectional connections (sets #10-15).

doi:10.1371/journal.pcbi.1005021.9003

(Fig 3C), is also made primarily of gap junctions (Fig 3D). To emphasize the enrichment of gap
junctions in sets #13 and #15 we analyzed the network considering chemical synapses only. In
such a network these sets are no longer overrepresented (p>0.05, S5 Fig). Overrepresented
generalized FFLs, on the other hand, such as homogenous sets #1 and #2, show a different pat-
tern of layer distribution where X and Y are distributed across all layers of the network (Fig 3B
and 3C).

Taken together, we find homogenous sets of neurons, consisted of specific types of synapses,
to appear in defined areas of the network. These observations may hint to possible functional
roles of these sets in the neural network.

Examples of homogenous sets and their potential functional roles in the
neural network

To assign a functional role to such sets, we continue with the most significant homogeneous
connected sets (Hypergeometric p-value threshold is set to 10~°, S2 Table). Here we provide
two intriguing examples where linking the type of a homogenous set together with its network
position and synaptic connections can disclose its potential functional roles in the network:

(1) Homogenous mutually regulating sets (sets of type #10). In this type of sets, X and Y
form a bidirectional connection (mostly involving chemical synapses) and both regulate multi-
ple downstream neurons (Figs 2A, 2B and 3 and S6 Fig). Moreover, X and Y pair of neurons

PLOS Computational Biology | DOI:10.1371/journal.pcbi. 1005021
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are enriched within the sensory neuron layer (Fig 3C). Of the most homogenous set of this
type is the pair of sensory neurons PHAL-PHAR (S2 Table). A circuit with mutually synapsing
sensory neurons, both regulating mutual downstream neurons, may have an important role in
robust signal detection. In a case where the bidirectional feedback is positive, this circuit may
amplify weak signals, integrate them over time, and thus serve as a short-term memory device.
We simulated dynamics in such a circuit and indeed find that the existence of the bidirectional
chemical synapse provides all the above functions (S7 Fig and S1 Text). Similarly, a circuit with
a negative feedback may serve as a switch-like device ensuring that the downstream common
neurons will respond to either X or Y, but not to both. The switch-like function can be particu-
larly beneficial if X and Y carry opposite synaptic signs to Z (e.g., X activating and Y inhibiting
the downstream Z neurons) [44].

(2) Homogenous mutually regulated sets (sets of type #13). In this type of sets, X and Y
form a bidirectional connection almost exclusively via gap junctions, and both are regulated by
multiple mutual upstream neurons (Figs 2A, 3 and S6 Fig). Sets in which X and Y represent
two inhibitory motor neurons are the most homogeneous among the type #13 mutually regu-
lating sets (e.g., VD and DD motor neurons are electrically coupled sharing many mutual
upstream neurons; S2 Table). This electrical coupling between motor neurons is found to be
replicated along the body of the worm contributing to its sinusoidal motion [47,48]. As gap
junctions have the characteristics of a low-pass filter preferentially transmitting sub-threshold
potentials, they can contribute to synchronous activity of large neuronal ensembles [49,50].
Such synchronous activity is particularly relevant in the motoneuron layer where timely and
balanced activity dynamics underlies the smooth coordinated undulation of the worm. Indeed,
dynamics simulations of a simplified homogenous set of mutually regulated neurons demon-
strates that a gap junction between X and Y neurons facilitates a more coordinated activity
when compared to a circuitry in which the electrical coupling is absent (S8 Fig and S1 Text).

Discussion

In this study we analyzed the connectome of the hermaphrodite C. elegans nematode and
established that the CNR is an emerging property in this neural network. Strikingly, we find
that specific sets of common neighbors are largely anatomically homogenous. Moreover, these
sets are located in defined layers of the network indicating their potential functional roles in
the neural network.

