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Alterations in mechano-physiological properties of a tissue instigate cancer burdens

in parallel to common genetic and epigenetic alterations. The chronological and

mechanistic interrelation between the various extra- and intracellular aspects remains

largely elusive. Mechano-physiologically, integrins and other cell adhesion molecules

present the main mediators for transferring and distributing forces between cells and the

extracellular matrix (ECM). These cues are channeled via focal adhesion proteins, termed

the focal adhesomes, to cytoskeleton and nucleus and vice versa thereby affecting

the pathophysiology of multicellular cancer tissues. In combination with simultaneous

activation of diverse downstream signaling pathways, the phenotypes of cancer cells

are created and driven characterized by deregulated transcriptional and biochemical

cues that elicit the hallmarks of cancer. It, however, remains unclear how elastostatic

modifications, i.e., stiffness, in the extracellular, intracellular, and nuclear compartment

contribute and control the resistance of cancer cells to therapy. In this review, we discuss

how stiffness of unique tumor components dictates therapy response and what is known

about the underlying molecular mechanisms.

Keywords: stiffness, extracellular matrix, cancer resistome, radio(chemo)resistance, cell-extracellular matrix

interaction, focal adhesions, solid stress

INTRODUCTION

Stiffness refers to the rigidity of a material or the extent to which the material can resist to
deformation or deflection in response to an applied force (1). Typically, stiffness depends on
properties of the material such as the composition and organization of the building elements. A
stiff as compared to a flexible structure is less susceptible to deform under an external load and,
consequently, apt to develop greater stress.

Generally, the composition of the extracellular matrix (ECM) determines the stiffness of a tissue
(2, 3). Cells are surrounded by ECM providing structural and biochemical support. Eventually,
these interactions present the fundamental organization unit of multicellular complex development
into tissues. The ECM comprises two classes of macromolecules: polysaccharide chains and fibrillar
proteins (4). The polysaccharide chains are covalently bound to transmembrane proteins and
assemble into proteoglycans. The fibrillar proteins like collagens, fibronectin, elastin, and laminins
have structural functions and serve as ligands for cell adhesion molecules. The proteoglycans
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form a gel-like structure in which the fibrillar proteins are
embedded. Mesenchymal cells such as fibroblasts are responsible
for the production and secretion of ECM proteins (5–8). The
ECM is constantly reorganized and its dynamic is modulated
by growth factors, cytokines, hormones, and extracorporal
factors influencing significantly tissue physiology, morphology,
homeostasis, and repair (9). A primary source of ECM
restructuring is re-synthesis or proteolytic degradation by matrix
metalloproteinases (MMPs) (10, 11). Several studies indicate that
the spatio-temporal organization and dynamic re-modulation of
the ECM has extensive biological implications for tumorigenesis
promotion, progression, and metastasis.

In general, the outgrowth of a tumor produces an additional

physical pressure, also defined as stress, on the host tissue and
this is reciprocally balanced by the physical stress generated by
the host tissue on the tumor. To overcome the stress enforced
by the host tissue, tumor stiffening is essential for allowing
host tissue displacement and growth in size (12). Tumors
modulate their surrounding microenvironment including ECM,
which results in alterations of tissue stiffness, porosity, and
organization (13). A number of studies demonstrated specific
changes in the mechanical properties of tumors over the time

FIGURE 1 | Extracellular matrix (ECM), cellular end nuclear stiffness are regulated by several factors. The ECM remodeling is highly dependent on cancer associated

fibroblasts (CAFs). The cell stiffness instead is regulated by integrins and focal adhesion proteins (FAPs), which contribute to cancer radio- and drug-resistance by

mediating cell adhesion to the extracellular matrix. Upon cell adhesion to ECM, integrins induce pro-survival signaling cascades mediating radiotherapy- and

drug-resistance (CAM-RR and CAM-DR). Finally, the nuclear stiffness is regulated by the levels of lamin-A/C and chromatin condensation. Created with BioRender.

of their progression. When measured as single component,
cancer cells and their nuclei become softer compared to normal
cells (14, 15) suggesting a dis-regulation of cellular signaling
pathways, cell proliferation, migration, survival, and treatment
resistance (16, 17).

Fundamental for cell stiffness and mechanical forces are focal
adhesions, serving as nexus between cytoskeleton and ECM
(18–20). Cell adhesion elicits activation of different cytoplasmic
signaling pathways for co-regulation of pro-survival mechanisms
(5–8). Key mediators of this adhesion are integrins, an essential
family among cell adhesion molecules. ECM reorganization
drives significant changes in the integrin-mediated signaling
pathways fundamental for tumor development and response to
chemo- and radiotherapy (21–24). Various studies in normal
(e.g., human fibroblasts and keratinocytes) and tumor cells
(e.g., glioblastoma, pancreatic carcinomas, bronchial carcinomas,
melanomas, breast cancers) documented adhesion to ECM
to enhance resistance to ionizing radiation, chemotherapy,
and molecular therapies (25, 26). These mechanisms are
referred to as cell adhesion-mediated radioresistance (CAM-
RR) and cell adhesion-mediated drug resistance (CAM-DR)
(Figure 1) (25, 27).
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This review gives insights into recent findings of how
tissue, cellular, and nuclear stiffness are associated with therapy
resistance and discusses the underlying mechanisms.

REGULATION OF CANCER THERAPY
RESISTANCE THROUGH ECM
REMODELING AND STIFFNESS

During tumor progression, cellular and genomic
alterations occur, which are accompanied by changes in
mechanical properties in the intracellular- and extracellular
environment. The ECM is a key component of the tumor
microenvironment, which interacts with cancer cells and
regulates signaling cascades through focal adhesion proteins
(FAPs) (28–30).

