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Background
Functional magnetic resonance imaging (fMRI) offers a noninvasive technology to 
examine hemodynamic signals in the cerebrovascular system. The hemodynamic bal-
loon model was introduced in 1998 to reveal the coupling dynamics between neural 
activity and blood oxygen level dependent (BOLD) responses by Buxton et al. [1]. The 
balloon model describes the causal mechanisms within a hemodynamic process in a cer-
tain region of interest (ROI) during brain activation. BOLD responses can be observed 
via the dynamic changes in cerebral blood volume (CBV) v, cerebral blood flow f, and 

Abstract 

Background:  The hemodynamic balloon model describes the change in coupling 
from underlying neural activity to observed blood oxygen level dependent (BOLD) 
response. It plays an increasing important role in brain research using magnetic reso-
nance imaging (MRI) techniques. However, changes in the BOLD signal are sensitive 
to the resting blood volume fraction (i.e., V0) associated with the regional vasculature. 
In previous studies the value was arbitrarily set to a physiologically plausible value to 
circumvent the ill-posedness of the inverse problem. These approaches fail to explore 
actual V0 value and could yield inaccurate model estimation.

Methods:  The present study represents the first empiric attempt to derive the actual 
V0 from data obtained using cerebral blood volume imaging, with the aim of aug-
menting the existing estimation schemes. Bimanual finger tapping experiments were 
performed to determine how V0 influences the model estimation of BOLD signals 
within a single-region and multiple-regions (i.e., dynamic causal modeling). In order to 
show the significance of applying the true V0, we have presented the different results 
obtained when using the real V0 and assumed V0 in terms of single-region model esti-
mation and dynamic causal modeling.

Results:  The results show that V0 significantly influences the estimation results within 
a single-region and multiple-regions. Using the actual V0 might yield more realistic and 
physiologically meaningful model estimation results.

Conclusion:  Incorporating regional venous information in the analysis of the hemo-
dynamic model can provide more reliable and accurate parameter estimations and 
model predictions, and improve the inference about brain connectivity based on fMRI 
data.

Keywords:  Blood volume fraction, Cerebral blood volume imaging, Dynamic causal 
modeling

Open Access

© 2016 Zhang et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate 
if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated.

RESEARCH

Zhang et al. BioMed Eng OnLine  (2016) 15:22 
DOI 10.1186/s12938-016-0137-6 BioMedical Engineering

OnLine

*Correspondence:   
zhenghui@zjut.edu.cn 
†Yan Zhang and Zhenghui 
Hu contributed equally to 
this work
3 Center for Optics 
and Optoelectronics 
Research, College of Science, 
Zhejiang University 
of Technology, Liuhe Road 
288, Hangzhou 310023, 
China
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12938-016-0137-6&domain=pdf


Page 2 of 11Zhang et al. BioMed Eng OnLine  (2016) 15:22 

vein deoxyhemoglobin (dHb) content q. This model is especially helpful in understand 
the potential consequences of interactions between physiological mechanisms. Since the 
inception of this model, there has been growing interest in using it to interpret observed 
fMRI data. The model can be used to infer biologically meaningful parameters that 
could be employed to investigate the changes in underlying physiological variables dur-
ing brain activation [2–5], restrict the activation detection process with classic statistical 
techniques [6, 7], and deduce similar systems or different driving conditions [8–11].

The primary causes of unreliability in model estimation is that the BOLD fMRI tech-
nique is sensitive to changes in the signal from venous blood. The change in the sig-
nal intensity of a particular voxel is strongly dependent on what fraction of the voxel 
the vessel occupies. Moreove, changes in BOLD signal intensities during task activation 
are related not only to multiple physiological states but also regional vessel occupancy, 
including capillaries and large veins. Indeed, the evaluation of model structure also indi-
cates that the blood volume fraction (BVF) greatly influences the uncertainty of model 
output [12]. However, this problem has been ignored in all previous studies. Most stud-
ies performed to data have avoided the ill-conditioning problem simply by employing a 
physiological plausible value of V0 = 0.02 instead of investigating the actual value in a 
particular ROI [2–5, 7, 13, 14] or throughout the brain [6, 15].

