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Flagellins are the main structural proteins of bacterial flagella and potent stimulators of innate and adap-
tive immunity in mammals. The flagellins of Salmonella are virulence factors and protective antigens, and
form the basis of promising vaccines. Despite broad interest in flagellins as antigens and adjuvants in vac-
cine formulations, there have been few advances towards the development of scalable and economical
purification methods for these proteins. We report here a simple and robust strategy to purify flagellin
monomers from the supernatants of liquid growth culture. Phase 1 flagellins from Salmonella enterica
serovars Typhimurium (i epitope) and Enteritidis (g,m epitopes) were purified directly from conditioned
fermentation growth media using sequential cation- and anion-exchange chromatography coupled with
a final tangential flow-filtration step. Conventional porous chromatography resin was markedly less
efficient than membrane chromatography for flagellin purification. Recovery after each process step
was robust, with endotoxin, nucleic acid and residual host–cell protein effectively removed. The final
yield was 200–300 mg/L fermentation culture supernatant, with �45–50% overall recovery. A final pH
2 treatment step was instituted to ensure uniformity of flagellin in the monomeric form. Flagellins
purified by this method were recognized by monoclonal anti-flagellin antibodies and maintained
capacity to activate Toll-like Receptor 5. The process described is simple, readily scalable, uses standard
bioprocess methods, and requires only a few steps to obtain highly purified material.

� 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Introduction the cytoplasm through the narrow channel of the basal body,
The flagella of proteobacteria are large multi-protein structures
extending from the cell surface that rotate helically to impart
motility. The central filament portion, constituting the bulk of
the flagellar structure, is a homogeneous multimer of the flagellin
protein present at up to 30,000 subunits per flagellum. The folded
Salmonella flagellin protein assumes an ‘‘L’’ shaped structure, com-
prised of 4 unique domains (designated D0–D3). The �250 amino
acids comprising the N- and C-termini form D0 and D1, and have
been documented as mostly invariant among Gram-negative and
Gram-positive bacteria, including spirochetes that express flagella
within the periplasmic compartment [1]. The central polypeptide
portion comprises the D2 and D3 regions which are variable in
amino acid sequence and length, and bear the epitopes that impart
serotype specificity. Flagellins are transported extracellularly from
whereupon they aggregate into helical flagella filaments under
the direction of the FliD flagellar capping protein, with D0 and
D1 forming the core and D2 and D3 the outer flagellar surface
[2]. The integral residues for flagellar packing are contained within
D0 and D1, where interactions between contact residues on adja-
cent monomers stabilize the flagellar structure [2,3].

Flagella are virulence factors and protective antigens for several
bacterial pathogens [4–11]. Antibodies against flagellin have been
shown to mediate protection in animal models against infections
caused by several important bacterial pathogens (e.g., Salmonella,
Pseudomonas, Burkholderia), and have been found to arrest motility
and increase opsonophagocytic uptake in vitro [12,13]. The flagellin
proteins of b and c proteobacteria contain conserved motifs within
D0 and D1 that are recognized by the mammalian innate immune
Toll-like Receptor 5 (TLR5)1 [14]. Signaling through TLR5 causes
lmonella;
anufac-
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production of cytokines and chemokines that direct inflammation
and promote the induction of adaptive immunity. Accordingly,
exposure to flagellin, either by natural infection or immunization,
results in high levels of serum anti-flagellin antibodies and robust
CD4+ T-cell responses [4,15,16]. The powerful immunostimulatory
properties of flagellin have further improved immune responses
towards co-administered protein antigens after admixture, covalent
linkage, or incorporation into non-covalent complexes [17–19]. We
and others have also documented that flagellins are effective carrier
proteins that enhance immune responses to chemically linked
bacterial polysaccharides [5,20–22].