The ECM of tumors, primarily composed of fibrous tissue,
becomes stiffer due to an increase of fiber cross-linking (31, 32).
This is in line with the development of desmoplasia during
carcinogenesis. Desmoplasia is an intense fibrotic response
characterized by the formation of dense ECM (31). Tumors
with high desmoplasia are considered to be more aggressive and
associated with worse prognosis (31). Reports showed cancer-
associated fibroblast to (over-)secrete matrix and modulate
tumor phenotype and therapy response (31). These dynamic
ECM modifications alter the ECM mechanical properties:
degradation, re-polymerization, and alignment, contributing to
a re-arrangement of ECM fibers and strain-induced stretching
(33–38). In order to remodel the matrix, cancer cells and
CAFs release enzymes, such as MMP and lysyl oxidases (LOX),
which degrade and crosslink the ECM, respectively (Figure 2A).
A structural analysis of the fibrillary collagen revealed the
presence of reorganized collagen in the tumor-stromal interphase
(39). Moreover, it was demonstrated that an increased collagen
alignment and fiber thickness is a negative prognostic marker for
cancer, supporting the significance of ECM dynamic in cancer
progression (40–43).

ECM stiffness is related to a high malignant tumor phenotype
(16). This can be explained by: (a) limited distribution
and penetration of drugs (44) and/or (b) alterations in
integrin signaling, focal adhesions, Rho/Rho-associated protein
kinase (ROCK) pathway activation, as well as actomyosin-
and cytoskeletal-dependent cell contractility and increased
Ca2+ influx through mechanosensitive channels (28, 45, 46).
For instance, integrins respond to the force alteration by
rearrangement and aggregation in clusters at the plasma
membrane. The cluster is composed of multiple mechanosensors
(e.g., talin, vinculin), signaling molecules [e.g., focal adhesion
kinase (FAK), proto-oncogene tyrosine-protein kinase Src (SRC),
Phosphoinositide 3-kinase (PI3K)], adapter proteins [paxillin,
LIM, and senescent cell antigen-like-containing domain protein
1 (PINCH1)], and actin linker proteins (e.g., filamin, alpha-
actinin), which physically connect integrins to the cytoskeleton.
On stiff substrates, the resistance to cellular tension leads to talin
stabilization mediated by vinculin binding and also enhances
FAK activation. These are some of the key mediators of the
transmission of contractile forces to the cytoskeleton (17).

The higher aggressiveness also originates from matrix
stiffness-induced epithelial to mesenchymal transition (EMT)
being accompanied by cancer cell migration and invasion due to
loss of intercellular adhesions (Figure 2A) (47, 48). EMThas been
found to be related to treatment resistance (47, 48).

Another feature of the intra-tumoral microenvironment
regulated by stiffness is the high interstitial hydrodynamic
pressure induced by hypervascularization during tumor
development. Such pressures have been found to promote tumor
progression by impairing vessel function through constriction,
thereby limiting tumor oxygen and nutriment supply, also
known as hypoxia (44). Hypoxic tumors are known to be
resistant to anticancer therapy, including radiation therapy,
chemotherapy, and targeted therapy (44, 49).

Additional determinants of tumor stiffness are genetic
mutations as they are not limited to initial driver mutations
but encompass a wide genomic variation corresponding to the
normal tissue where a tumor arises. High stiffness is correlated
with dense collagen matrices resulting in small pore sizes for
cells to transverse (50, 51). These events can drive genomic
diversity through DNA damaged during migration. Meta-
analyses showed that tumors originating from stiff tissues (e.g.,
lung, skin, bone) have substantially higher somatic mutations
and chromosome copy numbers than malignancies originating
from soft tissues (e.g., bone marrow, brain) (50). There are
three hypotheses stating stiffness to drive genomic instability:
(a) stiffness induces cell proliferations, increasing the probability
to acquire spontaneous mutations; (b) stiffness increases the
frequency of nuclear envelop rupture; (c) invasion of cancer cells
through packed-tissue environments causes cell selection with a
more aggressive phenotype (50).

Altogether, to gain a better understanding in the dynamics
of cancer, it is necessary to uncover the effects cellular and
extracellular mechanical properties elicit on tumor growth,
metastatic spread and therapy resistance (Table 1). The basis
of these events is cell behavior, which profoundly depends on
mechanical properties and forces controlling signaling pathways
involved in cell differentiation, proliferation, migration, and
survival mechanisms (64–69).

The role of the ECM in treatment resistance was
predominantly investigated for chemotherapeutics, with breast
cancer being one of the most frequent models used (Table 1).
As a matter of fact, one of the early detection methods for this
tumor entity was the determination of abnormal stiffness by
palpation or using medical devices. By means of an poly(ethylene
glycol)-phosphorylcholine (PEG-PC) hydrogel system, Nguyen
et al. examined the response of breast cancer cells to the Raf
kinase inhibitor sorafenib in different stiffness substrates (55).
The efficacy of sorafenib was reduced depending on stiffness
and collagen concentration but independent of the commonly
associated ROCK activity. Instead, triple negative breast cancer
cells sustained an activation of JNKmediating the drug resistance
(55). However, the combination of a JNK inhibitor with sorafenib
eliminated the stiffness-mediated resistance. Strikingly, they
found out that ERK (extracellular-signal-regulated kinase) and
p38 (mitogen-activated protein kinases) were not involved in the
drug resistance, it was rather regulated by β1 integrin (55).
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FIGURE 2 | (A) The extracellular matrix (ECM) secretion depends mainly on cancer associated fibroblasts (CAFs). The dynamic reorganization of ECM is regulated by

matrix metalloproteinase (MMP)-dependent matrix degradation and lysyl oxidase (LOX)-dependent ECM crosslinking. Changes in ECM and stiffening leads to: (a)

epithelial-to-mesenchymal transition (EMT) enhancing cell migration and invasion, (b) limited drugs distribution, (c) genomic alterations resulting in clonogenicity and

heterogeneity, and (d) the activation of key adhesion proteins, such as integrin. (B) Integrin-dependent outside-in signaling mechanisms regulated cell adhesion to

