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Abstract: The brain is a complex, regulated organ with a highly controlled access mechanism: The Blood-Brain 

Barrier (BBB). The selectivity of this barrier is a double-edged sword, being both its greatest strength and weak-
ness. This weakness is evident when trying to target therapeutics against diseases within the brain. Diseases such 

as metastatic brain cancer have extremely poor prognosis due to the poor permeability of many therapeutics 
across the BBB. Peptides can be designed to target BBB receptors and gain access to the brain by transcytosis. 

These peptides (known as BBB-shuttles) can carry compounds, usually excluded from the brain, across the BBB.  
BBB-shuttles are limited by poor loading of therapeutics and degradation of the peptide and cargo. Likewise, 

nano- submicro- and microparticles can be fine-tuned to limit their degradation and with high loading of thera-
peutics. However, most nano- and microparticles’ core materials completely lack efficient targeting, with a few 

selected materials able to cross the BBB passively. Combining the selectivity of peptides with the high loading 
potential of nano-, microparticles offers an exciting strategy to develop novel, targeted therapeutics towards many 

brain disorders and diseases. Nevertheless, at present the field is diverse, in both scope and nomenclature, often 
with competing or contradictory names.  In this review, we will try to address some of these issues and evaluate 

the current state of peptide mediated nano,-microparticle transport to the brain, analyzing delivery vehicle type 
and peptide design, the two key components that must act synergistically for optimal therapeutic impact.  

Keywords: Nanoparticles, submicroparticles, peptides, BBB-shuttles, iron oxide, gold, blood-brain barrier, nanoconstruct. 

1. INTRODUCTION 

 The complexity and multitude of functions the brain controls 
require equally intricate and robust barriers to this organ. At pre-
sent, there are three agreed upon main regulators to access the 
brain: The Blood-Brain Barrier (BBB), the blood–CSF barrier, and 
the arachnoid barrier. These barriers strictly regulate homeostasis 
within the brain. This selectivity protects the brain from many 
pathogens, harmful compounds and other foreign material. How-
ever, problems arise when cells within the brain become abnormal, 
or when foreign material crosses the barrier and invades the brain 
tissue. The BBB that once protected healthy brain tissue, in effect 
becomes the greatest obstacle to the delivery of therapeutics. The 
BBB by area is one of the largest of the aforementioned brain barri-
ers, with an area of approximately 20 m

2
 with a total capillary 

length of over 600 km [1]. In terms of brain density this vascular 
barrier is extremely dense, with a neuron never being more than a 
median distance of 50 micron away from a brain capillary [2]. The 
BBB in comparison to the blood-CSF barrier, is less invasive to 
target and has a greater blood flow rate making it an attractive op-
tion for targeting therapeutics to the brain [3]. The arachnoid bar-
rier, like the BBB has a number of efflux transporters that reduce 
the retention time of molecules able to pass through the plasma 
membrane into the cytosol before being kicked out again. However, 
the arachnoid barrier compared in terms of surface area to the BBB 
is vastly smaller [4, 5]. The olfactory bulb has recently become the 
focus of renewed interest in reaching the brain [6].This barrier to 
the brain is more permissible but has a vastly reduced surface area. 
Additionally, the presence of mucus entraps many compounds be-
fore they can even make it to the olfactory bulb and thus into the 
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brain [7]. The BBB is composed of three cell types, endothelial, 
astrocytes and pericytes (Fig. 1). Together they are described as a 
neurovascular unit, that act in situ to maintain tight junctions, and 
efficient efflux mechanisms [5, 8]. These tight junctions produce 
high Transendothelial Electrical Resistance (TEER) values as high 
as 2000 Ω·cm [2, 9]. This in turn highlights the polarity between 
the luminal and abluminal side of the barrier. Requiring the barrier 
to have highly developed uptake mechanisms. Transport can be 
split into two areas, uptake (influx) and efflux. Efflux transporters 
of the ATP-binding cassette (ABC) family (P-glycoproteins) and 
Solute Carrier Family (SLC) play essential roles in the BBB perme-
ability of small molecules, both endogenous compounds and xeno-
biotics [10, 11]. Uptake can be further split into 3 mechanisms, 
receptor-mediated endocytosis, adsorptive uptake and passive diffu-
sion (Fig. 2) [3]. Receptor-mediated uptake offers the most com-
prehensive system studied at present. Although many authors in the 
field still believe that much more remains to be discovered. Several 
receptor systems have been reported that actively mediate transcy-
tosis of molecules from the basal to the apical side, for example 
insulin, LRP-1, LDL and transferrin to name but a few [12-19]. 
Targeting these receptors has several advantages; being selectable, 
with promising indications of regiospecificity within the brain [20]. 
However, receptor-mediated targets are a saturable route, with 
compounds quickly overloading the receptors targeted. Other 
mechanisms such as passive and adsorptive transport are non-
saturable, but lack specificity. Highly lipophilic compounds are 
predominately transported via passive diffusion [21, 22]. Peptides 
with a highly cationic electrostatic nature create deformations, 
which develop into pits across the cell membrane. As the peptide 
enters these pit formations, their presence continues to extend and 
deform the membrane. Finally the peptide is fully encapsulated 
within a newly formed vesicle, within the cytosol [23-25]. This 
mechanism is non-saturable and non-specific.  
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 Diseases afflicting the brain, such as metastatic brain cancer 
have extremely poor prognosis and are the most common form of 
neurologic complications. At present reports conclude that the inci-
dence is between 9%-17% for metastatic brain cancer [26]. Never-
theless, it is generally accepted that the exact incidence will be 
much higher. Current treatments fail to be effective against this 
aggressive form of cancer. They are either prevented from passing 
into the brain, rapidly effluxed, or metabolised by the body before 