The unique protein epitopes present within Salmonella flagellins
are characteristic and conserved for individual serovars, and pro-
vide the basis in part for serotyping in the Kauffman–White
scheme [23]. In sub-Saharan Africa, invasive infections in children
with non-typhoidal Salmonella (NTS) serovars Enteritidis and
Typhimurium are common, and associated with high fatality rates
[24]. Based on the notion that antibodies against Salmonella O poly-
saccharides and flagellin proteins are independently protective, we
have developed a promising candidate conjugate vaccine com-
prised of lipopolysaccharide-derived core and O polysaccharide
coupled to the phase 1 flagellin protein from the same serovar
[5,25]. Given the cost-constraints for vaccines for the developing
world, a method by which flagellin could be obtained economically
is a key requirement for transition of flagellin-based conjugates
towards broad use in human vaccines. We previously reported
the engineering of Salmonella enterica serovar Enteritidis and
Typhimurium strains that are greatly attenuated and constitutively
secrete high levels of flagellin as monomers. These ‘‘reagent
strains’’ are safer to manipulate from an occupational health stand-
point and can serve as robust expression systems from which to
purify large amounts of flagellin [26].

Despite the broad interest in flagellins as components of immu-
noprophylactic strategies, relatively few advances have been made
towards the development of purification methods. The original fla-
gellin purification method, that remains widely employed in the
published literature, is based on mechanical shearing of flagella
from the bacterial surface coupled with differential low- and
high-speed centrifugation to remove cell debris and pellet flagella,
respectively [7,14,27]. An improvement to this method exploits the
differential pH 2 stability of flagellin monomers and flagella multi-
mers, whereby exposure to low pH causes cell-associated flagella
to disaggregate into monomer subunits that are soluble and stable
at pH 2. Deflagellated cells are subsequently removed by low-
speed centrifugation and the supernatant flagellins are then pre-
cipitated with ammonium sulfate [28]. Neither of these methods
is optimal, however. Cell-associated flagella frequently shear under
the agitation conditions required for aeration in liquid culture,
hence conditions that maximize flagella recovery are associated
with poor bacterial growth. Furthermore, neither method employs
selective nucleic acid or endotoxin removal, or protein fraction-
ation. An ion-exchange method has been reported, whereby flagel-
lin in the boiled supernatants of liquid growth culture are
concentrated with 30 kDa centrifugal filters and passed through
cation-exchange resins by negative chromatography. The flow-
through fraction is then subjected to anion exchange resin chroma-
tography and endotoxin removal using polymyxin B [29,30]. Yields
were not reported for this method. Negative chromatography in
early bioprocess steps necessitates greater binding capacity how-
ever due to higher contaminant levels; furthermore, the use of
polymyxin B is generally associated with reduced product yields
[31]. Boiling of protein preparations also introduces the possibility
for product breakdown.

Herein, we report a simple, efficient and scalable method
for purification of flagellins, applied to the phase 1 flagellins of
S. Enteritidis (g,m epitopes) and S. Typhimurium (i epitope).
Flagellins were purified with high yield and purity from liquid
growth culture supernatants that overcomes the limitations and
caveats of the aforementioned conventionally used methods.
Materials and methods

Strains and growth media

Salmonella Enteritidis CVD 1943 is a derivative of Malian inva-
sive strain R11 and is deleted in the following genes: guaBA, clpP
and fliD. S. Typhimurium CVD1925, a derivative of the wild-type
invasive Malian strain I77, has been described, and has deletions
in guaBA, clpP, fliD and the gene for phase 2 flagellin, fljB [26]. Both
strains were grown in chemically defined media [32]. For growth in
shake flasks, media was formulated with 13.3 g/L potassium phos-
phate monobasic, 4 g/L ammonium phosphate dibasic, 6.8 g/L citric
acid monohydrate, 1.5% glycerol, 1 ml/L polypropylene glycol,
0.004% guanine, 0.005 M magnesium sulfate, 0.0001 M ferric cit-
rate, and 1 ml/L each of trace vitamin (5 g/L thiamine hydrochlo-
ride, 10 g/L nicotinic acid, 10 g/L calcium pantothenate, 10 g/L
pyridoxine hydrochloride, 10 g/L Vitamin B12) and trace element
(2.5 g/L cobalt chloride, 15 g/L manganese chloride, 1.5 g/L copper
chloride, 3 g/L boric acid, 2.5 g/L sodium molybdate, 2.5 g/L zinc
acetate dihydrate, 1 ml/L sulfuric acid) solutions. For growth in fer-
menters, the same media formulation was used but with higher
amounts of guanine (0.025%). All media were adjusted to pH 7
prior to inoculation with bacteria.