ECM as part of their role in cancer radio- and drug-resistance. Many of these mechanisms involve the focal adhesion kinase (FAK). (C) The Linker of Nucleoskeleton

and Cytoskeleton (LINC) complex is composed of two families: KASH located at the nuclear membrane exterior (NME) and SUN situated in the nuclear membrane

interior (NMI). LINC regulates the physical transmission of forces generated by the ECM and cytoskeleton. Moreover, a low expression levels of lamin-A/C is correlated

with a high cell migration and an increase of therapy resistance. Cells adjust to mechanical tensions by enhancing the expression level of lamin-A and phosphorylated

emerin. LINC complex detaches from the nucleus and cytoskeleton to maintain DNA integrity when cells fail to manage the tension. Created with BioRender.

Moreover, Joyce et al. showed that extrinsic resistance
is associated with matrix stiffness (56). As culture
model, an innovative 3D alginate-based hydrogel system
enabling dynamic ECM stiffening over time was used.
The results displayed a stiffness-dependent response to the
chemotherapeutic doxorubicin in triple negative breast cancer
cells (MDA-MB-231), while a non-triple negative cell model
(MCF7) failed to show the same stiffness-dependent resistance

(56). This differential therapeutic response was correlated with
a nuclear translocation of YAP, a marker of mesenchymal
differentiation. In fact, a higher level of nuclear YAP was found
in MDA-MB-231 relative to MCF7 cells (56).

Another example of a cancer entity with poor prognosis that
seems to be dependent on ECM stiffness and EMT is pancreatic
cancer (62). Pancreatic cancer is one of the stiffest human solid
carcinomas characterized by a fibrotic reaction, leading to the
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TABLE 1 | Overview of ECM stiffness-mediated resistance in different tumor entities.

Tumor entity Method Treatment Stiffness effects on therapy resistance References

Hepatocellular carcinoma Polyacrylamide (PA) gels Cisplatin ↑stiffness, ↑resistance (52)

↓stiffness, ↑cell dormancy, and stem cells

characteristics

Alginate gel (ALG) beads Paclitaxel, 5-FU, and

cisplatin

↑stiffness, ↑resistance (53)

COL1-

coated polyacrylamide gel

Oxaliplatin ↑stiffness, ↑resistance (54)

96-well PEG-PC hydrogel platform Sorafenib ↑stiffness, ↑resistance (55)

Breast cancer 3D alginate-based hydrogel system Doxorubicin ↑stiffness, ↑resistance in triple negative

cells

(56)

In vivo: heterozygous col1a1tm1Jae (mCol1a1)

mice with excessive collagen I accumulation

Rapamycin ↑stiffness, ↑resistance in lung metastatic

cells but not in primary tumor

(57)

Melanoma PEG hydrogels PLX4032 Cell line-dependent response, ↓stiffness,

↑apoptosis

(58)

In vivo serial biopsies Vemurafenib

(Zelboraf®)

↑stiffness, ↑resistance, ↑tumor relapse (59)

Myeloid leukemias 3D hydrogels, in vivo Several

chemotherapeutics

↓stiffness, ↑resistance to standard

chemotherapeutics

(60)

Laryngeal squamous cancer Polyacrylamide (PA) gels Cisplatin or 5-FU ↓stiffness, ↑resistance (61)

Pancreatic cancer Polyacrylamide (PA) gels Paclitaxel ↑stiffness, ↑resistance (62)

Glioblastoma Chitosan–hyaluronic acid scaffolds Temozolomide ↑stiffness, ↑resistance (63)

Research methods and treatment are included.

activation of EMT-related and prosurvival signaling pathways
(62). Rice et al. reported that in vitro PDAC cell lines cultured
on varying stiff polyacrylamide gels had different behavior than
the corresponding tumors in vivo. Resistance to gemcitabine, a
therapeutic drug that inhibits DNA synthesis and transcription,
was shown to be unchanged with increased rigidity, although
matrix rigidity still promoted EMT. In contrast, cells grown on
stiff gels showed increased resistance to paclitaxel (a taxane that
stabilizes microtubules preventing mitosis) compared with the
softer conditions (62).

The second most studied tumor entity, in terms of matrix
stiffness, is the hepatocellular carcinoma (HCC) since it often
relates to liver fibrosis. Various studies demonstrated resistance to
cisplatin, sorafenib, paclitaxel, 5-FU, and oxaliplatin to depend on
ECM stiffness (52–55). It was also shown that a large number of
cells were dormant and carrying stem cell-like characteristics in
HCCwhen cultivated in low stiffness (52). Liu et al. culturedHCC
cells in alginate gel beads with different degrees of stiffness (53).
Cells cultured in the stiff matrices resisted to cisplatin, 5-FU, and
paclitaxel, whereas cells in the soft environment were sensitive
to these agents. Moreover, cells encapsulated in alginate beads
highly express ABC transporters and endoplasmatic reticulum-
related proteins compared to 2D growth conditions. These
proteins are supposed to contribute to drug resistance of solid
tumors and treatment failure.

A recent study focused on thematrix stiffness-mediated effects
in HCC stem cells (54). In this work, the authors showed
that, when the substrate stiffness is increased, HCC cells exhibit
an elevated number of CD133(+)/EpCAM(+) positive cells
(stem cells markers). The increase in this cell population was

accompanied by elevated expression levels of EpCAM, Nanog,
and SOX2 (54). Moreover, the phosphorylation levels of Akt and
mTOR were upregulated showing a greater self-renewing ability
and oxaliplatin resistance. Interestingly, when these populations
were subjected to integrin inhibition, all the previous described
effects were attenuated, suggesting that integrin β1 may deliver
higher stiffness signal inside HCC cells activating stemness
associated signaling cascades (54).