ever reaching their target. Those treatments that can cross require 
such large doses to be effective that they induce toxicity elsewhere 
in the body. From this perspective, a more specific, targeted, and 
less toxic approach is needed. A promising tool in development has 
been the discovery of peptides that can cross the BBB by transcyto-
sis. These peptides can target the brain specifically, circumvent 
rapid efflux mechanisms from the brain and are designed to prevent 
degradation [27].  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Detailing the different barriers to the brain. A) The Arachnoid barrier, showing efflux pump transporters and endothelial cells. B) The blood-brain 

barrier is composed of the neurovascular unit (endothelial, pericytes and astrocytes cells with a basement membrane lining). C) The CSF barrier is composed 

of epithelial and endothelial cells. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Diagram describing various models of uptake of material for BBB endothelial cells. Detailing clathrin-, caveolin- mediated endocytosis and 

clathrin/caveolin independent mechanisms. The difference between CPPs and BBB-Shuttles is shown with CPPs being exocytosed to the lumen whilst BBB-

Shuttles are transcytosed.  
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 Combining peptide shuttles with nanoparticles conjugated with 
a therapeutic drug have the potential to target the brain with mini-
mal disruption and toxicity. At present most clinical treatments are 
highly invasive, vastly disruptive and create a plethora of unwanted 
side effects [28-31].   

 Within the field of nanomedicine, the diversity in nomenclature 
that exists has grown rapidly over the last few years. In many re-
gards, much of the terms used had to be created to define the 
uniqueness of the properties being observed. However, this explo-
sion in nomenclature has come at a price. Each new term initially 
has very limited penetration within the nanomedicine community’s 
lexicon. Often leading to competing and sometimes contradictory 
definitions, it is within this context that we must clearly define what 
terms we are describing, until a globally accepted definition has 
been agreed upon. For example, describing the property of a pep-
tide to cross the BBB has been described as a BBB-shuttle, a BBB 
carrier and a molecular Trojan horse. The last example was first 
coined by William M Pardridge et al. (1986); however, these mo-
lecular Trojan horses were made from modified large proteins and 
antibodies. The BBB-shuttle concept relating to peptides to enable 
passive transport across the BBB was proposed by Teixidó et al. 
(2007) and later expanded by Malakoutikhah et al. (2008) to in-
clude receptor-mediated transport [32, 33]. They defined BBB-
shuttles in terms of being solely peptidic in nature, excluding large 
proteins and antibodies from the definition, to differentiate between 
the advantages peptides would have over larger molecules defined 
as molecular Trojan horses. Recently a third definition for BBB-
shuttles has arisen by Webster et al.  (2015) defining BBB-shuttles 
as the receptors, engineered ligands to these receptors as ‘BBB 
carriers’, and drugs attached to these ‘carriers’ being classed as 
molecular Trojan horses [34-37]. Other groups have reported and 
defined brain shuttles as modified antibodies able to cross the BBB 
via transcytosis [18, 38]. The examples mentioned above are just a 
few cases illustrating the complexity of the nomenclature. How-
ever, terms are not always mutually exclusive, for example carriers 
have been defined as objects with the ability to directly transport 
cargo such as siRNA, drugs, and fluorophore across the BBB [39-
42]. With this definition of a carrier, a BBB-shuttle able to cross 
into the parenchyma of the brain with an attached cargo could 
equally be described as both a BBB-shuttle and a BBB-carrier.  