Given the importance of the true BVF, efforts are needed to incorporate actual vascu-
lar information of the voxel in the hemodynamic model estimation. Firstly, when a voxel 
includes only brain tissue, the assumption of V0 = 0.02 is reasonable [2, 16]. However, 
when a voxel is mostly or totally occupied by a vessel or vessels, the value might typically 
be above 0.6 [17]. Secondly, voxels associated with a larger amount of blood are always 
more likely to show significant BOLD activation due to the inherent nature of the fMRI 
technique. In this situation, employing an unrealistic V0 value might yield an unreliable 
model that does not reflect the physiological reality. This illustrates the importance of 
taking into account the actual BVF during the estimation procedure.

Several methods have been applied in attempts to obtain the true BVF. We recently 
showed that magnetic resonance angiography (MRA) might provide a method for 
roughly estimating the BVF value [18]. The results inferred that the V0 value in a voxel 
consists of two derivative components: (1) a constant tissue blood volume component 
Vs = 0.02, which is the small-vessel blood volume that includes capillaries and small 
postscapulaes, and (2) a variable large blood vessels component Vl, which is the blood 
volume of large blood vessels. However, this method has not been used to obtain the 
actual V0 directly. Indeed, the regional CBV can be measured by another imaging modal-
ity, called the dynamic susceptibility contrast (DSC) material-enhanced gradient-echo 
(GE) MR technique [19]. The present study therefore augmented the true BVF acquired 
from CBV imaging in order to focuses on the influence of V0 on hemodynamic model 
estimation and the importance of using the true BVF in the analysis.

This paper is organized as follows. Firstly, we briefly review the hemodynamic Balloon 
model which constitutes the fundamental component of hemodynamic model estima-
tion. Secondly, we explain the important influence of V0 with the adoption of a realistic 
value obtained from the CBV imaging technique. Lastly, the influence of V0 on model 
estimation within a single-region and multiple-regions according to the results of a 
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classic bimanual finger tapping experiment is discussed in terms of the impacts of the 
actual V0 on parameter estimates and state-space reconstruction.

Hemodynamic balloon model
The hemodynamic balloon model describes the dynamic interrelationship between the 
blood flow f (neural activity to changes in flow), the regional blood volume information v 
(changes in flow to changes in blood volume and venous outflow), and the vein dHb con-
tent q (changes in flow, volume and oxygen extraction fraction to changes in dHb). The 
hemodynamic process can be described as the follows:

where τs reflects signal decay, τf  is the feedback autoregulation time constant, τ0 is the 
transit time, α is a stiffness parameter, ǫ is the neuronal efficacy, u(t) is the neuronal 
input, and E0 represents the resting oxygen extraction fraction. The variables f, v, and 
q are expressed in normalized form, relative to resting values. The balloon model can 
account for the hemodynamic responses in sparse, noisy fMRI measurements [12, 15]. 
However, since the above describing equations contain a second-order time derivative, 
we can introduce a new variable s = ḟ  to express this hemodynamic system as a set of 
four first-order ordinary differential equations. Then the observed response BOLD sig-
nal could be expressed as follows:

This equation is appropriate when using an fMRI machine 1.5-T magnet. The observed y 
is normalized relative to the value at rest, and V0 is the resting BVF [2]. Equations 1 and 2 
consist of the architecture of hemodynamic input-and-output system. The model archi-
tecture is depicted in Fig. 1.

The BOLD response is associated with all of these parameters, but, we know that 
parameter V0 can not be identified along with other parameters simultaneously, instead 
only their product. Most previous efforts have imposed a physiologically plausible value 
of V0 = 0.02 to handle the ill-conditioned nature of the problem [2–10]. Changes in the 
BOLD signal are strongly affected by V0, and so an unrealistic V0 may lead to unreliable 
model parameter estimation.