Analytical tests

Endotoxin levels were assessed by Endosafe PTS� chromogenic
Limulus amebocyte lysate assay (Charles River, MA). Nucleic acid
levels were measured using the quanti-iT Picogreen DS DNA assay
kit (Life Technologies, Carlsbad) per the manufacturer’s instruc-
tions, with the supplied standards and a fluorometer (Molecular
Devices, CA). Proteins were monitored for size by SDS–PAGE with
4–20% Tris–Tricine gels and stained with Coomassie blue
(Thermo-Pierce, MA), or transferred to nitrocellulose membranes
and probed with a 1:10,000 dilution of monoclonal antibody
15D8 (Bioveris, MD) that broadly recognizes flagellins. Protein size
was monitored by HPLC-SEC using a BioSep SEC 4000 (Phenome-
nex, CA) column and measurement of absorbance at 280 nm and
215 nm on a BioAlliance 2796 with a 2414 dual wavelength UV
detector (Waters, MA). Protein concentrations were determined
by bicinchoninic acid assay (BCA) (Thermo-Pierce, MA) using the
manufacturer’s instructions, and flagellin standards obtained as
described [5]. In order to account for interference by the culture
media in the BCA assay, determination of phase 1 flagellin protein
(FliC) levels in growth culture supernatants was accomplished by
densitometry analysis of Coomassie stained SDS–PAGE separated
samples relative to FliC standards.

ELISA

Analyses were conducted by coating purified FliC from CVD
1943 at 5 lg/ml in 96-well plates (Greiner) in 0.05 M sodium car-
bonate (pH 9.6), for 3 h at 37 �C and blocking overnight with 10%
dried milk in PBS. Following each incubation, the plates were
washed with PBS containing 0.05% Tween 20 (PBST) (Sigma, MA).
FliC coated wells were incubated with various concentrations of
a panel of monoclonal antibodies that were produced from mice
immunized with S. Enteritidis FliC and selected by positive or neg-
ative ELISA reactivity with phase 1 flagellins from S. Enteritidis,
S. Typhimurium, S. Paratyphi A, S. Paratyphi B and S. Typhi
(Antibody and Immunoassay Consultants LLC, Rockville, MD).
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Monoclonal antibodies CB7IH2 and AE9IB4 are broadly reactive by
ELISA with all of the above flagellins; monoclonal antibodies
CA6IE2 and JB11IG4 recognize only S. Enteritidis FliC. Unique epi-
tope specificity for each antibody was independently confirmed
by sandwich ELISA, using various combinations for capture and
detection. For all analyses, antibodies were diluted in PBST contain-
ing 10% milk. Bound antibody was detected by incubation with goat-
anti-mouse IgG conjugated to peroxidase (KPL), and detected with
3,30,5,50-Tetramethylbenzidine (TMB) used as the substrate (KPL).
Fermentation growth and harvest

Flasks were inoculated with glycerol stocks directly, and grown
for 12 h at 37 �C with shaking at 250 rpm. The 12 h culture was used
to directly inoculate the fermentation culture to an initial OD
600 nm of 0.15. Fermentation was accomplished by growth for
6–7 h at 37 �C and maintenance of pH 7, with 30% dissolved oxygen
and agitation in cascade mode, 15 LPM air-flow in a 20 L Biostat
Fermentor (Braun, Germany). The fermentation culture was clari-
fied by continuous centrifugation followed by 1 lm (Ultra Capsule
GF)–0.2 lm (Ultra Capsule HC) depth filtration. Supernatants were
held at 4 �C between processing steps.
Ion-exchange membrane chromatography

All membrane chromatography steps were conducted at
�25 �C, with flow rates of 0.5 membrane volumes (MV) per min-
ute, and capacities of P0.05 grams FliC per milliliter MV, using
AKTA chromatography systems (GE Life Sciences, NJ) that were
monitored and controlled with the Unicorn software package.
Cation exchange chromatography
Flagellin was bound and washed directly from fermentation

supernatants using two 500 70 ml Sartobind S cation-exchange
membranes linked in series (Sartorius, Bohemia, NY). Fermentation
supernatants were first diluted �4-fold and brought to 50 mM ace-
tic acid pH 3.4 with conductivity of 4.7 mS/cm. The adjusted super-
natant was loaded onto the membranes in 50 mM acetic acid pH 3.
Membranes were then washed with 18 MV of 50 mM acetic acid
pH3, then 15 MV of 50 mM acetic acid/1.5 M NaCl/5 mM EDTA/
0.1% Tween 20 pH 3, then 16 MV of 50 mM acetic acid pH 3. FliC
was eluted by raising the pH with 20 mM Tris pH 8.
Anion-exchange chromatography
The eluate from cation-exchange membrane chromatography