Opposite to the results from You et al. (54), human laryngeal
squamous cell carcinoma (Hep-2) cells cultured in a low stiffness
environment showed an enhanced expression of stem cell
markers (61). In addition, under the low stiffness environment,
Hep-2 cells underwent less apoptosis to cisplatin and 5-FU. The
authors suggested that the observed chemoresistance is related
to increased Sox2 levels and an upregulation of the ABCG2
protein, a membrane xenobiotic transporter connected to multi-
drug resistance (61). These examples illustrate the diversity of
resistancemechanisms in different tumor entities, suggesting that
there is no “one-for-all” approach, and thus only tumor-specific
studies shed light on the mechanisms.

Tokuda et al. studied the effect of stiffness on the treatment
response of melanoma cells, showing a cell-line dependent
effect (58). Cells were grown in different PEG hydrogels with
variable tensile moduli and treated with a BRaf inhibitor—
PLX4032. Cells derived from radial growth phase (WM35)
presented stiffness-dependent chemoresistance in contrast to
the metastatic melanoma cells (A375) (58). A recent study on
therapeutic relapse to another BRaf inhibitor—vemurafenib—
used serial biopsies of genetically modified mice (59). Next-
generation sequencing and single-cell transcriptomics enabled
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TABLE 2 | Cell stiffness and related causes in different tumor entities, together with an overview of the methods for measuring cell stiffness.

Tumor entity Method Treatment Stiffness effects on therapy resistance References

Breast cancer Optical tweezers Different stiffness

substrates

↓ECM stiffness, ↑cellular stiffness (82)

Atomic Force Microscopy (AFM) Soft and stiff gels//EGFR

inhibitor (Cetuximab)

↑stiffness when cultured on stiffer

substrates//↑stiffness upon EGFR

inhibition

(83)

Prostate cancer Magnetic twisting cytometry Paclitaxel ↑stiffness, ↑resistance, ↑fluid-like behavior (84)

Ovarian cancer Atomic Force Microscopy (AFM) Cisplatin ↑stiffness, ↑resistance (85)

Filtration device depending on cellular pressure

driven deformation

Cisplatin ↓stiffness, ↑resistance (86)

Liver cancer Atomic Force Microscopy (AFM) Different shear stresses

(parallel plated flow

chamber)

↑shear stress, ↓stiffness (87)

Leukemia Microfluidic system for cell sorting and Atomic

Force Microscopy (AFM)

Daunorubicin ↓stiffness, ↑resistance (88)

Transformed mesenchymal

stem cells

Atomic Force Microscopy (AFM) Hypermethylation of

cancer 1 (HIC1) and

Ras-association domain

family member 1A

(RassF1A)

↓stiffness, ↑tumor aggressiveness (89)

tracking of the evolution of multiple cellular “compartments”
within individual lesions during first-line treatment response,
relapse, and second-line therapeutic interventions (59). It became
clear that tumor relapse is genetically stable, while differentiation
state and ECMcontribute significantly to the resistant phenotype.
The result from in vitro experiments presented a correlation
between cell state changes and ECM remodeling, suggesting an
increased tumor stiffness modulates tumor cell fate and reduces
treatment responses (59).

For glioblastoma, the most common brain tumor in adults
(70), no physiologically relevant model is currently available
for exploring effects of cellular stiffness. The majority of
investigations on stiffness applied 2D cultures system. Erickson
et al. suggested a newly developed and characterized Chitosan-
Hyaluronic Acid scaffold with varying stiffness for glioblastoma
cell culture (63). They showed glioblastoma cells to form
large spheroids in stiff scaffolds exhibiting a higher degree of
drug resistance and a more invasive phenotype relative to 2D
models (63).

Altogether, we conclude that an increase of ECM stiffness
leads to enhanced therapy resistance, with some exceptions that
might be tumor- or substrate/matrix-dependent. ECM stiffness,
therefore, might be used as a physical marker for the prediction of
tumor therapy resistance. Certain contradictory issues, especially
in terms of stemness, need to be clarified. Cancer stem cells are
a well-known factor of therapy resistance and more studies are
necessary to understand how these subpopulations behave in
different stiffness substrates.

REGULATION OF CANCER RESISTANCE
THROUGH CELLULAR STIFFNESS

Regulation of cellular stiffness is typically dictated by a
variety of factors such as cytoskeleton organization, number of

focal adhesion clusters, and nuclear deformability. Generally,
cancer cells tend to be softer than their normal counterpart
(= tissue of origin) depending on the status of their malignant
transformation (35, 71–77).

Using magnetic tweezers to probe cellular resistance to
physical force, a study in ovarian cancer cells demonstrated that
the migration and invasion potential are inversely proportional
to cellular stiffness. Moreover, some treatments such as
pharmacological myosin II inhibitors reduce cellular stiffness
and, therefore, convert cancer cells into a more invasive
phenotype (75, 78). Pathways regulating these mechanical cues
may potentially serve as targets for molecular cancer therapy.

Cellular stiffness is also determined by particular membrane
proteins found in focal adhesions. FAPs assemble into protein
complexes and act as connecting and adaptor proteins between
ECM and the cellular interior (18–20). The complexes transmit
extracellular signaling and mediate a strong interaction with
the actin cytoskeleton. In many cancers, these proteins are de-
regulated, resulting in abnormal cell-cell and cell-ECM adhesion.
Integrins are commonly overexpressed in tumors and affect
growth rate, cellular morphology, and invasiveness (28, 79, 80).
Integrin activation triggers cytoskeletal re-arrangements through
the regulation of signaling cascades like Src- and FAK and their
downstream signaling pathways for therapy resistance (81).