In fact, a coarse-grained view [51] of the neural network using the most abundant and the
significantly overrepresented common neighbor sets reveals a simple network organization
that is intuitive to understand (Fig 4). Specialized homogeneous sets appear in defined areas of
the neural network, serving as functional building blocks that carry different processing tasks.
For example, mutually regulating homogeneous sets support signal integration and amplifica-
tion at the sensory/inter-neuron layers, while mutually regulated homogeneous sets synchro-
nize multiple inputs from the common upstream neurons to support coordinated activity of
the motor system (Fig 4A). Other sets, predominantly made of generalized forms of FFLs, are
found throughout the network across different layers (Fig 4B). For example, set #1 is signifi-
cantly overrepresented as a homogenous set in the network (S2 Table). In this set X and Y
form a unidirectional chemical synapse, Y being mostly in the sensory layer, while X is either
on the sensory- or inter- neuron layer (Figs 2A, 3 and S6 Fig). Of the most homogenous sets of
this type is the pair of neurons AVHR-ADLR; ADLR being a sensory neuron and AVHR an
interneuron (S1 and S2 Tables). The unidirectional chemical synapse from the AVHR inter-
neuron to the upstream sensory neuron ADLR is an interesting feature that may provide a top-
down feedback signal to modulate activity in a context dependent manner [52-56].
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Fig 4. A coarse-grain reconstruction of the network based on homogenous sets of common neighbors reveals a simple
network architecture that is intuitive to understand. (a) The mutually regulating and mutually regulated sets, triads #10 and #13,
respectively, are found in defined layers: the mutually regulating sets (#10), enriched in the sensory layer, enable signal amplification
and retention (short-term memory). The mutually regulated sets (#13), found almost exclusively at the motoneuron layer, support
coordinated motoneuron activity that underlies the fine-orchestrated undulations. (b) Typical examples of additional significantly
enriched homogeneous common neighbor sets. In these homogenous sets X and Y pair of neurons are mainly found on different layers
of the network. Such sets can be particularly beneficial in mediating signal flow across layers. For example, sets #1 and #2 illustrate the
typical Feed-forward Loop, a motif known for its potential functional roles in signal detection, filtering and more.

doi:10.1371/journal.pcbi.1005021.9004

The coarse grain view suggests that the network can be partitioned and better understood
based on these homogenous common neighbor sets. Such a partition contributes to a modular
view of the network, and Indeed, biological networks are thought to evolve modular structures
[16,33,36,38,45,57-61]. This modularity confers neural networks with robust learning capabili-
ties [62], and rapid dynamic adjustments to constantly changing environments [24,45].

Our analyses revealed specific sets of common neighbors that are significantly overrepre-
sented in the network: the mutually regulating and the mutually regulated sets. While these
structures were previously studied in the context of developmental transcription programs
[27,44,63], their significant emergence in neural networks was overlooked. This is possibly due
to the different approach by which we analyzed the C. elegans neural network: (a) We consid-
ered the full wiring diagram currently available as opposed to previous analyses that considered
neural connections with five synapses or more only; (b) The network we analyzed included gap
junctions while previous analyses considered the network formed by chemical synapses only
[24].

While providing unprecedented full connectome data, there are several limitations to the C.
elegans wiring diagram. For example, it lacks important information regarding the directional-
ity of gap junctions. In the absence of such data we considered all gap junctions as bidirec-
tional, an obvious oversimplification of the genuine architecture. Similarly, the type and the
nature of the chemical synapses are also largely unknown (for example, are the synapses excit-
atory or inhibitory; are they axo-dendritic, axo-axonic, dendro-dendritic, or dendro-axonic).
In addition, the wiring diagram of the hermaphrodite C. elegans worm is reconstructed based
on few animals only. In the lack of a greater number of reconstructed animals, one cannot be
certain how wiring varies from animal to animal. Current efforts focus on reanalyzing the orig-
inal EM data (WormWiring.org) [37], and to providing a map of the neurotransmitters
expressed in each neuron [64]. These efforts will refine the connectome, so it will be interesting
to apply our approaches once such data become available. Despite these obvious limitations,
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our comprehensive network approach focusing on the most significant homogenous sets,
allows extracting meaningful circuits and assign them with potential functional roles.

Interestingly, social networks show similar connectivity patterns. In these networks, people
interact and make connections preferentially with individuals that share similar backgrounds
and interests (known as homophily [65]), and often add new friends if there is a common
acquaintance (known as triadic closure [66]). Simulating social networks evolution with similar
constrains yield networks characterized by the CNR [67]. In that respect, Facebook is a classic
example for such a social network. We analyzed the available Facebook friendship connectivity
and established that, indeed, the CNR is an emerging property in the Facebook social network:
that is, the more common friends shared by two individuals, the more likely for these individu-
als to be friends as well (S9 Fig).

While the emergence of the CNR in social networks might be intuitive to understand, the
benefit of such a design in neural networks is not trivially apparent. In the rat cortex the
observed CNR is thought to be an organizing principle that clusters neurons into elementary
building blocks of cortical computations and memory [33,36]. Our study provides several
novel insights to this phenomenon: we established that the CNR is indeed an emerging orga-
nizing principle in the C. elegans neural network, and that sets of common neighbor neurons
can be viewed as building blocks found in defined layers of the network exerting valuable func-
tional roles (e.g., signal amplification, synchronization, and robust information processing).
These novel findings may explain the emergence of the CNR in mammalian neural networks
as well. For example, signal amplification and robust information processing are essential for
efficient cortical computations. Thus, it will be fascinating to study these cortical building
blocks in light of the observed CNR once such connectomes become available.

