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Abstract: Messenger ribonucleic acid (mRNA) was found as the intermediary that transfers genetic information from DNA to 
ribosomes for protein synthesis in 1961. The emergency use authorization of the two covid-19 mRNA vaccines, BNT162b2 and 
mRNA-1273, is a significant achievement in the history of vaccine development. Because they are generated in a cell-free environment 
using the in vitro transcription (IVT) process, mRNA vaccines are risk-free. Moreover, chemical modifications to the mRNA molecule, 
such as cap structures and changed nucleosides, have proved critical in overcoming immunogenicity concerns, achieving sustained 
stability, and achieving effective, accurate protein production in vivo. Several vaccine delivery strategies (including protamine, lipid 
nanoparticles (LNPs), polymers, nanoemulsions, and cell-based administration) were also optimized to load and transport RNA into 
the cytosol. LNPs, which are composed of a cationic or a pH-dependent ionizable lipid layer, a polyethylene glycol (PEG) component, 
phospholipids, and cholesterol, are the most advanced systems for delivering mRNA vaccines. Moreover, modifications of the four 
components that make up the LNPs showed to increase vaccine effectiveness and reduce side effects. Furthermore, the introduction of 
biodegradable lipids improved LNP biocompatibility. Furthermore, mRNA-based therapies are expected to be effective treatments for 
a variety of refractory conditions, including infectious diseases, metabolic genetic diseases, cancer, cardiovascular and cerebrovascular 
diseases. Therefore, the present review aims to provide the scientific community with up-to-date information on mRNA vaccines and 
their delivery systems. 
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Introduction
About This Review
Currently, there is considerable research being done on messenger ribonucleic acid (mRNA) vaccines to treat cancer, 
infectious diseases, gene therapy, and other disorders. The favorable safety and efficacy of the already developed and 
authorized BNT162b2 and mRNA-127 Covid-19 vaccines have boosted the promise for future vaccines to be based on 
mRNA. The high molecular weight and negative charge of mRNA vaccines, their susceptibility to ribonucleases, and the 
existence of intracellular and extracellular barriers are only a few of the hurdles they face despite their many benefits. To 
overcome these challenges, chemical modifications to the mRNA molecule, such as cap structures and modified 
nucleosides, and using novel drug delivery systems are crucial. Hence, this review provides updated information on 
mRNA vaccines overview, in vitro transcription method, the role of structural elements of mRNA vaccines, challenges 
and adverse effects of mRNA vaccines and methods how to overcome the challenges, mRNA vaccine delivery systems, 
entry, and endosomal escape of nanoparticle construct of mRNA, routes of mRNA vaccine administration and application 
of mRNA vaccines in different diseases (disorders).
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mRNA Vaccines Overview
Vaccines are classified as whole-pathogen, subunit, nucleic acid, or viral vector based on the antigen used in their 
synthesis.1 In 1961, messenger ribonucleic acid (mRNA) has been identified as the mechanism by which genetic 
information is passed from DNA to ribosomes to produce proteins.2 Moreover, mRNA vaccines can be synthesized in 
a laboratory using easily accessible components.3,4 However, because of the extremely unstable nature of the mRNA 
molecule, the first protein was synthesized in vitro from isolated mRNA in 1969.5,6

In 1987, researchers devised a highly successful approach for in vitro mRNA production by encapsulating mRNA in 
cationic lipids and injecting it into eukaryotic cells.4 Furthermore, activating anti-influenza cytotoxic T lymphocytes 
(CTLs) in the host after immunizing mice with liposome-encapsulated mRNA expressing the influenza-virus nucleo-
protein (NP) marked a significant step forward in the development of the first mRNA vaccine.7 Furthermore, Pfizer- 
BioNTech’s (BNT162b2) and Moderna’s (mRNA-1273)8,9 mRNA vaccines have both been granted emergency use 
authorizations (EUA).10 These vaccines have been a huge success, with excellent protective effectiveness of more than 
90%.11

Why mRNA Vaccines are Preferable to DNA Vaccines?
In comparison to DNA, mRNA therapy has numerous benefits. While viral vectors are needed for high transfection 
efficiency in DNA treatments, non-viral vectors (such as lipids and polymers) can be used for mRNA delivery and still 
achieve extremely strong transfection efficiency.12–18 Because they are generated in a cell-free environment via in vitro 
transcription, mRNA vaccines are also harmless. MRNA cannot induce vector- or carrier-specific immunogenicity, unlike 
viral vectors or virus-like particles (VLPs).15,16,19

Antigens encoded in mRNA vaccines can be expressed more expeditiously since mRNA can be functional in the 
cytoplasm whereas DNA must enter the nucleus and be transcribed before proteins can be created.20 In cells, mRNA 
undergoes a series of molecular changes, such as deadenylation and decapping, before being hydrolyzed by RNase.21 

These processes ensure that exogenous mRNA treatments are only expressed briefly, which makes it to be safer.22

In vitro Transcription (IVT) Method and Role of Structural Elements of mRNA 
Vaccines
In vitro Transcription (IVT) Method
The in vitro transcription (IVT) technique is used to synthesize self-amplifying mRNA (saRNA) and conventional 
mRNA in a cell-free system. In this approach, the production of plasmid DNA (pDNA) carrying the sequence for 
a DNA-dependent RNA polymerase promoter (T7 or SP6), followed by the sequence matching to the mRNA construct is 
required.14,23–28 T7 RNA polymerase can accurately integrate pseudouridine triphosphate and other modified nucleotides 
and make RNAs longer than 20,000 nucleotides.29–31

The pDNA can act as a template for mRNA transcription utilizing a DNA-dependent RNA polymerase after being 
linearized by an enzyme. After the transcription reaction is finished, the pDNA is treated with DNase to degrade it. 
Enzymatic post-transcription capping and simultaneous capping by an extra cap analog in the transcription mixture are 
the two main capping techniques used in IVT reactions.32 Moreover, guanylyl transferase and 2′-O-methyltransferase can 
be employed to introduce a Cap 0 (N7MeGpppN) or Cap 1 (N7MeGpppN2′-OMe) structure, respectively.14,23,24