The effects of cellular biophysical properties fundamental for
therapy resistance remain to be clarified (Table 2). Liu et al. used
a microfluidic platform to evaluate cancer cell transportability
and invasiveness in heterogeneous breast cancer cells (90). Cell
transportability is determined by cellular stiffness and cell surface
frictional property, allowing the discrimination between more
and less invasive phenotypes (90). The same principle was applied
in another study. Leukemic cells treated with daunorubicin were
sorted according to their cellular stiffness using a microfluidic
device (88) uncovering cellular physics to serve as distinctive
features between chemoresistant and -sensitive cells. Softer cells
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showed an alteration in multiple mechanisms related to drug
resistance, including decreased sensitivity to apoptosis induction,
enhancedmetabolic activity, and regulation of key genes involved
in extrusion of drugs such as CYP supergene family typically
involved in drug resistance (88).

Using lab on chip technology, several studies investigated
the influence of cell deformability on the chemotherapeutical
response of ovarian, breast, and prostate cancer. It became
clear that cisplatin-resistant ovarian cancer cells have more
elastic deformation capability relative to cisplatin-sensitive cell
populations (86). Although these results seem exciting, they are
in contrast to the study of Sharma et al. showing that cisplatin-
resistant ovarian cancer cells are stiffer than their normal
counterpart. This stiff phenotype is characterized by cytoskeletal
long actin stress fibers mediated by Rho GTPases (85).

In line with this, paclitaxel-resistant prostate cancer cells were
shown to be stiffer than the non-resistant counterpart. Kim
et al. showed that paclitaxel-resistant cells gain mobility and
invasiveness through increased EMT (84). Moreover, enhanced
cell migration and invasion of paclitaxel-resistant cells was
facilitated by increased cytoskeleton remodeling dynamics,
stiffness, traction forces, and by a repression of keratin 8/18/19.
In this work, the authors observed that resistant prostate
cancer cells, despite being stiffer than the non-resistant cells,
showed a more fluid-like behavior leading to a higher invasion
capability (84).

In another study, matrices of different stiffness were used to
understand the cellular behavior of different breast cancer cell
lines (82). Interestingly, themost aggressive cells (MDA-MB-231)
were softer when cultured on glass substrate, but when these cells
were cultured on soft matrices they presented a stiffer phenotype
compared to the other cell lines cultured in the same matrix. This
is a good example of how the environment modulates cellular
mechanical properties (82).

A similar work on breast cancer cells using matrices
of different rigidity discovered a direct correlation between
migration capacity and increase of matrix stiffness (83).
Moreover, cells treated with cetuximab, an epidermal growth
factor receptor (EGFR) inhibitor, had an increased elastic
modulus followed by a decrease in migration ability. Here, the
authors explained that cell mechanics are not only regulated by
mechanical cues of the ECM but also by biochemical signals
mediated through membrane receptors, such as EGFR (83).

Another study investigating environmental effects on liver
cancer stem cells is from Sun et al. The authors investigated the
effects of shear stress on cancer stem cell signaling regulating
cellular migration, proliferation, and differentiation (87). It was
found that certain shear stresses promote cell migration through
activation of FAK and ERK1/2 signaling pathways. Moreover,
shear stresses were responsible for lowering cellular stiffness in
line with disrupted F-actin organization (87).

Environmental factors can also regulate epigenetic signatures
such as methylation (89). Using cell lines with methylated tumor
suppressor genes (e.g., hypermethylated in cancer 1—HIC1, Ras-
association domain family member 1A—RassF1A), a Taiwanese
group investigated cell stiffness changes depending on the
methylation status and found that the stiffness of the methylated

cells was lost, followed by a decrease of tubulin expression and F-
actin disorganization (89). Further experiments involving cellular
relaxation after cell compression showed that cancerous cells also
have increased acto-myosin cortex contractility as compared to
corresponding healthy cells (74, 91). Moreover, the higher the
invasive level, the greater the cellular recovery behavior.

In contrast to ECM stiffness, cellular stiffness seems not
to correlate with treatment resistance. Although there is a
prevalence that a decrease cellular stiffness leads to an increase
resistance, this assumption is often uncertain due to several
factors: (1)measurement technique, (2) cell culturemethodology,
and (3) tumor entity/heterogeneity.

INTEGRINS BRIDGING BETWEEN ECM
AND CELLULAR STIFFNESS: EFFECTS ON
THE RESISTOME

After years of research, it became obvious that cell adhesion is
fundamental for cell survival (92). Furthermore, a number of
studies showed that cell adhesion is associated with the refractory
to cancer treatments (92, 93). The principles of treatment
resistance of cancer modulated by cell adhesion were proposedly
categorized into: (i) cell adhesion mediated radioresistance
(CAM-RR) and (ii) cell adhesion mediated drug resistance
(CAM-DR) (Figure 1). Diverse adhesion resistomes composed
of integrins, adaptor proteins, kinases, and cytoskeleton
mainly contribute to both resistance mechanisms (92, 93).
Interestingly, the components of the adhesion resistomes are
widely heterogeneous depending on tumor entities. These might
be also related to the tissue of origin.

To form multicellular structures or tissues, cells need to
attach to adjacent cells via cell-cell contacts and anchor to the
ECM through the transmembrane adhesion receptors known as
integrins. An integrin receptor is a non-covalent heterodimer
consisting of an α and a β integrin subunit. To date, there are 18
α and 8 β integrin subunits allowing the formation of 24 different
integrin receptors. These α and β combinations determine the
binding specificity of the integrin (29). Essentially, integrins
consist of a big extracellular ectodomain, a transmembrane
domain and a short cytoplasmic tail (29).