 For the purposes of this review, we will consolidate these com-
peting terms and clarify our definitions on the following. A BBB-
shuttle will be defined within the context of this review as a peptide 
that can cross the BBB by either passive or active transport mecha-
nisms and crucially, can transport other components attached to this 
molecule. The components attached to the BBB-shuttle will also be 
deemed as the cargo. Finally, a unifying term is required to talk 
about the shuttle with the cargo, to describe its size. For this we 
propose the terms constructs for entities larger than 100 nm, and 
nano-constructs, for when the overall size is below 100 nm includ-
ing the hydrodynamic diameter. 

2. BLOOD-BRAIN BARRIER SHUTTLES (BBB-SHUTTLES) 

 In 1986, William M Pardridge began to pursue the idea of pro-
teins targeting cell receptors to cross the BBB; eventually coining 
the molecular Trojan horse concept. These early modified proteins 
and antibodies were large, had high affinity to receptors, but poor 
release. Since then a new class of small peptides targeting receptors 
has arisen. When the first CPP was described in 1998, a lot of ex-
citement over the subsequent years was generated by the prospect 
that these CPPs could cross any cellular barrier [43-46]. However, 
this excitement gave way to the reality that not all CPPs could cross 
and crucially, remain in the parenchyma. This lead to more in-depth 
studies on the role of efflux, influx, rate of transport and the extent 
to which the CPP could penetrate. Stalmans et al. (2015) investi-
gated the balance between these CPP properties [47]. Selecting five 
different CPPs they evaluated to what extent the CPP can cross the 

BBB (influx) and how quickly is the CPP removed from the BBB 
(efflux). They selected five structurally distinct CPPs; pVEC, 
SynB3, Tat 47-57, transportan 10 (TP10) and TP10-2 (Fig. 3).  

 

 
Fig. (3). Comparing the rate of influx from the blood to the brain and efflux 

from the brain to the blood of several CPPs [47]. Image reproduced with 

permission. 

 
 Their findings concluded SynB3, Tat 47-57 and pVEC dis-
played initial high brain influx rates, by a non-saturable mechanism. 
TP10 and TP10-2 produced low influx and higher efflux rates. Ex-
cluding pVEC, the remaining CPPs were significantly effluxed 
from the neurovascular unit. This study highlights the importance 
of peptide choice and design.  This study contributed to the differ-
ence between CPPs and BBB-shuttles. Whilst CPPs by their very 
nature can be internalised, only a small subset are capable of tran-
scytosis. It’s this ability to transcytosis that differentiates CPPs 
from BBB-shuttles (Fig. 4). 

 

 
Fig. (4). Comparing the properties of CPPs and BBB-Shuttles. 

2.1. Receptor-Mediated 

 At present a number of peptides exist that target only a small 
class of receptors.  The low density lipid receptor (LDLR) is a cell 
surface receptor responsible for cholesterol and apoprotein uptake, 
ubiquitous in epithelial cells and endothelial brain tissue.  Several 
groups have sought to target this receptor using repeats of lysine, 
arginine and leucine (ApoE) (Table 1) identified from natural pro-
teins [39, 48, 49].  Other receptors include leptin, receptor-
associated protein (RAP), insulin, scavenger receptor type B1 
(SCARB1) and Fc like growth factor receptor (FCGRT) [31]. The 
transferrin receptor (TfR) mediates iron uptake and metabolism into 
the brain parenchyma via the BBB. At present, this receptor is one 
of the most targeted for therapeutics (Table 1). TfR is essential for 
iron uptake in many cell types, with its highest expression observed 
in the bone marrow [50]. As a candidate target the transferrin recep-
tor has shown some remarkable results as a mode to access the 
brain parenchyma. However, modulation of this receptor may have 
off-target effects. TfR modulation has been linked to mitochondrial 
respiration, the generation of reactive oxygen species, as well as the 
induction and maintenance of oncogenesis [51]. Despite this current 
array of receptors and peptides, much more research must be done 
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Table1. Features of selected BBB-shuttle modified NPs. 