Poly-A-tailed IVT mRNA is typically produced in two ways. One method involves attaching a poly-A tail to the 3’ 
end of IVT mRNA after recombinant poly-A polymerase has synthesized the mRNAs. This method creates a varied 
length of poly-A and has less reliable batch controls, making it challenging to meet the standards.33 The second technique 
involves utilizing a DNA template with poly-T nucleotides to co-transcribe the poly-A tail amid IVT mRNA production, 
producing homologous mRNA products. Producing fixed and repeatable poly(A) length is a benefit of DNA template- 
encoded poly(A).34 However, because of its propensity for recombination, its poly-A tail’s length is shortened.35

Role of Structural Elements of mRNA Vaccines
Mature eukaryotic mRNA is composed of the 5’ cap structure (m7GpppN or m7Gp3N (N can be any nucleotide)), the 5’ 
untranslated region (5’UTR), an open reading frame (ORF), the 3’ untranslated region (3’UTR), and a poly(A) tail. These 
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fundamental structural domains influence the stability, immunogenicity, and translation efficacy of mRNA vaccines.36,37 

An mRNA ORF determines the target protein’s basic sequence as well as higher-order RNA structures that influence 
translation efficiency. Unexpectedly, mRNA coding regions capable of generating secondary structures were found to be 
associated with highly expressed mRNAs.38

The 5’ UTR is essential for ribosome binding and serves as the location of protein translation preinitiation complex 
formation.39 Moreover, according to a scanning model of RNA translation, mRNA stability, and translation efficiency are 
influenced by the 5’ UTR sequence and secondary structures.39–43 Even a 5’ cap-independent protein expression pathway 
is possible due to the presence of an internal ribosome entry site (IRES) for the encephalomyocarditis virus in the 5’ 
UTR.44,45 Additionally, the primary function of the 5′ UTR is to translate its downstream ORF sequence.46,47 To boost 
translation efficiency, the Kozak sequence is usually inserted next to the 5′ UTR sequence.24,48

Likewise, the role of the 3′ UTR is to keep mRNA stable.49,50 Most eukaryotic mRNAs have 3’ UTR mRNA 
degradation signals that govern the stability of mRNA. The presence of AU-rich regions in the 3’ UTR of mRNA has 
been shown to aid in the cleavage of the poly (A) tail during mRNA degradation.51,52 As a result, the half-life of mRNAs 
could be enhanced by replacing their AU-rich regions with 3’UTR sequences.53 Furthermore, the iron-responsive 
elements (IREs) are another essential mRNA stability-regulating segment within the 3’UTR and control mRNA 
translation.54

With a few exceptions (like histone), all cellular proteins that encode mRNAs consist of a poly(A) tail.55 Most 
actively translated mRNAs in mammalian cells have a poly(A) tail containing 100–250 adenosine residues.56 

Additionally, the poly-A tail is necessary for the stability of the mRNA, translation, and recognition by the poly-A 
binding protein (PABP), which joins with the translation initiation complex (eIF4G) to form a loop-like 
conformation.55,57 The cytoplasmic translocation of mature mRNA is mediated by the poly(A) tail.58 In addition, the 
poly (A) tail modulates translation efficiency and mRNA breakdown.59–61 Additionally, a poly(A) tail with the proper 
length can increase mRNA stability and translation efficiency55,56 (Figure 1).

Types of mRNA Technologies
To develop mRNA vaccines, conventional (non-replicating) mRNA (nrRNA) and self-amplifying mRNA (saRNA) have 
been proposed.62–64 Between its 5’ UTR and ORF, saRNA has additional virus replication components than nrRNA. 
Furthermore, alphaviruses, flaviviruses, measles viruses, or rhabdoviruses could be the sources of the viral replicase of 
saRNA. As a result, saRNA might produce a lot of antigen protein while activating the immune system quickly and 
effectively.14,63–65 While viral genes holding information for replication machinery proteins are intact in saRNA, genes 
encoding therapeutic proteins replace those for structural proteins.14,66 Additionally, saRNA vaccines can carry genetic 
material encoding the desired antigen in addition to other genes, such as viral RNA polymerase, which enables mRNA to 
multiply on its own.67,68 Safe trans-amplifying RNA (taRNA) vaccines have been optimized and produced based on 
saRNA technology.65 However, because of its longer length, saRNA delivery is more difficult than nrRNA.69

Non-replicating mRNA vaccinations only provide genetic information that codes for the target antigen.70 Also, the 
use of a simple structure and shorter-length RNA molecule is one of the advantages of nrRNA vaccines. Furthermore, 
a modified or tweaked mRNA can have significantly increased its efficacy.71 Conventional mRNA has several advantages 
over saRNA, including its smaller size (2–3 kb vs 10 kb), lack of viral genes, which reduces the risk of showing 
unwanted immunogenicity, its easiness and scalable manufacturing techniques, as well as the ease with which its 
sequence can be altered to improve therapeutic efficacy and minimize any unwanted effects.14,70

AAAAAA

5’ cap 5’ UTR Open reading frame (ORF) 3’ UTR Poly (A) tail

Figure 1 Structural elements of mRNA vaccines.
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Challenges and Adverse Effects
Due to mRNA’s physical properties such as high molecular weight, negative charge, vulnerability to ribonucleases 
(RNases),15,21,70,72–76 and the presence of extracellular and intracellular barriers,21,77 it is difficult for mRNA to be 
successfully uptaken into cells and translated to targeted antigens. Furthermore, after entry, enormous amounts of mRNA 
are ambushed in endosomes and cannot reach into the cytoplasm to perform its functions.75,78,79 Furthermore, as 
indicated by a short half-life (5 min) in sera, IVT mRNA transcripts are unstable and extremely sensitive to nuclease 
destruction.76,80

Despite, immunogenicity is undesirable for several mRNA uses, such as protein replacement therapy and genome 
editing, it can be useful for vaccination techniques and may even replace the use of adjuvants.37,81–84 Unmodified mRNA 
may activate innate immune systems through the endosomal recognition of pattern-recognition receptors (PRRs), such as 
Toll-like receptors (TLRs)85–87 and the RIG-1- like receptor families, like RIG-1, MDA5, and LGP2, resulting in the 
production of pro-inflammatory cytokines and type I interferons.15,88–90