In the last two decades, substantial studies on cell adhesion
to ECM primarily focused on integrins. Integrins and their
downstream FAPs are known as mechano-sensors and mechano-
transducers that sense and transduce mechanical signals into
chemical signals. Generally, normal tissues weakly express
integrins and FAPs. In contrast, cells start to express them when
cells are grown in an in vitro tissue culture surfaces, indicating
that cell culture stiffness highly impacts on the expression of these
proteins (94).

Most integrins are not constitutively active and are located at
the cell surface in an inactive state. Integrins are bi-directional
signal receptors stimulated in two ways: the inside-out and
outside-in activation (95). Both activation pathways are based
on a conformational change in the ectodomain of the integrin
(Figure 2B). The ability of integrins to signal in an inside-out
and outside-in manner may be exquisite in normal cells but it is
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deleterious in cancer cells (92). The outside-in signaling is better
understood with regard to its role in the cell adhesion resistome
to elicit CAM-DR and CAM-RR compared to the inside-out
signaling, which is rarely investigated in cancer cells (96–107).

During the inside-out signaling, the cytoplasmic domain
of the integrin binds and stimulates intracellular proteins
such as kindlin or talin. By integrin conformational changes,
there is an increased binding affinity for extracellular ligands.
This activation mechanism controls, among other things, the
migration of cells. With the help of outside-in activation,
which is mainly dictated by ECM properties, integrins can
introduce information into the cell. The extracellular binding
of a ligand also leads to conformational changes of the integrin
and activation of intracellular signaling pathways (Figure 2B).
Often this signaling pathway recruits and activates kinases such
as FAK and SCR, and also the RAS-MAPK (mitogen-activated
protein kinase) and PI3K (phosphoinositide 3-kinase)—AKT
(RAC-alpha serine/threonine Protein kinase) signaling nodes
(42). Moreover, both signaling pathways, inside-out and outside-
in, are powerful and can activate each other (108–114).

Binding of integrins to ECM proteins is mediated by short
amino acid sequences. Motifs that can bind these sequences are
(1) the RGD (arginine-glycine-aspartate) motif in fibronectin
and laminin or (2) the DGEA (aspartate-glycine-glutamic acid-
alanine)—and the GFOGER (glycine-phenylalanine-glycine-
glutamic acid-arginine) motif in collagen (29, 115). Intracellular
adapter proteins such as paxillin, parvin, or talin link integrins
to the actin cytoskeleton, generating a bridge between ECM and
cytoskeleton. Although integrins do not have intrinsic kinase
activity, they recruit and activate a large spectrum of kinases to
the cytoplasmic subunit. As a result, important cellular processes
such as proliferation, apoptosis, differentiation, migration, or cell
survival regulated (Figures 1, 2B) (92, 116–119).

Beta-1 integrins are the largest subgroup of integrin adhesion
receptors (29). Inhibition of β1 integrins, leads to an inactivation
of a variety of integrin receptors such as for laminins,
fibronectin, and collagens. This property, as well as the
upregulated expression of β1 integrins in a variety of tumors,
make β1 integrins a promising target molecule for cancer
therapy (92, 120). The resistance of tumors to radiation and
chemotherapy is dependent on the β1 integrin adhesion to ECM
proteins. A collection of studies showed the importance of β1
integrin-mediated pathways for radiation resistance and survival,
differentiation and proliferation, as well as for tumor progression
and metastasis (34, 100, 101, 106, 107, 121–126).

In clinical trials, some inhibitors against β1 integrin receptors
have been used. These include three inhibitors against the
fibronectin receptor α5β1 integrin: ATN-161, Volociximab
(M200) and JSM6427. ATN-161 is a peptide, which acts as an
antagonist of the α5β1 integrin and blocks the receptor. Phase
I studies showed that the use of ATN-161 had no risks or side
effects (127). Volociximab, a humanized monoclonal antibody,
has been reported as an angiogenesis inhibitor developed for
solid tumors. Treatment with volociximab was in Phase I and
no adverse reactions nor dose-related toxicity was observed
(127). Further clinical studies in metastatic melanoma and renal
cell carcinoma have shown promising effects upon volociximab

treatment (128). The third α5β1 integrin inhibitor is the small
molecule JSM6427 which inhibits angiogenesis and fibrosis and
has so far only been tested in preclinical studies (127, 129).

Therefore, preclinical examinations have already described
the importance of β1 integrin-mediated adhesion to ECM for
survival of tumor cells after irradiation. Studies in several tumor
entities were able to demonstrate that the inhibition of β1 integrin
leads to radiation sensitization in glioblastoma cells (81, 130),
lung carcinoma cells (131), colon carcinoma cells (132), breast
carcinoma cells (133, 134), and HNSCC cells (121, 135). In vitro
data from 3D cultured cells and data from xenograft tumors
confirmed that inhibition of β1 integrins reduces significantly the
radiation resistance of tumors (121, 134).

Depending on the integrin receptor and the tumor entity,
integrins activate different survival-promoting signaling
pathways. In breast cancer cells, the PI3K-AKT signaling
pathway is mainly activated leading to adhesion-mediated
radiation resistance (134). Integrins modulate the FADD
(caspase-8/Fas-associated protein with death domain) signaling
pathway, which is of importance for cell survival, resulting in the
resistance to radiation induced cell death in leukemia cells (136).
In HNSCC, FAK is the central signaling molecule for the β1
integrin-mediated signaling pathways and plays an essential role
for cell survival after irradiation (116, 121). Data from our group
showed that the inhibition of β1 integrin dephosphorylates FAK,
causing the FAK/cortactin complex dissociation. This leads to
the inactivation of JNK1 and the radio-sensitization of tumor
cells (121). FAK consists of an N-terminal FERM (protein 4.1,
ezrin, radixin, moesin homology) domain, a kinase domain,
and a FAT (focal-adhesion targeting) domain (137, 138). The
FERM domain mediates various interactions of FAK, e.g., with
the EGFR. The FAT domain is responsible for the recruitment
of FAK to the focal adhesion site. It binds integrin-associated
adapter proteins such as talin or paxillin. In addition, FAK
contains three proline-rich ones Regions (PRR1-3) that help
proteins target a SH3 (SRC-homology 3) domain contained as
e.g., p130Cas (139).