Experiment
Two human subjects participated in this study. The experiment was approved by 
the Health Sciences Research Ethics Committee of Zhejiang University, and written 
informed consent was obtained from both subjects. Functional images were acquired on 
a 1.5-T scanner using a standard fMRI echo planar imaging protocol (resolution: 64 × 64 
matrix; repetition time TR = 2  s). In total, 110 acquisitions were made in a block-
designed finger tapping experiment, giving 11 20-s blocks. The conditions for successive 
blocks alternated between rest and task performance, starting with rest. Furthermore, 
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the CBV imaging sequence consisted of 30 T2∗-weighted images that were collected 
with a GE sequence (resolution: 128× 128 matrix; 0.1 mmol/kg Gd-DTPA administered 
using a powered injector). In order to achieve a sufficient signal-to-noise ratio and com-
plete coverage of the brain, TR was increased to 3.1 s, since a typical value is 1 s. The 
other sequence parameters remained unchanged.

All CBV images were down-sampled to make their spatial resolution identical to that 
of the fMRI image, and thereby allow voxel-by-voxel curve analysis. Concentration–
time curves were created for each voxel [20–23]. The calculated V0 was then used in 
an existing data estimation procedure [24]. Figure 2 shows an example of an axial CBV 
image and the observed S and fitted concentration–time curves from one voxel. Data 
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Fig. 1  Schematic illustration of the hemodynamic balloon model. This model consists of three linked subsys-
tems: (1) neural activity u(t) to changes in the cerebral blood flow f, the second-order time derivative equa-
tion is written as a set of two first-order time derivative equations by introducing a new state variable s = ḟ ;  
(2) changes in flow f to changes in the cerebral blood volume v; (3) changes in flow f, volume v and oxygen 
extraction fraction to changes in the veins in the vein dHb content q
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Fig. 2  Example of an axial CBV image (left) and the observed signal-intensity-versus-time curves (S(t), blue 
circles in right graphic) and fitted concentration–time curves (red line in right graphic). Red area denotes the 
estimated V0
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preprocessing and statistical analysis were performed using the SPM5 program (Well-
come Department of Cognitive Neurology, http://www.fil.ion.ucl.ac.uk/spm). The acti-
vation map was obtained by applying t-tests between all bimanual motor conditions and 
resting baselines with a cutoff for statistical significance of P < 0.001.

Results
Impact of BVF on single‑region model estimation

We now compare and evaluate the respective impact of the realistic and assumed BVFs 
on hemodynamic model estimation within a single-region. Firstly, we chose the maxi-
mally activated voxel in the left primary motor cortex (LPM) on the basis of the analyzed 
fMRI data from SPM5 as the ROI (Fig. 2) and then defined the cluster based on faces and 
edges excluding corners in order for this voxel to have six neighbors. We extracted the 
ultimate time series to be analyzed by averaging over the time series of seven voxels. This 
procedure allowed the model parameters and state-space functions for each of the two 
subjects to be estimated. Furthermore, for the sake of simplicity, we assumed that the 
neural parameter had the same value throughout all trails: ǫ1 = ǫ2 = · · · = ǫn, where n 
denotes the number of trials (i.e., n = 5 here). A control random search algorithm was 
applied in the parameter estimation procedure [25].