High frequencies of adverse reactions to vaccinations, including pericarditis, myocarditis, inflammation of the 
nervous system, and autoimmune hepatitis, had been associated with mRNA side effects.91–94 Even though, studies 
suggested that these side effects were unrelated to the vaccine itself.95 Moreover, in young adults and male adolescents 
who received BNT162b2 and mRNA-273 Coronavirus disease 2019 (COVID-19) vaccines, cardiomyopathy, myocardi-
tis, and pericarditis were reported within a week of the second vaccination.96,97 Furthermore, infarction, allergies, heart 
failure, and renal failure are a few possible side effects of mRNA vaccinations.98 In addition, studies reported that the 
most common cause of acute myocarditis is a viral infection. For example, healthy people who have received smallpox or 
influenza vaccines have been known to manifest the adverse effect.99

According to studies, the bulk of adverse effects are caused by lipid nanoparticles (LNPs) ingredients like PEG and 
ionized lipids.100,101 The necessity to improve the LNP delivery platform is highlighted by the reports of negative effects 
brought on by LNPs for mRNA-based COVID-19 vaccines.102,103 PEG-lipids may cause allergic responses by activating 
the complement system.75,104,105 Additionally, by hastening blood clearance, anti-PEG antibodies may cause fast 
systemic elimination of subsequently administered PEGylated nanoparticles.104,105 In addition, rodents have been 
shown to suffer liver and lung damage as a result of LNP administration in vivo,106,107 which could be explained by 
the delivery of LNP materials’ cytotoxicity and the production of pro-inflammatory factors.108,109

How to Enhance the Stability and Suppress the Immunity of mRNA Vaccines?
The amount of mRNA that degrades can be considerably decreased by adding a 5’-cap, modifying nucleosides, adjusting 
30-poly(A) tail length and structure, and optimizing nucleoside sequences.36,110,111 To boost mRNA’s stability and stop it 
from degrading, LNPs and alternative delivery systems like polymers, peptides, and cationic nano-emulsions (CNEs) can 
be used.67,112 Moreover, mRNA-based vaccines can be lyophilized (freeze-dried), making them more stable and 
preserving their biological action.113 Additionally, Kariko and colleagues were the first to change certain nucleosides 
(cytidine and uridine) with 5-methylcytidine and pseudouridine, respectively, to make the resulting mRNA molecules 
more stable intracellularly and less immunogenic.37,114–116

To overcome immunogenicity issues, achieve sustained stability, and achieve effective and precise protein production 
in vivo, chemical modifications to the mRNA molecule, such as cap structures and modified nucleosides, are 
essential.70,117 In 2005, Karikó and colleagues revealed that mRNA generated with modified uridine might withstand 
immune system recognition and destruction, significantly improving mRNA stability and immunogenicity in vivo.115 The 
uses of mRNA technology in the biomedical field are expanding because of improvements in delivery technology and the 
application of modified nucleosides to escape innate immune recognition.21 By reducing the usage of uridine in the 
codons,37,118–120 and altering the nucleotides used in IVT mRNA,21,28,37,70,76,115,121,122 it is possible to block TLR 
recognition of mRNA. 5-methylcytosine (m5C), 5-methyluridine (m5U), 2-thiouridine (s2U), or pseudouridine (ψ) 
modifications such as 1-methyl pseudouridine (m1 ψ) are the most widely used alterations.123 One of these changes, 
the substitution of pseudouridine for uridine, has been demonstrated to improve mRNA efficacy and decrease 
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immunogenicity.39,124 In place of each uridine residue in the coding region and UTRs identified by the ribosome, the 
Pfizer/BioNTech BNT162b2 mRNA contains N1-methyl pseudouridine (m1ψ).25,117,123

By rigorously purifying mRNA using high-performance liquid chromatography (HPLC), which can eliminate the 
aberrant RNAs produced in the IVT reaction, immunogenicity could be further reduced.37,125,126 The constituents of the 
LNPs were being altered by researchers to increase vaccine effectiveness and reduce side effects.100,101,127 Furthermore, 
biodegradable lipids may be used to increase the biocompatibility of lipid nanoparticles.128–132

Purification of IVT mRNA
Abortive initiation products and double-stranded RNA produced by DNA-dependent RNA polymerases can trigger the 
production of type I IFN and inflammatory cytokines when PRRs bind to them.133 DNase treatment can easily remove 
pDNA, however, several chromatographic methods are available to get rid of the remaining impurities.134 While 
polyacrylamide gel electrophoresis can be used to remove short RNA moieties.135 Chromatography, namely HPLC, is 
the sole method that can purge contaminants from longer mRNA preparations.82 As a result, great translatability is made 
possible by mRNA purification via HPLC without inducing IFN1 and proinflammatory cytokine responses.70,76,82,136 For 
large-scale mRNA production and Good Manufacturing Practice (GMP) procedures, purification using fast protein liquid 
chromatography (FPLC) or HPLC may be carried out.82,137–140

mRNA Vaccine Delivery
Viral and non-viral vector delivery techniques have been used to deliver mRNA vaccines.141 To increase the safety and 
effectiveness of mRNA-based immunotherapy, delivery systems can be modified to offer tissue or cell specificity.142 

Bangham made the initial discovery of lipid-based systems in the 1960s when cationic LNPs (cLNPs), also known as 
liposomes, were seen to generate vesicles spontaneously in aqueous solutions.143–146 Doxil®, a liposomal-formulated 
doxorubicin, was authorized in the US thirty years later. Since then, the FDA has approved several liposome146 and LNP 
medications (comprising ionizable cationic lipids, iLNPs) for clinical use.147,148

To traverse membrane lipids and efficiently deliver RNA vaccines into the cytosol, a variety of vaccine delivery 
techniques (including protamine, LNPs, polymers, nanoemulsions, and cell-based administration) were optimized.149 

Therefore, both viral and non-viral delivery systems must be used to prevent RNases from degrading mRNA and to 
improve their intracellular effectiveness. Viral vector delivery system may result in the induction of immune response to 
the antibody, vector pre-existing immunity inhibiting transduction, potential safety issues with long-term expression, and 
risk of insertional mutagenesis.15,150 Hence, in this review, non-viral delivery methods have been discussed in detail.