was further purified using two 500 70 ml Sartobind Q anion-
exchange membranes linked in series (Sartorius, Bohemia, NY).
Membranes were pre-equilibrated with 20 mM Tris pH 8. Cation-
exchange eluates were brought to 1.5 mS/cm pH 8.2 with 20 mM
Tris and 5 M NaOH prior to loading on a Q membrane in 20 mM
Tris pH 8. Membranes were then washed with 18 MV of 20 mM Tris
pH 8, and proteins were eluted with 15 MV of 20 mM Tris/150 mM
NaCl pH 8. Protein containing fractions were confirmed by SDS–
PAGE Coomassie and pooled for further purification steps.
Fig. 1. Fermentation growth and accumulation of flagellin in culture supernatants
of Salmonella Enteritidis reagent strain CVD 1943. Kinetics of growth and FliC
accumulation in CVD 1943 fermentation culture were monitored by optical density
at 600 nm (A) and SDS–PAGE with Coomassie staining (B).
Tangential Flow Filtration (TFF)

Pooled flagellin containing elution fractions from anion-
exchange membrane chromatography were concentrated to
�10 mg/ml and diafiltered against 10 diavolumes of 150 mM NaCl
(saline) solution with 30 kDa Pellicon flat sheet TFF membranes
(Millipore, MA) using approximately 0.2 m2 membrane area per
liter of starting material, and an equilibrated transmembrane
pressure of �1 PSI.
Monomerization to FliC subunits

Concentrated flagellin protein in saline was brought to 0.1%
Tween 20 and the pH was lowered to 2 with 5 M HCl with stirring
at �25 �C. After 30 min, the solution was brought to 10 mM
phosphate buffer (PBS) pH 7 with 5 M NaOH, and sterile filtered
at 0.2 lm (Millipore, MA).

Flagellin stimulation of epithelial cells

Monolayers of HEK293-jB-Luc cells seeded at 1.7 � 104 cells/
well in 96-well plates for NF-jB activation analyses were treated
in duplicate for 4 h with media or purified flagellin proteins.
Extracts were prepared, and luciferase activity was assessed by
the Firefly Luciferase Assay system (Promega, WI) according to
the manufacturer’s instructions using a Lmax II plate luminometer
(Molecular Devices, CA).
Results and discussion

Accumulation of FliC in fermentation culture supernatants

Bacteria were grown in chemically defined minimal growth
media to reduce the contaminant background from exogenous bio-
logical components, where culture densities of 16–18 OD 600 nm
were reliably obtained. Maximal levels of accumulated flagellin
in CVD 1943 fermentation growth supernatants, indicated by the
�52 kDa band in SDS–PAGE analysis, accompanied the increase
in cell division during logarithmic growth and peaked in late loga-
rithmic phase (Fig. 1). Remarkably, flagellin was the overwhelming
major protein in culture supernatants when assessed by SDS–
PAGE. Comparable growth characteristics and flagellin secretion
patterns were observed for S. Typhimurium CVD 1925 (not shown).
We found that growth beyond log phase produced conditions that
degraded flagellin protein, presumably due to bacterial lysis and
release of cytoplasmic proteases (data not shown). Hence, cultures
were harvested directly prior to entering stationary phase.
Clarification of growth cultures was accomplished by centrifuga-
tion and microfiltration to 0.2 lm.

Binding and elution by cation-exchange chromatography

Direct protein binding precludes the need for concentration and
buffer exchange prior to ion-exchange chromatography. By
establishing conditions for product binding in early stages, the
overall process time, number of steps and potential product loss
is reduced. We found that flagellins could be bound directly from
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growth media supernatants onto cation-exchange membrane sor-
bents at pH 3, that is P1 pH units below the calculated �4.5 flagel-
lin isoelectric point (pI), at reduced conductivity levels (Fig. 2).
Comparable binding and elution profiles were found for flagellins
from CVD 1943 or CVD 1925 fermentation supernatants (not
shown).