FAK can be phosphorylated on various tyrosine residues
(139). The autophosphorylation of the tyrosine 397 site is
triggered through the bond of β1 integrin to the ECM. InHNSCC
cells, inhibition of β1 integrins leads to the dephosphorylation
of FAK on tyrosine 397. This phosphorylation site is therefore
used as a control of a functional β1 integrin inhibition (121).
Interestingly, Lim and colleagues identified that FAK plays an
important role in the nucleus. They showed that p53 binds to
the FERM domain of FAK, thereby modulating cell survival and
proliferation (140, 141). This observed function in the nucleus
suggested that FAK has additional nuclear functions and, thus,
might contribute to the rectification of radiation-induced DSB.
In line, our group demonstrated that the non-homologous end-
joining DNA double strand break repair pathway is partially
co-controlled by β1 integrins via the FAK/JNK1 signaling axis
(100). The significance of integrins in DNA repair processes
was further emphasized by Christmann and colleagues. They
observed that the αV/β3 integrin signaling axis coordinates
the homologous recombination repair pathway in glioblastomas
(142). Upon simultaneous temozolomide treatment and αV/β3
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integrin knockdown, glioblastoma cells presented increasedDNA
double strand breaks and a depletion of Rad51 expression,
indicating an impaired homologous recombination (142).

Furthermore, we have shown that β1 integrin targeting
leads to an induction of the EGFR signaling cascade and the
double targeting of β1 integrin and EGFR achieved a greater
radiosensitization compared to the single targeting approaches
in vitro and in vivo (101). This suggests a more efficient
suppression of FAK/ERK (extracellular-signal-regulated kinase)
prosurvival signaling upon the combination treatment of anti-β1
integrin/anti-EGFR treatment than the single therapy.

To date, only a few studies attempted to investigate the
crosstalk between integrins and receptor tyrosine kinases (RTK)
and its effect on cancer cell therapy resistance. Therefore,
more studies are needed to identify the therapeutic potential of
such combination therapy approaches. One of our recent study
showed that HNSCC cells, which basically poorly respond to
EGFR and β1 integrin blockage, were radiosensitized by the
inhibition of targets identified from a whole exome sequencing
(123). Briefly, we identified different gene mutation profiles in
the non-responder HNSCC cell lines to EGFR and β1 integrin
inhibition compared to the responder HNSCC cell lines. These
profiles would allow the stratification of HNSCC patients and
the identification of potential targets to address the treatment
resistance. Kelch Like ECH Associated Protein 1 (KEAP1)
and Mammalian target of rapamycin (mTOR) were identified
as key targets. The pharmacological inhibition of KEAP1 or
mTOR together with β1 integrin and EGFR effectively increased
non-responder radiosensitization (123). The study suggested a
therapeutic approach to identify a potential combination therapy
and to promote identifications of novel targets.

In summary, we can assert that integrins and FAPs essentially
contribute to therapy resistance and the possibility of targeting
these proteins could be developed as a therapeutical option in
combination with radiotherapy and chemotherapy.

REGULATION OF CANCER RESISTANCE
THROUGH NUCLEAR STIFFNESS

During tumorigenesis, in addition to altered ECM stiffness,
contractility of the cytoskeleton, and cell adhesion, stiffness of
the cell’s nucleus actively or passively adjusts to the process
of malignant transformation. A growing number of studies
report a modified nuclear envelope structure and composition
in cancer cells (143). The nuclear envelope, consisting mainly of
lamins and nuclear pore complexes, was identified as the major
structure that is modulated in cancer (143, 144). The nuclear
envelope contributes to cellular mechanical properties and
functions and determines nuclear deformability (145). It is also
involved in mechano-transduction and transmission of forces to
the nucleus. Cancer progression promotes modifications in the
composition of the nuclear envelope generating softer and highly
lobulated nuclei, which consequently allow cancer cells to invade
dense tissues more easily (143, 146). The nuclear stiffness is
predominantly modulated by mechano-signals communicating
between ECM and nucleus. Physical interactions of nucleus

and cytoskeleton are essential for cytoskeletal organization
and cellular polarization, which influence cell migration for
metastasis (147). Moreover, the interaction seems to induce
rearrangements in chromatin structure and lamin expression via
intranuclear signaling cascades (143, 144, 146).

A study using a microfluidic channel with a narrow
constriction to investigate the stiffness of prostate cancer nuclei
showed that the nuclear rigidity is reduced in more malignant
phenotypes. Furthermore, prostate cancer cells expressed a more
aggressive phenotype when a low expression level of lamin-A/C
and a decreased chromatin condensation were present (148).
This supports the hypothesis that cancer cells with softer nuclei
metastasize more efficiently. The importance of nuclear stiffness
in cellular migration was also shown in lung carcinoma and
glioblastoma multiforme. Generally, lamin-Bs are more stably
expressed than lamin-A, of which the expression level widely
varies among normal and cancerous solid tissue cells. In this
study, cells with low levels of lamin-A expression showed the
most pronounced increase in 3D migration. Of key importance
was the finding that the cellular migration was biphasic in lamin-
A expressing cells as wildtype lamin-A protects cells against
stress-induced cell death. In fact, knockout of lamin-A caused
broad defects in stress resistance. Therefore, lamins impede 3D
migration but also promote survival against migration-induced
stress (149).