Protamine
Cell-penetrating peptides (CPPs) showed a good safety profile and effective transfection capabilities.151–153 Peptides 
have also been employed for mRNA administration because they include cationic or amphipathic amine groups, such as 
arginine, that can electrostatically attach to negatively charged mRNA and form nano complexes.154 Moreover, a cationic 
peptide called protamine can stop lysosomal degradation while RNA is being delivered. It has been demonstrated that 
protamine-based delivery activates TLR 7 to cause a potent immunological response.155,156

Protamine, an arginine-rich cationic peptide, can attach to mRNA and efficiently transfer it into the cytosol.157 Hence, 
it was utilized in the development of the self-adjuvanted RNActive vaccination platform, which has proven effective 
against several infectious illnesses and malignancies.115,156,158,159 Furthermore, protamine protects mRNA from being 
degraded by serum RNases151 and is found to guard against severe storage conditions for the mRNA rabies vaccine.160

To elicit an immunological response against the rabies virus, CureVac investigated the protamine-mRNA combination 
in 2016. In that investigation, the mRNA encoding the non-replicating rabies glycoprotein (RABVG) was tailored to 
induce strong virus-neutralization in mice and domestic pigs.158 A brand-new lipid/protamine/mRNA nanoparticle 
technology was recently developed and widely used for systemic tumor administration. In this technique, 1,2-dioleoyl- 
3-trimethylammonium propane (DOTAP) liposomes have been tested to enclose protamine-complexed mRNA before 
being coated with 1, 2-Distearoyl-sn-glycero-3-phosphoethanolamine-Poly(ethylene glycol) (DSPE- PEG) and DSPE- 
PEG-anisamide.161
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Lipid Nanoparticles (LNPs)
Due to their ability to preserve mRNA from enzymatic cleavage, efficiently carry mRNA into cell cytoplasm,93,129,162 

have minimal immunogenicity, are biocompatible, and have a high encapsulation rate,163 lipids have been used for 
exogenous mRNA administration. In addition, LNPs are lipid-based spherical vesicles and can self-assemble into precise 
structures like cell membranes.164 Furthermore, LNPs are lipid-based, and nanoscale carriers that can effectively transfer 
mRNA intracellularly and safeguard it from RNAase during systemic circulation.165 Moreover, LNPs are now the most 
cutting-edge method of administering mRNA vaccines.129,149,166–169 (Figure 2)

Modifying the lipid structure130 and particle surface has been regarded as a strategy to increase the efficient delivery 
of mRNA into the cytosol.14,170 It was discovered that LNPs having multilamellar, faceted, and lamellar lipid phases 
have better mRNA transfection effectiveness.171,172 N-[1-(2,3-dioleyloxy) propyl]-N,N,N trimethylammonium chloride 
(DOTMA), for example, was a first-generation permanently charged lipid that was toxic,173 subpar, and relied on non- 
scalable methods. At an acidic pH (where the amino lipids were positively charged), in the presence of ethanol, ionizable 
amino lipids were employed to create nucleic acids.174,175

Eminently, LNP delivery materials are employed in the existing mRNA vaccines approved by FDA.57,176 The 
numerous advantages of lipid-nanoparticle-based mRNA delivery systems, such as their high stability, transfection 
efficiency, efficacy, safety, and low-cost production techniques, have facilitated the rapid development of mRNA vaccines 
and medicines, providing a powerful disease-fighting tool.177

Components of LNP
LNPs are made up of a cationic or a pH-dependent ionizable lipid layer, a PEG component, phospholipids, and 
cholesterol.14,165,178–183 The lipid-anchored PEG ensures vial and storage stability, the ionizable lipid is essential for 
cellular absorption and endosomal escape, enabling mRNA to enter into the cytosol, and the phospholipid and sterol are 
essential for the stabilization of the LNP.182,184,185 The ratio of the components can be changed depending on the target 
tissue, and the lipid content can also be changed to alter the physical characteristics of LNPs like particle size, shape, 
encapsulation effectiveness, and surface charge.186,187 Numerous encapsulation devices can be created using lipids and 
lipid-based nanoparticles, including liposomes, LNPs, microbubbles, micelles, lipid implants, and emulsions.71,165,188–193

Cationic Lipids 
Cationic lipids either have a quaternary nitrogen atom that permanently gives them a positive charge or a primary amine 
that gives them a positive charge at or below physiological pH. However, it was discovered that cationic lipids with such 
a long-lasting positive charge were more toxic, less effective, and non-biodegradable.17,194–197 The addition of structural 
lipids like DOPE may decrease cytotoxicity while increasing endosomal release. Among the earliest LNP preparations 
that have been successful in the in vivo translation of mRNA is Lipofectin, which is made by combining DOTMA and 
DOPE.198–200 The systemic toxicity of this combination, however, made it ineffective.201

Whereas net positively charged complexes have been demonstrated to improve mRNA stability in vitro, cationic 
complexes may interact with negatively charged serum proteins, resulting in clumps, clots, and rapid clearance.202–204 

Ionizable cationic lipid

Helper lipid

Cholesterol

PEG

mRNA vaccine

Figure 2 mRNA encapsulated in Lipid nanoparticle. PEG, Polyethylene glycol.
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Although there are certain disadvantages to utilizing cationic lipids, the positive charge traps nucleic acids very well. 
This approach was used to create pH-sensitive ionizable cationic LNPs for enhanced RNA delivery.194

Ionizable Lipids 
Cullis developed the first pH-responsive cationic lipid (ionizable lipids (ILs)) in the early 1990s, which gained a net 
positive charge in an acidic pH while remaining neutral in a physiological pH. The reticuloendothelial system (RES) 
cannot break down ILs because of their pH-sensitive characteristics, which prolongs their half-life.205–207 ILs have polar 
head groups that contain ionizable amines, a hydrophobic tail that promotes self-assembly, and linkers that join the head 
groups to the hydrophobic tail. After being carried into an endosome, they are assumed to be ionized negatively once 
more upon acidification, which helps to build hexagonal phase structures and, eventually, makes it easier for mRNA to 
escape from the endosome and enter the cytosol.70,129,179,201,208–213