BBB- 

Shuttle 

Target Sequence NP Composition Therapeutic Moiety Size (nm)
a In vitro Evaluation

b
 In vivo Evaluation

c
 Ref. 

     

 Uptake 
Toxic-

ity 

Biodis-

tribution 

Therapeu-

tic Im-

pact
d
 

 

PLGA/chitosan siRNA (EGFR) 

Doxorubicin 
190 � � � � [68] 

PEG-Liposomes Perfluoro- 

propane gas 

144 (LP) 

525 (BL) 
� - � - [69] 

AuNP-PEG Doxorubicin 39.9  �� �� �� [70] 

TFFYGGSRGKRNNFK-

TEEY 

 

AuNRs-PEG D1 peptidee 11x97 � � � �� [71,72] 

 Ang-2 LDR 1 

Yeetkfnnrkgrsggyfft PEG-Liposomes Coumarin and DiR 12-16 � � � � [73] 

(LRKLRKRLLR) 

(LRKLRKRLLR)2 

 

Nanoliposomes  Phosphatidic 

acid or  

cardiolipin 

136 

 

146 

� � - - [74] 

ApoE (141-

150)  

 

 

LDLR 

 

LRKLRKRLLR 

Or L-PGDS 

PLGA - 
220 � � � - [75] 

PEG-PLA  Neuroprotective 

Peptide (NAP) 
120 � � � �g [76] 

B6 

 

hTrR CGHKAKGPRK 

 

SeNP Sialic acid e 95 � � - - [77] 

Cyclic-

RGD 

Integrin 

R 

&RGDfK&h PEG-PolyQ DACHPt 
28-31 - � - � [78] 

CDX nAchR FKESWREARGTRIERG mPEG–PLA micelles DiR/PTX 39 � - � � [79] 

DCDX nAchR GreirtGraerwsekf-OH HSPC/choles-

terol/mPEG2000-DSPE  

DiR/Dox 
50-200 nm � - � � [80] 

Enk 

Gly-copep 

Opioid 

receptor 

YGGFL 

GGYTGFLS-O-beta-

glucoside 

AuNP NOTA-Gd 

2-3 i - - � - [81] 

g7 Unknown GFtGFLS-(monosaccharide) 

(derived from opioid family) 

PLGA-RG503H - 
162-212 j - - � - [82] 

gH625 Unknown Ac-

HGLASTLTRWAHY-

NALIRAFGGG-COOH  

orange fluorescent 

amine-modified polysty-

rene 

- 

96 � � - - [42] 

Gluthatione Mrp/ 

Abcc 

GSH PEI  DNA 
117  � � - - [83] 

LPFFD RAGE? LPFFD AuNP - 13 � - � - [22] 

MiniAp-4 Unknown Dap(&)KAPETALD(&)  Qdots, AuNP - 
10-15 

(QDs),j 12 

nm 

(AuNP) i 

� - � - [84] 

Penetratin CPP RQIKIWFQNRRMKWKK PEG-AuNanostars Ru 105 � � � - [85] 

 
(Table 1) Contd.... 
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BBB- 

Shuttle 

Target Sequence NP Composition Therapeutic Moiety Size (nm)
a In vitro Evaluation

b
 In vivo Evaluation

c
 Ref. 

     
 Uptake 

Toxic-

ity 

Biodis-

tribution 

Therapeu-

tic Impact
d
 

 

RDP 

peptide 

nAchR �������	

�������

������������������

��� 

BSA covered AuNano-

clusters 

- 

10 nm � � �  [86] 

RVG29 nAchR YTWMPENPRPGTPCDIFT

NSRGKRASNGGGGGGC  

 

Pluronic and chitosan  β-galactoside 142-162 

(25oC) 

52-65 

(37oC) 

- - - � [87] 

CTX MMP-2, 

Annexin 

A, Cl-

channels 

MCMPCFTTDHQ-

MARKCDDCCGGKGRGK

CYGPQCLCR 

PLGA-PLL NP NEP1-40 

(IR780) 150 nm - - � � [88] 

HAIYPRH 

 

MNP coencapsulated in 

PLGA 

Paclitaxel and 

curcumin 
130 � � - � [89] 

HAIYPRH Micelle PEG-PLGA  Carmustine 83 � � - � [90] 