Remodeling of the nuclear structures is
associated with mechanical stress transmitted via the
ECM/FAPs/cytoskeleton/nuclear envelop protein axis. The
mechanical stress transmission axis promotes the epigenetic
changes and the modification of chromatin dynamics that
influence on the nuclear behavior (150). FAPs, however, can
become activated independent of ECM in certain cases e.g.,
in breast cancer cells (151, 152). During tumor progression,
microenvironmental control of nuclear organization seems to be
impaired but still dependent on β1 integrin signaling (152).

Of great interest is a finding showing that DNA repair
proteins are mechanosensitive factors leading to a new field of
mechano-genomics (153). The group of Discher focuses on the
spatiotemporal changes of endogenous DNA damage and repair
factors in cells migrating through rigid micropores and on the
lasting perturbations to the genome. The study showed that
multiple DNA repair proteins avoid mechanical stress upon pore
migration, resulting in a cytoplasmic mislocalization sustained
for many hours, which leads to delayed repair and consequently
DNA sequence alteration (154, 155).

In the previous section, we discussed about signaling cascades
activated from the integrin axis. These mechanical signals
are then transduced to the nucleus though mechanosignaling,
in other words biochemical mechanotransduction pathways.
In addition to the mechanosignaling, there is a faster way
to transmit physical signals directly to the nucleus possibly
through the physical anchoring of the cytoskeleton with the
nuclear lamina via the linker of nucleoskeleton and cytoskeleton
(LINC) complex (17). This complex is composed of two
family members, which are SUN (Sad1p, UNC-84) and KASH
(Klarsicht/ANC-1/Syne Homology) located at the interior and
the exterior of the nuclear membrane, respectively (Figure 2C).
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Typically, SUN is connected with the nuclear intermediate
filament lamins, whereas, KASH interacts with cytoskeletal
proteins, such as intermediate filaments, actin filaments and
microtubules. SUN and KASH proteins interact within the
perinuclear space forming a bridge between cytoskeleton
and nucleoskeleton (156). Guilluy and colleagues studied the
association of LINC complex with mechanical tension. They
showed that an isolated nucleus adapts to mechanical tension
induced by magnetic tweezers, which results in increased nuclear
stiffness. The stiffening of the nucleus did not involve structural
modification of chromatin or nuclear actin, but required an intact
nuclear lamina and phosphorylation of emerin, a protein of the
inner nuclear membrane (157).

In a recent study from the Swift group, the response of
cells to cyclic tensile strain mimicking the dynamics of the
microenvironment in vivo was investigated (158). A series of
strains with different intensities was applied to cells. They
observed that cells subjected to low levels of strain responded
similar to cells exposed to an increased stiffness. In case cells were
exposed to the high intensities, the composition of LINC complex
was altered, specifically the SUN domain containing the SUN2
protein. This domain was significantly affected by protein levels
and posttranslational modifications leading to a strain induced
breakpoint in the linker complex. As a result, cells were able to
detach the nucleus from the cytoskeleton in case of excess stress,
conferring a protection to DNA (158).

Collectively, nuclear stiffness is associated with tumor
aggressiveness, especially in migration and metastasis. However,
more studies are required to understand the underlying
mechanisms and to validate whether nuclear stiffness can be used
as a predictive biomarker of therapy response.

CONCLUDING REMARKS AND
PERSPECTIVE

We discussed recent studies showing how the tumor creates
a microenvironment favorable for proliferation, invasion and
treatment resistance. Cellular, nuclear, and ECM stiffness play
essential and intertwined roles in the cancer response to
therapy. Despite many investigations performed with regard
to the impact of stiffness on chemotherapy response, it
remains open if these results are similar and can be translated
to the response to radiotherapy. We have shown that the
presence of a 3D environment and matrix composition affects
radiotherapy response upon the activation of FAPs (CAM-RR)
(Figure 1) for pro-survival signaling. FAPs and extracellular
matrices have been defined as important determinants of the
hallmarks of cancer (30, 101, 159–161). In our previous studies,

we demonstrated different growth conditions to modulate
chromatin structure, DNA repair and cell survival upon
radiation exposure (100, 162). Obviously, force transmission and
mechanotransduction are mediated by FAPs to enable control
over nuclear processes including therapy resistance. Together,
the current body of literature strongly supports the concept
of mechanical characteristics of the cellular environment to
critically regulate the epigenetic and genetic landscape driving
cancer cell radiochemoresistance.

Clearly, the matrix stiffness is a main element in cancer
therapy resistance, especially in chemotherapy. Radiotherapy
typically induces fibrotic reactions that, consequently, amplify
tissue stiffening. This causes complications in normal tissues such
as lung fibrosis. A combination of multiple factors like fibroblast
activation, vascular damage, and leakage, etc., promotes ECM
remodeling and excess matrix deposition (163–165). To date,
it remains to be understood to what extent these therapy-
induced changes contribute to tumor progression, resistance,
and metastasis.

The role of stiffness in resistance and the potential of
ECM, cellular, and nuclear stiffness as a biomarker for therapy
response are still elusive. This ambiguity is also due to
the heterogeneous set of data, which may sometimes be
conflicting (Table 2 provides some examples). Therefore, an
optimized and standardized approach for the study of stiffness
is necessary. Moreover, it would be of great benefit for the
community to collaboratively standardize experimental setups
and measurement techniques.

Despite the number of research groups studying cell behavior
on different substrates with different stiffness, the impact of
these matrices on cell function and therapy response has only
recently been appreciated. Future efforts may focus on (1)
how stiffness sensing occurs in different macro-micro-nano-
scales (ECM/tissue, cell, nucleus) and (2) whether stiffness
is a promising biomarker for therapy response or even a
therapeutic target.
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