Figures 4 and 5 show the BOLD signal and underlying physiological variables of the 
two subjects for the real V0 derived from CBV imaging in the maximally activated voxel. 
The estimated BOLD signal and state variables for an assumed value of V0 = 0.02 are 
also drawn in Figs. 3 and 4 (as dashed lines). The comparison indicates that the assumed 
and true V0 could produce similar BOLD estimates in terms of magnitude and shape, 
with only a slight distinction in the plateau period. This result is consistent with those 
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Fig. 3  Selected ROIs based on typical activated areas detected in the bimanual tapping task. The activation 
map was obtained by applying t-tests between all bimanual motor conditions and resting baselines, with a 
cutoff for statistical significance of P < 0.001
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of previous studies involving the balloon model. However, we also found a large differ-
ence between the assumed and actual V0 values in terms of the reconstructed physi-
ological states. We can conclude that the intensity of changes in the underlying state 
variables with the assumed V0 were double those with the true V0; that is, underestimat-
ing V0 produced an overestimation of the physiological state variables. Moreover, Figs. 4 
and 5 indicate that a larger difference between actual V0 and hypothetical V0, resulted 
in a greater difference between estimated physiological state. This means that attention 
should be paid to ensuring that a realistic V0 is used in model estimation. The presence 
of a larger amount of blood in an activated voxel magnifies the effects induced by neu-
ronal activity, lead to an excessive signal for that voxel and unrealistic activity predic-
tions. Similar BOLD changes in a voxel associated with larger veins will change f, v, and 
q less than for a voxel with a smaller blood fraction. Most activation detection tech-
niques are only capable of indicating the neural activity from changes in BOLD signal or 
activity maps, and they do not direct infer whether the underlying physiological varia-
tion is closely related to V0 and actually reflects neural activity. Under this circumstance, 
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Fig. 4  Estimated BOLD signal (a) and reconstructed physiological states (b) for the maximally activated 
voxel of subject 1. For comparison, model estimation was also performed with the typically assumed value of 
V0 = 0.02. The real V0 value of this voxel was 0.0172. It is evident that differences in the estimated physiologi-
cal states are relevant to deviations from the actual BVF value
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Fig. 5  Estimated BOLD signal (a) and reconstructed physiological states (b) for the maximally activated 
voxel of subject 2. For comparison, model estimation was also performed with the typically assumed value of 
V0 = 0.02. The real V0 value of this voxel was 0.0308. It is also evident from this subject that differences in the 
estimated physiological states are relevant to deviations from the actual BVF value
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the use of an arbitrary value of V0 will influence the spatial specificity of fMRI signals in 
statistical testing. However, we can assume that functional activated regions induced by 
an experimental event rather than large regional amounts of blood and the employment 
of an unrealistic V0 are suitable when fMRI signal estimation and activation detection are 
exclusively needed.

Table 1 indicates that the uncertainty of V0 induces changes in other parameters, with 
V0 exerting a complicated, nonlinear, and inconsistent influence on the entire hemody-
namic process. Table  1 also indicates that V0 has a greater influence on the estimated 
neuronal efficacy parameter ǫ than on the other parameters (ǫ is 0.3910 with the true 
V0, and 0.9089 with the hypothetical V0). A previous study found that the uncertainty 
of model output was more sensitive to variation of ǫ than those of other parameters, 
except V0 [12]. The defined ǫ represents the efficacy with which neural activity causes 
an increased BOLD signal. As a consequence, if we could use the true V0, the estimated 
ǫ could offer a better and more intuitive reflection of the activation level, enhancing the 
functional specificity of fMRI.

Impact of BVF on dynamic causal models

As for balloon model research, dynamic causal modeling (DCM) has been introduced to 
explore effective connectivity based on hemodynamic observations [8, 9]. DCM extends 
the balloon model from a single region to multiple regions by utilizing a multiple-input, 
multiple-output system. Single-region model estimation supposes that the extrinsic 
experimental input consistently accesses all brain regions and that a certain brain area 
only receives input in this way (ǫu in Eq. 1), whereas DCM assumes that responses (xi in 
Eq. 3) are elicited by two distinct inputs sources: the extrinsic influence of the sensory 
input (ǫu in Eq. 3) and the intrinsic influence of the interaction regions (aijxk in Eq. 3). 
In other words, DCM uses estimated neural activities (internal and external) to evalu-
ate the causal correlation among brain areas. While the uncertain V0 has an important 
influence on parameter ǫ in the hemodynamic model, it is interesting to know how the 
V0 influences DCM. In this study we therefore also investigated the effect of V0 on DCM.