C-HAIYPRH DGL-PEG siRNA 

Dox 
143 � - - � [91] 

T7-HAI 

 

TfR 

 

HAIYPRH PEG-liposome ZL006 73-74 � � - ��k [92] 

GRKKRRQRRRPPQGWC liposome Curcumin derivative 196 � � - - [93] TAT 

 

AME 

YGRKKRRQRRR SiO2@Fe3O2 Fe3O2 87 � � - - [94] 

TATre AME rrrqrrkkrGy Nanoliposomes OR2 (anti aβ  

aggregation  

peptide) 

140 � � � ��� [95] 

TGNYKALHPHNG 

 

PEG-PCL  Docetaxel and AS1411 

aptamer, 
150-170 � - � � [96] 

TGNYKALHPHNG PEG-PLGA NPs NAP (peptide) 151 - - ��g ��l [97] TGN Unknown 

TGNYKALHPHNG 

 

PEG-PLA QSH (anti ab  

aggregation peptide) 
96-111 � � ��g - [98] 

THR TfR THRPPMWSPVWP AuNP-LPFFD LPFFD (anti ab  

aggregation peptide 
12 � � � - [99] 

THRre TfR pwvpswmpprht 

 

AuNP 

QDots 

QDots 10-15 

(QDs),h 12 

nm 

(AuNP) h 

� � - - [63] 

Peptide-22 LDLR c(&)MPRLRGC(&) DSPE-PEG3400 ����������

��� 
100-125 �� �� � � [100] 

aSize as means of hydrodynamic diameter, measured by DLS; bEndocytosis or transcytosis experiments in endothelial cell lines cIn vivo mice models otherwise noticed; dAntiglioma 

effect otherwise noticed; einhibits Aβ aggregation ; fAD model of C. elegants; g AD mice model; h & denotes cyclised peptides, nomenclature adapted from Spengler et al. (2005) 
[101]; isize is determined by TEM; jsize is determined by SEM; kIschemia rat model; 

�
Cognitive test; 

 

to find novel routes into the brain. A paper by Holton et al. (2013) 
put forward the idea to “mine” viral sequences to find promising 
new CPP’s and antibiotics [52]. This “bio-prospecting” opens up a 
vast new avenue to explore novel receptors and ligands for the 
BBB, as the full extent of its complexity has not yet been eluci-
dated. 

2.2. Peptide Design: Cyclic or Linear 

 Many of the peptides, which have been found to have shuttling 
capacity, have been synthesized to be linear, e.g. ApoE, AngioPep2, 
THR, RVG, etc. (Table 1). However, linear peptides can be enzy-
matically degraded much quicker than cyclized peptides in plasma 
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[5, 53-57]. Oller-Salvia et al. (2016) showed the stability of a 
miniaturized cyclic version of the Apamin protein derived from bee 
venom [54] (Table 1). Other groups have shown similar trends with 
peptide cyclisation improving stability such as Peptide-22 [58] and 
CRT [59] (Table 1). However, shuttling capacity does not seem to 
be dependent on cyclisation, rather the benefit of cyclisation ap-
pears to be the increased stability of the peptide [60]. 

2.2.1. Chirality  
 Chirality can be defined as the property of disymmetry, i.e. 
being non-superimposable to their mirror image. Peptide and pro-
teins are chiral compounds. This chirality derives from the chirality 
of the amino acids that can exist in an L- or D- format. However, in 
nature, only L- amino acids are used. This offers some interesting 
possibilities, as D- amino acids have the same properties as L- 
amino acids, with some notable exceptions. When a peptide is made 
with one or more D- amino acids, protease enzymes within our body 
are no longer able to recognise and cleave these D- structures [61, 
62]. This property means that, we can design peptides with similar 
functions to the natural L- peptide but with vastly increased resis-
tance to proteases. However, there is a caveat with this approach to 
produce D- peptides. The sequence must be reversed to mimic the 
function of the original L- form; this method is called the retro-
enantio approach [63, 64]. Several studies have shown increased 
BBB permeation using peptide resistant D-versions of BBB-shuttles 
[47-51]. Another approach is to pinpoint the exact areas of a pep-
tide sequence, which is prone to degradation and to substitute this 
amino acid with the D- version. 