Nanoparticles made with ILs have a low positive charge density in the bloodstream, resulting in better biocompat-
ibility and less off-target accumulation.214 In the COVID-19 vaccinations, the cationic lipids employed are SM-102 and 
ALC-0315 in the Moderna and Pfizer/BioNtech vaccines, respectively.215 Ionizable lipids’ enhanced capacity for 
biodegradation Due to quick metabolic breakdown and clearance, there is less exposure to adjacent tissues and 
a reduction in inflammation at the injection site.216 Additionally, ILs have a better safety profile since they are less 
likely to stimulate the immune system or interact with serum proteins.17,78

Biodegradable functional groups were employed in the subsequent synthesis of lipids to speed up clearance. The 
incorporation of ester moieties is one method of increasing biodegradability.217–219 The incorporation of disulfide bonds 
into the backbone of lipids is another method of imparting biodegradability. Disulfide bonds are bio-reduced in the cell 
by glutathione (GSH) or other disulfide-reductases.220 Further modifications to ionizable lipid structures result in altered 
physicochemical properties that can influence the selective delivery of mRNA to different tissues.221

Cholesterol 
Cholesterol can improve particle stability and affects the efficacy and biodistribution of in vivo mRNA injection. C-24 
alkyl phytosterols, for example, improved the delivery effectiveness of LNP mRNA in vivo.171 By preventing excessive 
amounts of endogenous cholesterol from being sequestered inside LNPs while they are in circulation, cholesterol helps 
maintain stability.194,222 When compared to standard cholesterol, nanoparticles containing a -sitosterol substitute 
increased endosomal entry of mRNA in the cytoplasm by a factor of ten.170,171,223 Therefore, cholesterol and its 
derivatives play a crucial role in the general stability of LNPs in circulation and may facilitate endosomal escape, 
improving mRNA entry into the cytoplasm.224

Furthermore, cholesterol is required for LNP to transition from the lamellar to the hexagonal phase. The hexagonal 
phase is required for mRNA to be released from LNPs and transported over the endosomal membrane into the cytosol.225 

The fluid phospholipid bilayer was strengthened by cholesterol and LNPs’ content loss was reduced.226 When employed 
in the optimum concentration, it may also aid in the fusing of the membrane for LNPs and gene transfer.227

PEG 
It has been widely used to layer PEG on lipid carriers to slow down aggregation and lengthen blood circulation.228–231 

Additionally, lipid-anchored PEGs primarily form a barrier on the LNP surface, sterically stabilizing the LNP and 
decreasing specific protein binding.179 Moreover, PEGylated nanoparticles are widely referred to as stealth nanoparticles 
due to their ability to avoid opsonization by serum proteins and detection by the reticuloendothelial system (RES).172,232–235 

PEG-lipids restrict LNP uptake while decreasing opsonization by serum proteins and reticuloendothelial clearance, 
extending LNP circulation lifetime.236 Furthermore, By supplying a hydrophilic exterior coating, PEG regulates the lipid 
nanoparticle in many ways, including nanoparticle formation, inhibiting nanoparticle aggregation, and extending particle 
blood circulation.,104,194,237–241 and by avoiding their physical aggregation in solution, may potentially improve the LNPs’ 
storage stability.201,208

It’s also crucial to take into account the so-called PEG dilemma, which is the decreased fusogenicity of PEG lipids 
and may prevent mRNA from being released from endosomes. A practical method for effective mRNA intracellular 
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delivery is cleavable PEGylation.237,241–245 PEG on LNP surfaces has the potential to trigger anti-PEG IgM antibodies to 
be induced, especially after repeated doses.246 PEG-lipid, unlike other components of LNP, is engineered to eventually 
dissociate and shed the PEG to avoid the potential generation of PEG-specific antibodies that would cause rapid systemic 
clearance of successive doses of PEGylated nanoparticles via the accelerated blood clearance (ABC) phenomenon.105

Helper Lipids 
Phospholipids, also known as helper lipids, are frequently utilized to give LNP structure, which enhances formulation 
stability and may facilitate endosomal escape.181,182,247,248 Phospholipids, such as DSPC and DPPC, are typically 
neutral and provide bilayer structural stability to LNPs. Additionally, phospholipids contribute to the fusogenicity and 
biodistribution of LNPs.247 Moreover, LNPs, which were incorporated in the mRNA-1273 and BNT162b, might have 
their structural integrity stabilized by the DSPC.249–251 In addition, DOPE was employed for mRNA and siRNA 
administration in vivo as an alternative to DSPC since it could destabilize the endosomal members and encourage 
mRNA entry into the cytosol.182 Endosomal escape is made possible by phospholipids’ induction of a transition from 
lamellar to hexagonal endosomal architecture by disrupting the lipid bilayer.252

Polymers
Early gene delivery attempts relied heavily on poly (ethylene imine) (PEI), poly(L-lysine) (PLL), and poly (amidoamine) 
(PAMAM). Though PEI was the only polymer employed for mRNA delivery.253 Although optimized PEI structures have 
high cationic charge density, they are toxic.254 In 1987, polylysine (PLL) was announced as the first non-viral cationic 
polymer vector to efficiently transfect plasmid DNA.255 Because of their high net positive charges and inability to 
dissolve in physiological conditions, they could cause harmful levels of bioaccumulation, raising concerns about their 
limited efficacy and potential toxicity.224

Several polycationic systems were used to enhance the entry of mRNA into the cytosol, including DEAE (diethy-
lamino-ethyl)-dextran, DOPE (1,2-dioleoyl-3-phosphoethanolamine), poly L-lysine, PEI (polyethylene imine), and 
DOTAP.36 Self-amplifying -mRNA nanoparticles were also delivered using chitosan and PEI.256 Chitosan has several 
advantages, such as biodegradability, biocompatibility, and cationic charge that allows nucleic acid binding, but it also 
has disadvantages, such as poor water solubility and limited target capability.164

A polyethyleneimine copolymer (PVES) treated with vitamin E succinate is used in the self-assembled polymeric 
micelle delivery technique. When VE binds to PEI, a conjugated polymer capable of self-assembling into stable micelles 
is formed.257,258 Charge-altering releasable transporters are originally positively charged polymers that can efficiently 
load mRNA and improve physical characteristics by degradative, charge-neutralizing intramolecular rearrangement, 
releasing functional mRNA, and translating protein in cells.259