We constructed the simplest two-region hierarchical system in order to demonstrate 
the significant effect of BVF on the DCM system. From the two brain areas that interact 
with and influence each other, we could measure the observed BOLD signals that each 
of the two regions produced, the relationship can be expressed as follows:

where x1 and x2 are the neuronal dynamics in two regions, u1 and u2 represent exter-
nal inputs to the system, a11 and a22 represent the internal connectivity within a region 
without input, a12 and a21 encode the fixed inter-region connectivity without input, and 
c11 and c22 embody the extrinsic influences of input on neuronal activity. One can aug-
mented the state vector consisting of the model parameters at two regions by concat-
enating them into a single higher dimensional state space and the measurement vector 
was also expanded to include two observations in two areas [8]. In the experiment, we 
adopted a 0–1 square-wave function as two inputs, and the system output was two time 
series from two regions, x1 and x2. While attempting to determine the dimension of the 

(3)

{

ẋ1 = a11x1 + a12x2 + c11u1
ẋ2 = a22x2 + a21x1 + c22u2
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parameters, a more efficient filtering strategy was used to deal with the model estima-
tion problem [26, 27]. The estimation scheme employed for DCM is formally identical 
to that reported previously [5, 15]. The results of this analysis are presented in Fig. 5, 
in which the effective connections are presented as directed black arrows along with 
coupling parameters calculated with the real V0 and assumed V0. In order to construct 
the model system, we chose two regions in the left primary (LPM) and the right pri-
mary motor cortex (RPM) containing the two maxima of the activation map. The output 
region-specific time series comprised all adjacent (based on faces and edges but not cor-
ners) voxels of each maximum (a total of seven voxels), the location is shown in Fig. 2. 
The conflicts between the motor preparation were interpreted as inhibitory connections 
between the LPM and RPM [28, 29]. The fixed connectivity from the RPM to the LPM 
is actually slightly weaker than that from the LPM to the RPM. This indicates that back-
ward influences (RPM to LPM) are stronger than forward connections (LPM to RPM). 
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Table 1  Model parameters estimated using the true value (Vt) and a typical assumed value 
(Va) for the maximally activated voxels of two subjects

Subject Maximally activated voxel Model parameters

ǫ τs τf τ0 E0

1 Vt = 0.0172 0.8858 1.9067 2.9133 4.7506 0.5579

Vα = 0.02 0.6598 2.6444 3.1977 5.2499 0.4388

2 Vt = 0.0308 0.3910 3.3874 2.8647 4.5286 0.6288

Vα = 0.02 0.9089 1.6889 2.5726 4.4636 0.6569
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Furthermore, the fixed connectivity in the RPM is stronger than that in the LPM, indi-
cating that the right path-way is used more frequently than the pathway on the left side. 
From Fig.6 we conclude that the two different V0 have different impacts, with the largest 
deviation being about 40% for the strength of the visual input to the LPM or RPM.

Discussions
This study focused on the important but long ignored issue of how the resting cerebral 
BVF (i.e., V0) impacts hemodynamic models. Previous studies have used a physiologically 
plausible value of V0 = 0.02 instead of exploring the actual V0 in the model estimation 
procedure. However, the intensity of any hemodynamic signal change is greatly affected 
by the regional BVF, since the active domains subject to model estimation often overlap 
with those areas characterized by a large BVF [30]. Under such circumstances, an inac-
curate V0 may give rise to inaccurate estimates of the parameters and the reconstructed 
physiological state. This study used CBV imaging to augment the true V0 calculated in 
the hemodynamic model. In order to show the significance of applying the true V0, we 
have presented the different results obtained when using the real V0 and assumed V0 in 
terms of single-region model estimation and DCM. It was found that using the actual V0, 
yielded more realistic and physiologically meaningful model estimation results.

The results obtained in this study indicate that V0 has a rather complicated impact on 
estimated model parameters. Despite the BOLD responses being similar when using the 
assumed and real V0, there was a huge difference in the estimated parameters and the 
derived physiological state in the ROI. Because the balloon model describes the causal 
mechanism of a hemodynamic system, its order is higher than the externally observable 
system, which results in poorly identifiable model parameters due to the nature of non-
linear optimization and temporally sparse sampling. These model parameters have clear 
physiological meanings, and they should be justified and interpreted with caution [13, 
31]. If the actual V0 is adopted, ǫ can be more reliably observe via fMRI measurements. 
Therefore, V0 significantly influences the evaluations of brain connectivity. There have 
recently been extensive discussions on DCM and Granger causal modeling (GCM), with 
an emphasis on the connectivity among distributed brain systems [32–34]. In order to 
obtain a more robust understanding of brain causality, we used a biophysical model to 
eliminate signal bias in imaging procedure and variations of the hemodynamic response 
in diverse brain domains. However, an unrealistic V0 might degraded such efforts.