2.2.2. BBB-Shuttle Binding and Release 
 BBB-shuttles must be able to bind to their receptors to allow 
trafficking. However, it must also be noted that the affinity of the 
peptide to the receptors must also be considered. It would not be 
desirable to have a peptide that can bind with such a high affinity to 
a desired receptor that it could no longer be released. This has been 
shown by studies with high affinity antibodies to target the BBB. 
They found by lowering the binding affinity, the antibodies were 
able to escape lysosomal degradation and enter the parenchyma [65, 
66]. 

 Clark et al. (2015) designed an acid cleavable linker between a 
high affinity transferrin receptor ligand and a gold nanoparticle. 
This cleavable linker resulted in a significant increase of gold 
nanoparticles being found within the mice parenchyma. They con-
cluded that targeting with high affinity comes at a cost. The high 
binding strength between ligand and receptor can prevent further 
penetration into the tissue, in turn leading to degradation of the 
construct by lysosomal sorting [67].  

3. BRAIN DELIVERY OF NANOPARTICLES WITH BBB-
SHUTTLES 

 BBB-shuttles can cross the parenchyma of the brain; however, 
directly attaching therapeutics onto the BBB-shuttle in a 1:1 ratio 
can drastically limit the potential potency of the drug and the shuttle 
combination. Using nanoparticles decorated with BBB-shuttles and 
containing various copies of the therapeutic cargos, we can increase 
the potency of both. An exhaustive analysis of the current examples 
of BBB-shuttle modified NPs is depicted in Table 1, where the 
main characteristics of the NP system and evaluation of the BBB-
shuttle properties have been described. The majority of studies 
discussed within this review compare modified and unmodified 
nano- submicroparticles showing a clear benefit when decorated 
with BBB-Shuttles. However, the impact of size has not been stud-
ied systematically in relation to BBB-shuttles and their correspond-
ing uptake/transport efficiencies. 

 

 

3.1. Gold 

 Gold Nanoparticles (AuNPs) have been extensively used for 
drug delivery for in vitro and in vivo studies [22, 71, 72, 99, 102-
113].  This is due to their many desirable qualities. It can be tailored 
to many different sizes very easily, with multifunctional moieties 
using thiol bonds [107]. PEGylated AuNPs are highly stable in 
vivo, and have been shown to be very biocompatible [107].  As a 
delivery system, AuNPs have been studied extensively with many 
studies discussing the role of stabilization and release kinetics 
[114]. In the field of BBB-shuttles, AuNPs have been used in sev-
eral studies [22, 27, 42, 72, 85, 99, 115-121, 128] (Table 1).  One of 
the first studies to combine gold nanoparticles with a specifically 
designed amphiphilic peptide to improve uptake into the brain was 
performed by Guerrero et al. (2010) [22] (Table 1). Comparing 
AuNPs conjugated to the peptide LPFFD with unlabelled AuNPs, 
the authors demonstrated that the peptide conjugates improved the 
delivery to the brain by four-fold.  However, AuNPs are still beset 
with a number of issues, there mechanism of clearance from the 
brain is still unknown and the long term effects of AuNPs on the 
brain have yet to be elucidated [122, 123]. 

3.2. Iron-Based Nanoparticles 

 Superparamagnetic iron oxide nanoparticles (SPIONs) require 
more complex chemistry to provide stable nanoparticles, but do 
offer some excellent advantages over gold nanoparticles. Their 
magnetic properties can be used to target to specific region under a 
magnetic field.  Using T1 and T2 relaxivity properties in MRI, it is 
possible to view highly defined regions in real time of nanoparticle 
uptake. Many reports have shown the biocompatibility and low 
toxicity of SPIONS, over short-term experiments. However, it has 
not been fully elucidated as to the long-term impact of SPIONs in 
the body under repeated doses and how the NPs are cleared from 
tissue. A study by Engberink et al. (2010) put forward a possible 
clearance mechanism of iron oxide nanoparticles by cervical lymph 
nodes after passing the BBB into the brain [124].   

 Some reports have shown that high SPION concentrations in-
crease the Reactive Oxygen Species (ROS) that can be found in 
tissues with SPIONs inside, inducing possible mutagenic effects 
[125]. An increase in Alzheimer’s like aggregates and neurodegen-
eration has also been associated with SPIONS [126]. Despite this, 
promising results have shown that SPIONs, can be functionalised 
with shuttles and cargo and are able to effectively and efficiently 
cross the BBB [94, 108] (Table 1).   