A high 254 nm absorbance signal was noted in the flow through
during the loading step (Fig. 2A). This is likely representative of
unbound bacterial nucleic acid and exogenous guanine in the
growth medium, which would be excluded by charge repulsion
from the cation exchange sorbent. When analyzed by SDS–PAGE
with Coomassie blue staining, no discernable protein bands were
detected in the flow through (Fig. 2B). A large peak characterized
by higher absorbance at 254 nm relative to 280 nm was also seen
after exposure to 1.5 M NaCl, which would suggest further removal
of residual nucleic acid. We found, unexpectedly, that flagellin was
retained on cation-exchange membranes in the presence of this
high salt concentration, as no flagellin bands were evident in the
Coomassie stained SDS–PAGE of these fractions. This could be the
result of tight binding to a charged pocket on flagellin, alone or
in combination with hydrophobic interactions with the base fiber
of the membrane matrix. As comparable performance was seen
for CVD 1943 and CVD 1925 FliC, the site responsible for this inter-
action is likely located on a region of the protein that is conserved
between the two different flagellin types.

Flagellin elution was accomplished by raising the pH with
20 mM Tris pH 8, that is >1 pH unit above the calculated pI. Pro-
teins eluted as a single peak with an absorbance ratio of
280 > 254 nm, indicating a low ratio of nucleic acid to protein.
Recovery of protein from the fermentation supernatant was high
(�70–80%, Table 1), with robust removal of nucleic acid (>75%).
We found, however, that endotoxin removal in this step was poor.
It is presumed that free LPS that is present in large micelles and lip-
osomes is removed during the clarification step, and residual endo-
toxin is tightly bound as LPS monomers to the protein. As the
phosphate groups of lipid A in LPS are negatively charged, it is
not expected that they would be removed by the cation-exchange
sorbent.

Interestingly, flagellin was retained more efficiently by strong
cation-exchange sulfonate functionalized membranes that are
macroporous compared to conventional porous sulfonate function-
alized cation-exchange resins (Fig. S1). Membranes effectively
captured �70% of the FliC input protein, with �3% and �9% found
in the flow-through and 1 M NaCl wash fractions respectively. For
resins, �52% of FliC was found in the flow-through fraction, �23%
was removed in the 1 M NaCl wash fraction, and �12% was present
Fig. 2. Binding, wash, and elution of secreted FliC in CVD 1943 fermentation
supernatants by cation-exchange membrane chromatography. (A) Chromatogram
with absorbance at 280 nm (solid line) and 254 nm (dashed line); (B) SDS–PAGE
with Coomassie stain of (M) Molecular weight standards, (1) fermentation culture
supernatant, (2) diluted and pH adjusted fermentation supernatant, (3) column
loading flow-through, (4) peak absorbance fraction from wash 1, (5) peak
absorbance elution fraction. All lanes are from the same gel and exposure.
in the pH 8 elution fraction. Despite the fact that flagellins are
secreted as monomers, concentration-dependent aggregation
could occur within growth media or the column microenviron-
ment, as multimers phenotypically resembling flagella filaments
form at flagellin concentrations P5 mg/ml [33]. The substantial
level of nucleic acid in the fermentation supernatant also intro-
duces the possibility for formation of large complexes with flagel-
lin. Treatment with benzonase prior to loading onto a cation
exchange resin did not improve retention (data not shown). The
wide pore sizes in membranes can likely accommodate flagellin
multimers or complexes, whereas inaccessibility of these aggre-
gates to the porous bead interior likely impacts full accessibility
to the charged groups of conventional ion-exchange resins. This
could result in tethered binding to the bead surface through a sin-
gle protein anchor, rather than uniform binding across the multi-
mer to charged sorbent groups. In addition to the improved
binding capacity at the binding step, ion-exchange membranes
are convective and hence not diffusion limited. This permits higher
flow-rates and better scalability than conventional ion-exchange
resins. Thus, they are better suited for large-scale Good
Manufacturing Practice (GMP) production campaigns as they
enable reduced process time, performance parameters translate
more readily from process development scale, and they are
amenable to single-use application.