A potential limitation of the present study is to the extent that V0 as measured by CBV 
imaging is affected by the amount of blood associated with BOLD signals. We consider 
that both CBV imaging and the BOLD contrast have tiny difference in terms of the V0. 
The former contains the volume of blood across arteries, capillaries, and veins, whereas 
the latter is relevant to capillaries and veins [35]. Although the arterial fraction of CBV 
is much less than the venous BVF [36, 37], CBV imaging also partly removes the effect 
of overestimates about BVF. This is therefore a suitable method for approximating the 
value of V0. In addition, this study concentrated on explaining the influence of BVF on 
hemodynamic model estimation, and the results demonstrated the importance of taking 
advantage of actual BVF information in the estimation procedure. The argument about 
the origin of the two modalities were beyond the scope of this paper.



Page 10 of 11Zhang et al. BioMed Eng OnLine  (2016) 15:22 

Conclusion
The present study presented the first empiric attempt to derive the actual V0 from 
data obtained using CBV imaging, with the aim of augmenting the existing estimation 
schemes. The results show that V0 significantly influences the estimation results within a 
single-region model estimation and DCM. Using the actual V0 can provide more reliable 
and accurate parameterizations and model predictions, and improve brain connectivity 
estimation based on fMRI data.

Abbreviations
fMRI: functional magnetic resonance imaging; BOLD: blood oxygen level dependent; BVF: blood volume fraction; CBV: 
cerebral blood volume; DCM: dynamic causal modeling; ROI: region of interest; dHb: deoxyhemoglobin; DSC: dynamic 
susceptibility contrast; LPM: left primary motor; RPM: right primary motor.

Author’s contributions
 YZ lead data collection, performed the data analysis and drafted the manuscript. ZLW assisted with data collection, 
data analysis and the drafting of the manuscript. ZZC performed data collection. QL supported partly this study and 
drafted the manuscript. ZHH conceived of the study, guided its design and coordination, participated in data collection, 
performed the statistical analysis and drafted the manuscript. All authors read and approved the final manuscript.

Author details
1 College of Optical and Electronic Technology, China Jiliang University, Xueyuan Street 258, Hangzhou 310018, China. 
2 College of Optical Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China. 3 Center 
for Optics and Optoelectronics Research, College of Science, Zhejiang University of Technology, Liuhe Road 288, Hang-
zhou 310023, China. 

Acknowledgements
The authors would like to thank the editor and two anonymous referees for their insightful suggestions and valuable 
comments, which helped to improve the quality of our presented work. This work is supported in part by the National 
Basic Research Program of China under Grant 2013CB329501, in part by the National High Technology Research and 
Development Program of China under Grant 2012AA011600, in part by the National Natural Science Foundation of China 
under Grant 81271645, in part by the Public Projects of Science Technology Department of Zhejiang Province under 
Grant 2013C33162, and in part by the Zhejiang Provincial Natural Science Foundation of China under Grant LY12H18004.

Competing interests
The authors declare that they have no competing interests.

Received: 7 April 2015   Accepted: 4 February 2016

References
	1.	 Buxton RB, Frank LR. A model for the coupling between cerebral blood flow and oxygen metabolism during neural 

stimulation. J Cerebral Blood Flow Metab. 1997;17:64–72.
	2.	 Friston KJ, Mechelli A, Turner R, Price CJ. Nonlinear responses in fMRI: the balloon model, Volterra kernels, and other 

hemodynamics. NeuroImage. 2000;12:466–77.
	3.	 Riera JJ, Watanabe J, Kazuki I, Naoki M, Aubert E, Ozaki T, Kawashima R. A state-space model of the hemodynamic 