3.3. Polymer-Based Nanoparticles 

 Polymer-based nanoparticles offer the most US Food and Drug 
Administration (FDA) and European Medicines Agency (EMA) 
friendly route to the clinic. The polymers themselves can be broken 
down into harmless by-products, circumventing some of the clear-
ance issues associated with inorganic nanoparticles. Poly(ethylene 
glycol) (PEG) poly(glycolic acid) (PGA), poly(lactic acid) (PLA) 
and Poly(lactic-co-glycolic acid) (PLGA),  have been approved by 
the FDA and EMA for certain medical applications. PLGA has 
been the most studied and successful polymer for drug delivery. It 
is highly biocompatible and its by-products can be used within the 
bodies Krebs cycle [127, 128].  The problems arising from polymer 
based nanoparticles, is size, drug loading, stability and leakage 
[129]. It is much more difficult to produce nanoparticles within a 
small distribution; with many formulations existing over a large 
range.  It has been shown that, polymer based nanoparticles can 
leak out their cargo or spontaneously burst [127, 129, 130]. This 
has major implications for their long-term stability and use in the 
clinic. Some polymers, such as PEI, have been used to electrostati-
cally maintain cargos within PLGA polymer-based nano- 
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particles [117, 131-133].  PEI can stabilize encapsulated cargo, and 
allow for higher loading. These advantageous properties are offset 
by PEI’s cytotoxicity. Furthermore at present, PEI is not FDA or 
EMA approved. In 2012, the EMA granted an “orphan designation” 
to allow clinical trials of a construct combining DOX-PEI-siRNA 
against claudin 5 to treat glioma. In 2017 however, the product was 
withdrawn, with no clinical trials taking place. Others have com-
bined PLGA with PEG to stabilize the nanoparticles and increase 
the clearance time in vivo [76, 90, 97, 134] (Table 1). 

3.4. Liposomal Nanoparticles  

 Liposomal nanoparticles have been trialled for many years and 
were among the first theranostics developed. Some formulations 
have even progressed into the clinic. In 2013, a GSH labelled 
liposome containing doxorubicin reached phase II clinical trials 
(ClinicaTrials.gov identifier: NCT01818713).  Liposomes have 
some excellent physicochemical characteristics, being able to in-
corporate a vast array of lipophilic, hydrophilic or hydrophobic 
moieties [135].  Several groups have combined liposomal technol-
ogy with BBB-shuttles to target the brain and release various thera-
peutics [136-139].  Recently, Chen et al (2017) proposed a dual 
BBB-shuttle labelled liposome approach to cross the BBB. They 
found that the cyclic RGD peptide with the BBB-shuttle peptide-22 
could significantly cross the BBB and localize to glioma cells [100] 
(Table 1). However, not all liposomes are created equally and the 
starting material considered is highly important for drug release and 
stability. A recent report by Hu et al. (2017) showed that egg-yolk 
phosphatidylcholine (EYPC) shuttled significantly higher levels of 
the drug MTX into the brain via the BBB using GSH. In compari-
son, a hydrogenated soy phosphatidylcholine (HSPC) displayed 
poorer permeation into the parenchyma. Confirming once again the 
importance of the starting material [140]. 

 Despite promising advances into the clinic, liposomes still have 
some issues with targeting. As highly cationic liposomes tend to 
accumulate in peripheral organs [135, 141, 142].  Targeting could 
be vastly improved in clinical studies by combining the encapsula-
tion efficiency of liposomes and the targeting of peptide based shut-
tles across the BBB.  In vivo studies by Ying et al. (2016) and Song 
et al. (2016) combined BBB-shuttles and liposomes to increase 
transport. Both studies reported increased targeting of liposomes 
into the brain [143, 144]. 

4. NANO-, SUBMICRO-, MICROPARTICLES 

 As mentioned previously, the field of particle science is diverse. 
With thousands of articles being published year after year, the field 
has become highly divergent in vocabulary; accelerating a growth 
in confusion and contradictions. In 2008 and later in 2015, the In-
ternational Standards Organization (ISO) aimed to bring an ordered 
and unified set of definitions to describe nanoscale materials and 
indeed to even define the “nanoscale”. The ISO issued guidelines 
defining a nanoparticle as an object with 3 dimensions below 100 
nm (Fig.  5) [145]. They deemed under 100 nm to be the most ap-
propriate cut off for nanoparticles, as it is within this range that 
most of the special properties characterized by being “nano” are 
exhibited. However, the field has been very relaxed to stick within 
the confines of this definition, with many papers reporting 
“nanoparticles” with sizes above 100 nm for years. Building upon 
the ISO “nano” definition, any particle therefore with any of the 3 
dimensions greater than 100 nm and below 1000 nm should there-
fore be classed as a submicroparticle (SMP). It is within these con-
fines that we can truly grasp the complexity and variability within 
the field. 