PEI’s toxicity and transfection effectiveness both rise as its molecular weight does. To address such limitations, 
different modifications to PEI have been researched, including ones that use polysaccharides and polyethylene glycol to 
boost biocompatibility and transfection effectiveness and wrap PEI in neutral or anionic liposomes to lessen non-specific 
adhesion.260 Blakney et al created pABOL, a bioreducible, cationic polymer that improved transfection efficacy but not 
cytotoxicity at higher molecular weights.261

Nanoemulsions
The emulsions are often water-in-oil emulsions made of squalene, sorbitan trioleate, polysorbate 80, and DOTAP, much 
like the licensed MF59 adjuvant.215 Above all, the main benefit of this platform is that MF59 is safe.262,263 CNEs 
(cationic nanoemulsions) were proposed as a possible means of delivering nucleic acids in 1990.264 Moreover, the 
presence of cationic lipids in the formulation is essential for nucleic acid complexation via electrostatic interactions, 
which also promotes nucleic acid stability and transfection efficiency while protecting them from nuclease 
degradation.265 Anderluzzi et al discovered that CNE induced the highest number of antibodies against rabies when 
compared to DOTAP polymeric nanoparticles, DOTAP liposomes, and DDA liposomes.266

Moreover, Gennova Biopharmaceuticals Ltd in conjunction with HDT Biotech Corporation developed a lipid 
inorganic nanoparticle, which is called LION®, for the delivery of SARS-CoV2 vaccine candidate HGCO10 (self- 
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amplifying RNA). Genova reported LION ® is a very stable cationic lipid (DOTAP)-squalene emulsion akin to CNEs 
with 15 nm superparamagnetic iron oxide (Fe3O4) nanoparticles (SPIO) implanted in the hydrophobic oil phase (which 
offers therapeutic and imaging functions). When stored between 4° and 25 °C, this formulation was found to have 
colloidal stability for at least three months.267,268

Ex vivo Loading of mRNA to Dendritic Cells
This method can be accomplished using either mild electroporation269 or lipid-derived carriers.270 By reducing potential 
off-target effects, electroporation can boost mRNA transport to the target cells, resulting in a reduction in the amount of 
mRNA that is required.166,271,272 Additionally, this strategy is generally employed for cancer immunotherapy since the 
majority of ex vivo loaded dendritic cells demonstrate cell-mediated immunity.273 Nanoparticle formulations were 
required to improve dendritic cell targeting.274

Dendritic cells used in cancer immunotherapy may be transfected with total tumor RNA or tumor-associated antigens 
(TAAs) encoding mRNA.272 Yet, the drawbacks of this strategy include a lack of known TAAs for various malignancies, 
and selecting TAAs may be difficult because not all recognized TAAs generate antitumor immunity. Furthermore, TAA 
mRNAs were found to induce antitumor immunity in experimental studies.275

Entry, and Endosomal Escape of Nanoparticle Construct of mRNA
The internalization of RNA-loaded lipid-based nanoparticles which involves endocytosis, micropinocytosis, macropino-
cytosis, and phagocytosis is mediated by caveolae and clathrin.184,276–280 Because clathrin-mediated uptake is thought to 
be faster than caveolin-mediated uptake, targeting the caveolin pathway should result in more effective delivery and more 
time for the drug to escape endosomes than clathrin-mediated uptake, which can cause significant buildup in late 
endosomes and lysosomes.281,282 With the aid of nanoparticles, several processes are required for mRNAs to enter the 
cytoplasm, including endocytosis, lysosomal escape, and mRNA release.162 The availability of mRNA in the cytoplasm 
may be increased by stimulating endosomal escape and scavenger receptor activation to increase mRNA absorption.73

In the endosomes, nanoparticles undergo a pH gradient, beginning with neutral extracellular pH (7.4) and moving to 
gradual acidification in early endosomes (pH 6.3), late endosomes (pH 5.5), and finally lysosomes (pH 4.5).283 Following 
cellular uptake, mRNA must escape endosomes to reach the cytosol (pH 7.2) for mRNA translation, which is a limiting 
step for productive mRNA delivery. For example, only 1–2.5% of mRNA was detected in the cytosol after transfection of 
human epithelial cells with mRNA, and this varies by cell type.129,184,284,285 Additionally, the methods utilized to avoid 
this terminal degradation rely on units that are activated by acidic pH.283,286

Furthermore, ionizable units and/or fusogenic lipids in mRNA nanocarriers destabilize the endosomal membrane, 
enabling mRNA to enter into the cytosol.285 As a result, endosomal escape, which has a high association with 
transfection effectiveness, is another crucial step in the delivery of mRNA to ribosomes.287 Three scenarios are widely 
accepted among numerous techniques to induce nanocarrier endosomal escape: (1) destabilization of the endosomal 
membrane, (2) osmotic rupture of the endosomes via the “proton sponge” effect, and (3) endosome rupture via particle 
swelling. Moreover, distinct nano constructs use distinct pathways, such as pH-responsive endosomal escape and proton 
sponge effect.288,289

In addition, pH-responsive endosomal escape results from conformational changes brought on by protonation or the 
breakdown of a polymer link at endosomes.290 Endosomal escape may be facilitated by interactions between cationic 
lipids and the negatively charged endosomal membrane. Following the protonation of its head group under acidic 
conditions, DOPE turns fusogenic, causing the formation of a hexagonal (HII) phase and momentarily destabilizing the 
endosomal membrane. The proton sponge effect, in which endocytosed polyplexes produce osmotic swelling of the 
endosome due to proton influx and eventually rupture the endosome, is hypothesized to be how cationic polyplexes 
undertake endosomal escape.291 Flow cytometry appears to be the most efficient and informative tool for studying the 
cellular uptake and trafficking of nanoparticles.292 Using nanoparticles that have been fluorescein-labeled, different 
information about particle localization on the cell surface, inside the cell, or into the acidic compartment, where the 
acidic pH quenches fluorescein’s fluorescence, can be learned.293,294
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Routes of Administration of mRNA Vaccines
The method of administration and formulation of mRNA vaccines have a crucial role in regulating the rate and amount of 
antigen expression as well as the effectiveness of the immune response.34,291 The route of administration can have 
a considerable impact on the organ distribution, expression kinetics, and therapeutic effects of LNP-mRNA 
formulations.165,295–298 The most popular routes of mRNA vaccines administration are intramuscular (IM), subcutaneous 
(SC), intradermal (ID), and intravenous (IV).10,17,70,165,253,291,299–301