approach: nonlinear filtering of BOLD signals. NeuroImage. 2004;21:547–67.
	4.	 Johnston LA, Duff E, Egan GF. Particle filtering for nonlinear BOLD signal analysis. In: 9th international conference on 

medical image computing and computer assisted intervention (MICCAI), Copenhagen, Denmark. 2006. p. 292–9.
	5.	 Hu ZH, Zhao XH, Liu HF, Shi PC. Nonlinear analysis of the BOLD signal. EURASIP J Adv Signal Process. 2009;2009:1–13.
	6.	 Deneux T, Faugeras O. Using nonlinear models in fMRI data analysis: model selection and activation detection. 

NeuroImage. 2006;32:1669–89.
	7.	 Hu ZH, Zhang HY, Wang LW, Song XL, Shi PC. Joint estimation for nonlinear dynamic system from fMRI time series. 

In: 10th international conference on medical image computing and computer assisted intervention (MICCAI), 
Brisbane, Australia. 2007. p. 734–41.

	8.	 Friston KJ, Harrison L, Penny W. Dynamic causal modelling. NeuroImage. 2003;19:1273–302.
	9.	 Stephan KE, Kasper L, Harrison LM, Daunizeau J, Ouden HEM, Breakspear M, Friston KJ. Nonlinear dynamic causal 

models for fMRI. NeuroImage. 2008;42:649–62.
	10.	 Li XF, Marrelec G, Hess RF, Benali H. A nonlinear identification method to study effective connectivity in functional 

MRI. Med Image Anal. 2010;14:30–8.
	11.	 Li XF, Coyle D, Maguire L, McGinnity TM, Benali H. A model selection method for nonlinear system identification 

based fMRI effective connectivity analysis. IEEE Trans Med Imaging. 2011;30(7):1365–80.
	12.	 Hu ZH, Shi PC. Sensitivity analysis for biomedical models. IEEE Trans Med Imaging. 2010;29(11):1870–81.
	13.	 Johnston LA, Duff E, Mareels I, Egan GF. Nonlinear estimation of the BOLD signal. NeuroImage. 2008;40:504–14.



Page 11 of 11Zhang et al. BioMed Eng OnLine  (2016) 15:22 

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

	14.	 Hettiarachchi IT, Pathirana PN, Brotchie P. A state space based approach in non-linear hemodynamic response 
modeling with fMRI data. In: 32nd annual international conference of the IEEE EMBS, Buenos Aires, Argentina. 2010. 
p. 2391–4.

	15.	 Hu ZH, Shi PC. Nonlinear analysis of BOLD signal: biophysical modeling, physiological states, and functional activa-
tion. In: 2007 IEEE international conference on image processing (ICIP), San Antonio, Texas, USA. 2007. p. 145–8.

	16.	 Jezzard P, Matt PM, Smith SM. Functional MRI: an introduction to methods. New York: Oxford University Press; 2001.
	17.	 Lu HZ, Law M, Johnson G, Ge Y, van Zijl PCM, Helpern JA. Novel approach to the measurement of absolute cerebral 

blood volume using vascular-space-occupancy magnetic resonance imaging. Magn Reson Med. 2005;54:1403–11.
	18.	 Hu ZH, Liu C, Liu PS, Liu HF. Exploiting magnetic resonance angiography imaging improves model estimation of 

BOLD signal. PLoS One. 2012;7(2):31612.
	19.	 Rempp KA, Brix G, Wenz F, Becker CR, Lorenz FGWJ. Quantification of regional cerebral blood flow and volume with 

dynamic susceptibility contrast-enhanced MR imaging. Radiology. 1994;193:637–41.
	20.	 Rosen BR, Belliveau JW, Buchbinder BR, McKinstry RC, Porkka LM, Kennedy DN, Neuder MS, Fisel CR, Aronen HJ, 

Kwong KK, Weisskoff RM, Cohen MS, Brady TJ. Contrast agents and cerebral hemodynamics. Magn Reson Med. 
1991;19:285–92.