4.1. Nanoconstructs and Submicroconstructs 

 With this in mind, it is still difficult in global terms to talk de-
finitively about engineered nanoparticles. For example when  
 

 

 

 

 

 

 

 

Fig. (5). ISO definition of nanoparticles, nanowires and nanoplates. 

 

discussing the size of a 50 nm iron oxide nanoparticle, does this 
size refer to the core or the hydrodynamic radius? Are we discuss-
ing an unmodified or modified nanoparticle? From the current defi-
nitions, it would not be incorrect to talk about a 50 nm nanoparticle 
core as a nanoparticle, yet in global terms the functionalization of 
the nanoparticle with additional moieties (such as PEG) could pro-
duce a particle with a hydrodynamic diameter larger than 100 nm. 
In this scenario, the engineered “nanoparticle” exceeds the nanopar-
ticle definition. We propose using the term constructs to encompass 
the global size of engineered particles. In the case of our previous 
example, the iron oxide functionalised with PEG should be consid-
ered as a submicroconstruct (SMC), as it no longer falls within the 
nanoscale limit as defined by the ISO. Extension engineered parti-
cles less than 100 nm should be referred to as nanoconstructs (NC). 
We believe the practicalities of using this form of terminology adds 
clarity of expression and more precision to the field. 

5. FUTURE WORKS AND CURRENT LIMITATIONS

 At present, the combination of nanoparticles and peptides arriv-
ing to the clinic is extremely limited. Of note, is a formulation by 
the company 2-BBB Medicines. Using liposomes with a GSH pep-
tide and a therapeutic cargo of doxorubicin, they aim to target me-
tastatic cancer within the brain. This formulation has successfully 
progressed to phase II clinical trials, being the only nanoparticle 
modified with BBB-shuttles to do so (Integrity database: 698269). 

 However, the arrival to the clinic of these nanoconstructs does 
not hide the fact that at present our understanding of the clearance 
mechanisms of nanoparticles from tissues requires greater levels of 
research. Additionally, the long-term effects of these nanocon-
structs is unknown, and will require many more years of observa-
tion and research before their long-term effects can be fully under-
stood. Finally, the toxicity of the nanoconstructs to the environment 
is another area where our knowledge and research is at best sparse. 
Nevertheless, the direction of therapeutic research is heading to-
wards the combination of novel nanomaterials with targeting moie-
ties.  

CONCLUSION 

 The rapid convergence and expansion of both the peptide shut-
tles field and the nanoparticle field have furthered our basic under-
standing of disease and offer huge potential to combine transport 
with therapies. However, this rapid pace has posed many chal-
lenges. Firstly terminology, although at first glance a trivial matter, 
has huge implications on whether a new therapeutic needs to un-
dergo more or less stringent regulatory assessments. Secondly, 
although hugely promising objects for theranostics applications, 
nanoconstructs (1-100 nm) must be carefully and stringently as-
sessed for toxicity and stability. Many studies still have to be car-
ried out to fully assess the long-term effects and clearance mecha-
nisms. These hurdles are not insurmountable but will slow down 
translation from the bench to the bedside. Thirdly, peptides offer 
the most exciting avenue to target towards cells of interest and cross 
biological barriers. However, they too have to be assessed for toxic-
ity, and potential off-target effects. For example, peptides that are 
able to cross the BBB may also potentiate other as of yet undis- 
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covered factors, producing off-target effects.  On the contrary, 
combining the fantastic targeting properties of peptides and the 
diverse applications of nanoparticles, the next decade offers fantas-
tic opportunities to target, treat and terminate the worst ailments of 
humanity. 

LIST OF ABBREVIATIONS 

BBB = Blood-brain Barrier  

NP = Nanoparticle  

SMP = Submicroparticle  

NC = Nanoconstruct  

SMC = Submicroconstruct  

AuNP = Gold Nanoparticle   

SPION = Superparamagnetic Iron Oxide Nanoparticles 
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