Importantly, we did not consider cell types a priori when analyzing the network to establish
the CNR and the homogenous sets. Only subsequent analyses revealed the interesting principle
of how information may flow through homogenous sets and across layers. In addition, homog-
enous sets are not found only between cells of different types, but many are between cells of the
same type (For example set #10 appears more at the sensory neurons layer, while set #13 almost
exclusively found at the motor neurons layer). Thus, applying these approaches to any new
connectome may reveal hidden layers in what initially may seem as a homogenous layout
made of the same types of neurons.

Finally, once connectome data of higher brain systems become available, the generality of
our findings regarding network topology can be tested. Importantly, our approach can be
used to extract the specific types of homogenous sets enriched in any connectome data, pro-
viding a novel platform to studying structure-function relationships in complex biological
networks.

Methods

A detailed description of all the methods used in this study can be found in the S1 Text file.

Briefly, statistical analyses and network randomizations were performed similarly to previ-
ous reports[19]. The connectome data (based on Varshney et al[26]) as well as the spatial posi-
tion of the neurons along the anterior-posterior body axis[26,37] were obtained from: http://
www.wormatlas.org/neuronalwiring html.

For triad analyses, we generated an index of all possible types of connectivity between three
neurons, preserving the identity of a neuron as either X, Y or Z (21 possible triads in total, Fig
2A, S2A Fig). To analyze homogeneous sets, we considered all connected pairs with five or
more common neighbors (referred as sets of common neighbors), and performed a hypergeo-
metric test (HGT) to retrieve the probability that a triad j appears k(i,j) times or more in the set
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i by chance; k(i,j) being the total number of triad of type j in set number i. A detailed descrip-
tion for triad analyses as well as the procedure to generate shuffled sets is found S1 Text.

We obtained the list of all neurons together with their description from: http://www.
wormatlas.org/neurons/Individual%20Neurons/Neuronframeset.html. We assigned neurons
to specific layers (sensory/inter/pre-motor/motor) based on their known function and anat-
omy (see S1 Table). To show that a particular set is enriched within a specific layer, we per-
formed a HGT.

To simulate circuit dynamics we considered Michaelis-Menten type equations as C. elegans
neurons typically show graded responses. The differential equations used in the simulations
are detailed in S1 Text.

Code availability

All code files generated in this study are available on github: http://AzulEye.github.io/
HomogeneousSetsFinder.

The files include the code for generating all the figures in the manuscript as well as the ran-
dom networks. In addition, we provide a generic pipeline that extracts homogeneous sets from
any network using its adjacency matrix as an input. This is to be used with any future available
connectomes or other biological networks such as transcriptional networks.

Supporting Information

S1 Text. A detailed description of all the methods used in this study.
(DOCX)

S1 Fig. Distance dependent connection probability. Closely positioned pairs of neurons are
more likely to be connected (r = -0.54, p<10~% One tailed student's t-test for Pearson correla-
tion coefficient). Note the log scale of the color bar indicating that the vast majority of the con-
nected pairs are relatively close in terms of inter-somatic distance. However, this tendency
cannot explain the common neighbor rule as shown in Fig 1C.

(TTF)

S2 Fig. The C. elegans connectome is enriched with unconnected homogeneous sets of com-
mon neighbors. (a) All possible unconnected triads when preserving the identity of connected
X and Y pair of neurons (blue circles) and their mutual neighbors (black squares) (b) An exam-
ple of an unconnected homogenous set of common neighbors. (¢) The neural network of C. ele-
gans is significantly enriched with homogenous sets when comparing to sets generated
randomly by shuffling the existing sets (p<10~’, for unconnected sets with five or more com-
mon neighbors).

(TIF)

S3 Fig. The formation of homogeneous common neighbor sets is not due to the bilateral
symmetry of the neural network. In fact, among all X and Y pairs of neurons only a small frac-
tion is actually bilateral (an example of a bilateral symmetric homogenous set is shown in Fig
2B). The ratio between symmetric vs asymmetric pairs among all homogeneous sets is 0.036,
while the ratio between symmetric vs asymmetric pairs in all sets is 0.025. These similar ratios
suggest that bilateral symmetry neurons are not enriched in homogenous sets, hence, forma-
tion of homogeneous common neighbor sets cannot be attributed solely to the bilateral sym-
metry of the neural network. Of note, we considered pairs of neurons as bilateral symmetric
only if their names are in the form of XXXR, XXXL.