Anion exchange membrane chromatography

Tris-based buffers are compatible with anion-exchange media,
hence no buffer exchange was necessary prior to initiation of
anion-exchange chromatography. Flagellin protein eluates in
20 mM Tris pH 8 after cation-exchange membrane chromatography
were fully bound by quaternary ammonium (Q) strong anion-
exchange membranes (Fig. 3). Various salt levels were assessed
for elution (data not shown), and we found that 150 mM NaCl
was the minimal concentration required to remove the bulk of
the bound flagellin (Fig. 3). Residual endotoxin and nucleic acid
were effectively removed by this step (>99.9% and >98% respec-
tively, Table 1), with 60–75% protein recovery at this step.

Concentration and monomerization

Salmonella Enteritidis and Typhimurium FliC proteins demon-
strate molecular weights of �52 kDa and 50 kDa, respectively, by
SDS–PAGE (Fig. 4). They were fully retained by 30 kDa flat sheet
tangential flow filtration that was used for concentration and dia-
filtration after elution from anion-exchange membranes (Fig. 4).
The TLR5 moiety of flagellin monomers becomes buried upon
incorporation into flagella filaments, hence TLR5 activity for fla-
gella is lower than that of flagellin monomers [14]. In order to stan-
dardize biological activity and maintain the purified protein as a
homogenous species, it is preferable to obtain flagellin as mono-
mers rather than as multimers, which can be heterogeneous in size
and stability. Flagellins are stable and soluble at pH 2, where it has
been documented that flagella will disassociate into flagellin
monomers [28]. Manipulation of the pH to disaggregate flagellin
multimers that may have formed during the purification process
is less harsh and more easily controlled than other commonly used
methods such as heat treatment [14]. TFF retentates were brought
to pH 2 transiently and then returned to neutral pH with phos-
phate buffer in the presence of 0.1% non-ionic detergent Tween
20. We have found that this helps maintain flagellin in monomeric
form at concentrations exceeding those that typically lead to
aggregation. Monomerization by this method did not cause overt
discernible protein degradation by SDS–PAGE, concentrated and
monomerized flagellin produced a single peak at the expected
flagellin monomer size by HPLC-SEC (Fig. 4). Several minor bands



Fig. 5. Reactivity of final purified flagellin proteins with anti-flagellin antibodies
assessed by Western blot and ELISA. (A) Post 0.2 lm filtration final purified samples
were loaded at 0.25 lg/well, separated by SDS–PAGE and transferred to nitrocel-
lulose membranes for detection with a pan flagellin antibody: (1) CVD 1943 FliC, (2)
CVD 1925 FliC; (B) CVD 1943 FliC coated onto ELISA wells, reacted with different
monoclonal antibodies against common (CB7IH2, AE9IB4) or serovar specific
(JB11IG4, CA6IE2) epitopes of S. Enteritidis FliC, tested in multiple concentrations;
results represent absorbance values from replicate wells.

Table 1
Total protein yield and reduction in nucleic acid and endotoxin levels after sequential purification steps for FliC from 1 L of S. Enteritidis CVD 1943 or S. Typhimurium CVD 1925
fermentation culture supernatants.

Protein mg (% yield)a Nucleic acid mgd Endotoxin unitse

CVD 1943 CVD 1925 CVD 1943 CVD 1925 CVD 1943 CVD 1925

Fermentation supernatant 438b (100) 688b (100) 0.827 1.5 3.38 � 107 n.d.f

Post-S membrane 344c (79) 478c (69) 0.178 0.370 4.18 � 107 6.52 � 107

Post-Q membrane 209c (48) 364c (53) 0.002 0.008 4.15 � 103 4.80 � 103

30 kDa TFF concentrated retentate 204c (47) 311c (45) 0.001 0.003 2.75 � 103 2.90 � 103

a Relative to FliC amount in culture supernatant.
b Total FliC determined by SDS–PAGE Coomassie/Densitometry with FliC standards.
c Total protein levels determined by BCA assay with FliC standards.
d Total double stranded DNA levels determined by quanti-iT Sybr Green.
e Total endotoxin levels determined by Limulus amebocyte lysate assay.
f Not done.

Fig. 4. Concentration and monomerization of flagellins after anion-exchange
chromatography. (A) CVD 1943 and (B) CVD 1925: (left panel) in-process material
was analyzed by SDS–PAGE with Coomassie staining: (M) Molecular weight
standards, (1) 150 mM NaCl anion exchange membrane eluate [10 lg], (2) 30 kDa
TFF permeate, (3) 30 kDa TFF concentrated retentate [25 lg], (4) 30 kDa TFF
concentrated-diafiltered retentate [25 lg], (5) post-pH 2 incubation [25 lg], (6)
0.2 lm filtrate [20 lg]; (right panel) SEC-HPLC of 0.2 lm filtered purified FliC
measuring absorbance at 280 nm.