The highest amount of encoded protein synthesis in the body can be achieved with IV injections of mRNA therapies. 
Moreover, the liver is typically the target of intravenous mRNA therapies, which effectively transfect endothelial, 
Kupffer, and hepatocyte cells.17,75,302 It is possible to generate adaptive immune responses from IV–injected mRNA 
vaccines by transfecting the spleen as a site of transfection.274,303 Some of the disadvantages of I, V administration 
include impediments to vaccine transport in the bloodstream caused by plasma proteins, enzymes, and mechanical 
forces.304 Additionally, systemic adverse effects such as spleen damage and lymphocyte depletion may be brought on by 
the mRNA and its delivery vehicles.21 LNP-mRNA vaccination IV injections are less frequent due to the possibility of 
systemic side effects. Infusing immunogenic material into the bloodstream may cause a cytokine storm, or the over-
whelming synthesis of cytokines, which can result in shock and death.305

The most popular method of administering vaccines to patients is through intramuscular injection.306,307 After IM 
injection, the LNPs are efficiently taken up by the myocytes before the cytoplasmic release of the mRNAs for S protein 
translation.308 IM injection allows for a higher volume to be injected than the ID and SC routes, which may result in 
fewer unpleasant injection site reactions but increased systemic absorption.130 In addition, SC injection-based mRNA 
vaccines allow for a relatively higher injection volume, which minimizes pressure and pain at the injection site.309 

However, one downside of SC injection is that the rate of absorption is slow, and inadvertent mRNA destruction may 
occur.309,310 Furthermore, with mRNA-LNP vaccines, the intradermal (ID) method of delivery has been found to 
successfully produce a Th1-type immune response and cytotoxic T-cell activation.311,312 According to certain studies, 
IM and ID delivery of LNP-mRNA vaccines led to longer-lasting protein expression than IV.70,313,314

Therapeutic protein augmentation in certain organs, such as heart,315,316 eyes,317–319 and brain, 320,321 is made 
possible by local injection of LNP-mRNA compositions. Additionally, immune stimulator-coding LNP-mRNA formula-
tions can be injected directly into cancer tissue by intratumoral injection.322–325 It has been noted that the intranodal (IN) 
injection of naked mRNA-encoding antigens causes a strong T-cell response.326

Utilizing the potential of mucosal immunity, intranasal (IN) vaccine delivery to the mucosal layers, like the nasal and 
pulmonary mucosa, is a practical, noninvasive method of vaccine administration.253,289,327,328 Pathogen-specific anti-
bodies that are produced in the mucus via mucosal vaccination can neutralize pathogens at the earliest stages of 
infection.329 Furthermore, mucosal delivery of mRNA vaccines can result in the release of immunoglobulin A (IgA), 
which can neutralize bacterial toxins and viruses.330 M cells move the LNPs from the nasal epithelium to the underlying 
nasal-associated lymphoid tissue, which is home to significant numbers of B cells, T cells, and DCs.327

Stability, and Storage of mRNA Vaccines
A cold chain is often required for vaccine storage and shipping, but the supply chain for mRNA vaccines may require an 
even colder cold chain331 than the conventional vaccines which can commonly be stored at 4–8°C.332 Spikevax and 
Comirnaty, two currently licenced COVID-19 mRNA vaccines, require storage temperatures of −20°C and between 
−80°C and −60°C, respectively.333

Inadequate mRNA storage can lead to chemical instability through reactions including oxidation and hydrolysis, 
changing the physical properties of the therapeutic product and perhaps its functionality.334,335 Furthermore, pH, buffer 
composition and concentration, metal cation presence, non-viral vector formulation composition, and physiochemical 
properties all have a major impact on stability.333 Currently, a cryoprotectant is used to store LNP-mRNA medications 
and vaccines for an extended time to avoid aggregation. Additionally, non-permeable cryoprotectants like sucrose and 
trehalose are used to permit vitrification of the surrounding aqueous solution.336,337

For mRNA-based vaccines, lyophilization, also known as freeze drying, is a common alternative storage technique 
that may support long-term stability at higher temperatures.338,339 Lyophilized mRNA-LNPs were stable for 6 months at 
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4°C and 3 months at room temperature.340 An interim ultra-cold chain storage device called Cryo-Vacc, created by the 
South African company Renergen, has been developed.66 Because lyophilization is an expensive, time-consuming, and 
high-energy process, additional drying techniques including spray drying and supercritical drying should also be 
investigated.201

According to a study on the long-term storage conditions of mRNA-loaded lipid materials by Zhao et al, lipid-like 
nanoparticles (mRNA-LLNs) maintained in an aqueous solution undergo size changes and lose efficacy in vivo.341 In 
comparison, freeze-dried mRNA LLNs kept their efficiency after being lyophilized with a 5% cryoprotectant solution 
and switched the preferential organ absorption from the liver to the spleen after being lyophilized with a 20% 
cryoprotectant solution.289

Application of mRNA Vaccines
mRNA-based medicines are projected to be effective treatments for a wide range of refractory disorders, including 
infectious diseases, metabolic genetic diseases, cancer, cardiovascular and cerebrovascular diseases, and others.342 

mRNA vaccines have been extensively researched over the last two decades for infectious disease prevention as well 
as cancer prophylaxis and therapy.70,343

The delivery of tumor-associated antigens (TAAs) expressing mRNA is the most fundamental application of mRNA 
vaccines in oncology.343,344 In addition to being utilized in cellular therapies to ex vivo transfect patient-derived cells 
before reinserting transfected cells into patients, mRNAs may be employed therapeutically to immunize patients. The 
TAA of interest is expressed by patient-derived DCs after they have been transfected with the mRNA encoding it, and 
TAA-derived peptides are then presented to stimulate antigen-specific T cells in vivo.345,346

Prophylactic or therapeutic mRNA vaccines against infectious illnesses could be produced. mRNA vaccines that 
express an infectious pathogen’s antigen elicit both strong and powerful T cell and humoral immune responses.20,70,163,347 

Vaccines are made from in vitro transcribed mRNAs encoding viral antigens, whereas immunotherapy is made from 
mRNAs encoding antibodies or immune modulators. Because of their interactions with cellular RNA sensors such as 
Toll-like receptors (TLRs), PKR, and RIG-I, some structural characteristics of mRNA have been identified as 
immunostimulatory.348–350 The extraordinarily rapid development of mRNA vaccine candidates for the recent global 
COVID-19 pandemic highlights its clinical value.351

In pre-clinical and clinical investigations, IVT mRNAs are being examined to supplement missing or faulty proteins 
caused by hereditary diseases, or where the delivered protein could have a therapeutic effect. Among the studies are the 
use of IVT mRNA to cure hepatic disorders,352 regenerate cardiac tissues,353 and generate human stem cells354 (Table 1).