	21.	 Norman D, Axel L, Berninger WH, Edwards MS, Cann CE, Redington RW, Cox L. Dynamic computed tomography of 
the brain: techniques, data analysis, and applications. Am J Roentgenol. 1981;136(4):1–12.

	22.	 Madsen MT. A simplified formulation of the gamma variate function. Phys Med Biol. 1992;37(7):1597–600.
	23.	 Chan AA, Nelson SJ. Simplified gamma-variate fitting of perfusion curves. In: 2th IEEE international symposium on 

biomedical imaging (ISBI), Arlington, VA, USA. 2004. p. 1067–70.
	24.	 Hu ZH, Peng JL, Kong DX, Chen YM, Zhang HY, Lu MH, Liu HF. A novel statistical optimization strategy for estimating 

intravascular indicator dynamics using susceptibility contrast-enhanced MRI. IEEE Trans Med Imaging (submitted)
	25.	 Hu ZH, Ni PY, Liu C, Zhao XH, Liu HF, Shi PC. Quantitative evaluation of activation state in functional brain imaging. 

Brain Topogr. 2012;25:362–73.
	26.	 Julier SJ, Uhlmann JK. Unscented filtering and nonlinear estimation. Proc IEEE. 2004;92(3):401–22.
	27.	 Merwe R, Wan EA. The square-root unscented Kalman filter for state and parameter-estimation. In: 2001 IEEE inter-

national conference on acoustics, speech and signal processing, Salt Lake City, Utah, USA. 2001. p. 3461–4.
	28.	 Immisch I, Waldvogel D, VanGelderen P, Hallett M. The role of the medial wall and its anatomical variations for 

bimanual antiphase and in-phase movements. NeuroImage. 2001;14:674–84.
	29.	 Weerd PD, Reinke K, Ryan L, McIsaac T, Perschler P, Schnyer D, Trouard T, Gmitrof A. Cortical mechanisms for acquisi-

tion and performance of bimanual motor sequences. NeuroImage. 2003;19:1405–16.
	30.	 Kim DS, Duong TQ, Kim SG. High-resolution mapping of isoorientation columns by fMRI. Nat Neurosci. 2000;3:164–9.
	31.	 David O, Guillemain I, Saillet S, Reyt S, Deransart C, Segebarth C, Depaulis A. Identifying neural drivers with func-

tional MRI: an electrophysiological validation. PLoS Biol. 2008;6(12):e315.
	32.	 Roebroeck A, Formisano E, Goebel R. The identification of interacting networks in the brain using fMRI: model selec-

tion, causality and deconvolution. NeuroImage. 2011;58:296–302.
	33.	 Lohmann G, Erfurth K, Muller K, Turner R. Critical comments on dynamic causal modelling. NeuroImage. 

2011;59(3):2322–9.
	34.	 Friston KJ, Li BJ, Daunizeau J, Stephan KE. Network discovery with DCM. NeuroImage. 2011;56(2):1202–21.
	35.	 Uǧurbil K, Adriany G, Andersen P, Chen W, Gruetter R, Hu XP, Merkle H, Kim DS, Kim SG, Strupp J, Zhu XH, Ogawa S. 

Magnetic resonance studies of brain function and neurochemistry. Ann Rev Biomed Eng. 2000;2:633–60.
	36.	 Ito H, Kanno I, Lida H, Hatazawa J, Shimosegawa E, Tamura H, Okudera T. Arterial fraction of cerebral blood volume 

in humans measured by positron emission tomography. Ann Nucl Med. 2001;15(2):111–6.
	37.	 An HY, Lin WL. Cerebral oxygen extraction fraction and cerebral venous blood volume measurements using MRI: 

effects of magnetic field variation. Magn Reson Med. 2002;47:958–66.


	Nonlinear estimation of BOLD signals with the aid of cerebral blood volume imaging
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Background
	Hemodynamic balloon model
	Experiment
	Results
	Impact of BVF on single-region model estimation
	Impact of BVF on dynamic causal models

	Discussions
	Conclusion
	Author’s contributions
	References