Fig. 3. Anion-exchange membrane chromatography on cation-exchange membrane
eluates of CVD 1943 secreted flagellin. (A) Chromatogram of A280 nm (solid black
line) and A254 nm (dashed line) with indicated treatment steps denoted; (B) SDS–
PAGE with Coomassie stain for: (1) anion exchange starting material, (2) flow
through fraction, (3) 150 mM NaCl eluate, (4) 300 mM NaCl eluate. Molecular
weight marker is denoted (M).
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were seen by SDS–PAGE that migrated below the level of flagellin.
We have previously noted a similar banding pattern in flagellin
preparations prepared by the shear method, for which it was
determined by mass-spectrometry peptide sequencing that they
derive from progressive breakdown of the N- and C-flagellin pro-
tein termini.

The purified flagellin preparations reacted equivalently by Wes-
tern blot with a general anti-flagellin monoclonal antibody, pro-
ducing a single major uniform band at the expected molecular
weight (Fig. 5A). By assessing reactivity with antibodies against
different conserved and variable epitopes, it is presumed that pro-
tein folding within distinct portions of flagellin can be interro-
gated. The successful binding for multiple different epitopes
strongly suggests that the overall protein is folded in the native
conformation. Flagellin purified from CVD 1943 demonstrated
robust recognition by ELISA with a panel of monoclonal antibodies
specific for common or unique S. Enteritidis FliC epitopes (Fig. 5B),
thus signifying that flagellin purified by this method is properly
folded.
Innate immune bioactivity

Salmonella flagellins are ligands for mammalian TLR5 and hence
potent activators of the innate immune system. Binding to TLR5 is
accomplished through a conserved contact interface between the
extracellular portion of TLR5 and the D1 region of flagellin, where
functional interaction is dependent on protein structure and orien-
tation [34]. Signaling through TLR5 is facilitated by the central
immune transcription factor NF-jB [35,36]. We confirmed the
TLR5 bioactivity of the purified flagellin preparations in vitro, using
HEK293 cells stably transformed with a luciferase report under
control of the NF-jB promoter [35]. Activation of the luciferase



Fig. 6. Functional innate immune bioactivity of S. Enteritidis CVD 1943 and S.
Typhimurium CVD 1925 flagellins purified from fermentation culture supernatants.
HEK293 cells stably transformed with a firefly luciferase reporter gene under
control of NF-jB were seeded in 96-well plates and treated with media alone or the
indicated concentration of CVD 1925 or CVD 1943 FliC. Luciferase levels were
determined, and are presented as the average and standard error from duplicate
wells.
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reporter was found to be concentration-dependent, with a strong
signal seen even with very low flagellin amounts (Fig. 6). Compara-
ble specific activity was also observed between flagellins purified
from S. Enteritidis CVD 1943 or S. Typhimurium CVD 1925. This
further supports the conclusion that the TLR5 signaling domain is
correctly folded in flagellins purified by this method.

Conclusions

We report herein a novel and scalable bioprocess strategy for
purification of Salmonella flagellins from bacterial culture superna-
tants, applied to the phase 1 flagellins of S. Enteritidis and S.
Typhimurium. We anticipate that this purification scheme will be
economical under large-scale production as the process requires
only a few steps, can be completed in only a few days, and is
accomplished with standard techniques, apparatus and media that
are commonly used in bioprocess manufacturing. We have further
found that this method is effective for purification of FliC from S.
Typhi (d epitope, not shown). Thus, we expect that this purification
approach will be efficacious for purification of flagellins from other
Salmonella serovars that are important causes of disease in
humans, such as S. Paratyphi A (Salmonella serogroup A), or group
C Salmonella serovars such as S. Newport or S. Choleraesuis. Given
the high degree of homology within D0 and D1 among flagellins
from different bacteria, this method could also possibly be used
to produce vaccines for other important bacterial pathogens where
flagellin is an established vaccine antigen, such as the FlaA or FlaB
flagellins of Pseudomonas aeruginosa [37].
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