(TTF)
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S4 Fig. Number of homogenous sets across all set types depending on the layer in which X
and Y reside. Shown is the complete data set that was used to generate Fig 3C. For each box in
this matrix we performed a hypergeometric test (HGT) and the results of these tests are pre-
sented in Fig 3C.

(TIF)

S5 Fig. The same analysis as performed in Fig 2D but when considering chemical synapses
only and discarding electrical gap junctions. This analysis shows that 4/6 of the sets with
mutual connections between X and Y are now not overrepresented (p>>0.05). This is consistent
with our analysis as shown in Fig 3D where the significance of homogeneous sets with mutual
connections between X and Y is mostly due to gap junctions. This is particularly true for set
#13 which is made primarily of gap junctions (that is between X and Y neurons). Conversely,
set #10 is enriched with chemical synapses as evident from Fig 3D. These chemical connections
are still overrepresented (p = 0.0495), although to a lesser extent than in the full network, since
these sets contain gap junctions as well (Fig 3D). It is for this reason that we simulated set #13
with electrical junctions while set #10 was simulated with chemical synapses.

(TTF)

S6 Fig. Layer position of the X,Y pair of neurons relative to their common neighbor Z neu-
rons across the different set types.
(TTF)

$7 Fig. Mutually regulating sets can amplify brief weak signals and serve as short-term
memory devices. (a) Top—a simplified diagram of a connected mutually regulating set. Bot-
tom—Simulations of circuit dynamics (X, Y, Z, and Z,) following a brief external stimulus S,.
Grey Arrow represents a chemical synapse; Black arrow denotes a bidirectional chemical syn-
apse. The positive feedback between X and Y amplifies a brief stimulus (S,) sensed by X only,
facilitating the cross of a threshold (dotted horizontal line). In addition, the positive feedback
supports a longer retention of the signal in the system acting as a short-term memory device.
(b) Top—a simplified diagram of an unconnected mutually regulating set. Bottom—Simula-
tions of circuit dynamics (X, Y, Z; and Z,) following a brief external stimulus S, using the exact
same parameters used in (a). In the absence of the positive feedback, the downstream Z, and
Z, neurons do not cross the same activation threshold, and their activity period is much
shorter. In both, (a) and (b), we used the same parameters: @ = f = K =1 (see S1 Text).

(TIF)

S8 Fig. Mutually regulated sets support coordinated activity in face of variability and noise.
(a) Top—a simplified circuit of a connected mutually regulated set. X and Y share a gap junc-
tion (green line) and receive chemical synapses from Z; and Z, (grey arrows). Bottom—simula-
tions of the circuit dynamics: In spite of unsynchronized activation of the upstream Z neurons,
X and Y are activated more evenly when sharing a gap junction. (b) Top—a simplified circuit
of an unconnected mutually regulated set. Bottom—simulations of the circuit dynamics. Note
the much larger differences in the amplitude of X and Y neuron in the absence of a gap junc-
tion (when compared to (a)). To impose variability and possible noise we used: f(Z; — X) =2
xB(Z; — Y); K(Z; — X) =10 x K(Z; — Y). That is, Z; activates X stronger than it activates Y
by a factor of two, and with a ten-fold higher likelihood affinity. In addition, Z, and Z, are
unsynchronized with respect to their activation time (see S1 Text).

(TIF)

S9 Fig. The common neighbor rule is a property of social networks. The data is based on the
Stanford Large Network Dataset Collection and can be downloaded from: http://snap.stanford.
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edu/data/egonets-Facebook.html. This network is an anonymized Facebook ego-network of a
single user with all his/her friends together with all the connections among these friends. We
compiled a network of 348 users that we analyzed in the same way as we analyzed the C. elegans
neural network (Fig 1B). We found that the CNR is a significant property of social networks as
well (linear fit, R* = 0.95).

(TIF)

S1 Table. A list of all neurons together with their assigned layer in the network (Sensory,
Inter, Pre-Motor, Motor). Data compiled based on: http://www.wormatlas.org/neurons/
Individual%20Neurons/Neuronframeset.html

(PDF)

S2 Table. A list of the most significant homogeneous common neighbor sets (Hypergeo-
metric test p-value threshold is set to 107°). The first row is the neuron name, and the second
is the triad type of a given Z neuron.

(PDF)
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