Future Direction and Conclusions
Even though mRNA vaccines may be quickly made with commonly available materials and are relatively safer, there are 
still numerous difficulties. Bio-incompatibility, ineffective targeted delivery, poor transfection efficiency, immunogeni-
city, and instability are still a problem. Besides modification of the structure of the mRNA molecule, much emphasis has 
to be given to the delivery systems too.

Most of the adverse events observed from mRNA vaccines were also reported from RTS, S malaria vaccine, and other 
vaccines were also shared by other vaccines.356 Therefore, as far as mRNA vaccines are the current choice of vaccine 
development, further research is required to optimize the in vitro transcribed RNA vaccine and delivery materials, 
notably lipid nanoparticles, to address the aforementioned difficulties. Use of biodegradable lipids, changing (optimiza-
tion) of the four components of LNPs, use of effective purification techniques, chemical modifications to the mRNA 
molecule, such as cap structures and modified nucleosides, choice of appropriate delivery materials, use of cryoprotec-
tants and lyophilization technique, and appropriate implementation of cold chain requirements of mRNA vaccines are 
among the strategies to increase the effectiveness of mRNA vaccines.

Abbreviations
PEG, Polyethylene-glycol; cLNPs, Cationic Lipid Nanoparticles; CNEs, Cationic nano-emulsions; CPPs, Cell- 
penetrating peptides; CTLs, Cytotoxic T lymphocytes; EUA, Emergency Use Authorization; HPLC, high-performance 
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Table 1 Examples of mRNA vaccines (candidates) for infectious diseases, cancer, and other disorders currently in clinical trials.355 (as of July 14, 2023)

Clinicaltrials.gov 
Identifier (NCT Number)

Name of the mRNA Vaccine Condition Delivery System (Route 
of Administration)

Phase Status Sponsor

NCT04847102 SARS-CoV-2 mRNA Vaccine/ ARCoV-005 SARS-CoV-2 LNP (IM) III Recruiting Walvax Biotechnology 

Co., Ltd.
NCT03164772 BI 1361849 (formerly CV9202) Metastatic Non-small Cell Lung 

Cancer

NI (ID) I/II Completed Ludwig Institute for 

Cancer Research

NCT04978038 mRNA-COVID19-D3-2021 SARS-CoV2 Infection NI (IM) IV Not yet 
recruiting

Mark Loeb

NCT05144139 COVID-19 mRNA vaccine (SWC002) Covid-19 NI(IM) I/II Completed Stemirna Therapeutics

NCT05639894 RSV mRNA LNP CL-0059 and RSV 
mRNA LNP CL-0137

Respiratory Syncytial Virus 
Infection

LNP (IM) I/II Active, not 
recruiting

Sanofi Pasteur, a Sanofi 
Company

NCT00833781 mRNA-transfected autologous dendritic 

cells

HIV-1 Infection NI(ID) I/II Completed Massachusetts General 

Hospital
NCT00204516 mRNA coding for melanoma associated 

antigens

Malignant Melanoma NI(SC) I/II Completed University Hospital 

Tuebingen

NCT05823974 GSK4382276A Influenza, Human NI(IM) I/II Recruiting GlaxoSmithKline
NCT05526066 ARCT-810 Ornithine Transcarbamylase 

Deficiency (OTCD)

LNP (IV RECRUITING) II Recruiting Arcturus Therapeutics, 

Inc.
NCT05650554 MRT5413 Influenza Immunization NI(IM) I/II Active, not 

recruiting

Sanofi Pasteur, a Sanofi 

Company

NCT04852861 BNT162b2 Covid19 LNP (IM) IV Completed Sciensano
NCT05079633 mRNA-1273 Covid19 LNP (IM) IV Active, not 

recruiting

National Taiwan 

University Hospital

NCT01446731 mRNA transfected DC Prostatic Neoplasms ● (Direct injection of DCs) II Completed Inge Marie Svane

NCT05939648 LVRNA021 SARS-CoV-2 NI (IM) II Not yet 

recruiting

AIM Vaccine Co., Ltd.

NCT04382898 BNT112 Prostate Cancer LPX (IV bolus) I/II Recruiting BioNTech SE
NCT00204607 Stabilized Tumor mRNA Malignant Melanoma NI(ID) I/II Completed University Hospital 

Tuebingen

NCT05127434 mRNA-1345 Respiratory Syncytial Virus NI(IM) II/III Recruiting ModernaTX, Inc.
NCT04232280 mRNA-1647 Cytomegalovirus Infection Lyophilized (IM) II Completed ModernaTX, Inc.

NCT04159103 mRNA-3927 Propionic Acidemia LNP(IV) I/II Recruiting ModernaTX, Inc.

Abbreviations: NI, No Information; LNP, Lipid nanoparticle; LPX, Lipoplex, DC, Dendritic cell; IM, Intramuscular; ID, Intradermal; IV, Intravenous; SC, Subcutaneous.
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liquid chromatography; IRES, Internal ribosome entry site; IREs, iron-responsive elements; IRES, Internal Ribosome 
Entry Site; IVT, In Vitro Transcription; LNPs, lipid nanoparticles; mRNA, Messenger Ribonucleic Acid; nrRNA, non- 
replicating mRNA; PABP, poly-A binding protein; pDNA, plasmid DNA; PRRs, Pattern-Recognition Receptors; saRNA, 
self-amplifying mRNA; TLRs, Toll-like receptors; VLPs, virus-like particles.
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