

Citation: Liang Q, Shang L, Wang Y, Hua J (2015) Partial Dominance, Overdominance and Epistasis as the Genetic Basis of Heterosis in Upland Cotton (*Gossypium hirsutum* L.). PLoS ONE 10(11): e0143548. doi:10.1371/journal.pone.0143548

Editor: David D Fang, USDA-ARS-SRRC, UNITED STATES

Received: August 16, 2015

Accepted: November 5, 2015

Published: November 30, 2015

Copyright: © 2015 Liang et al. This is an open access article distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the paper and its Supporting Information files. Readers may direct questions to the corresponding author (jinping_hua@cau.edu.cn).

Funding: This research was supported in part by a grant from the National Natural Science Foundation of China (<u>www.nsfc.gov.cn</u>) (31171591), grants from the National High Technology Research and Development Program (2011AA10A102), the New Century Excellent Talents of the Ministry of Education (NCET-06-0106), and the Key Project of Ministry of Education (10712) to J HUA.

RESEARCH ARTICLE

Partial Dominance, Overdominance and Epistasis as the Genetic Basis of Heterosis in Upland Cotton (*Gossypium hirsutum* L.)

Qingzhi Liang¹[©][■], Lianguang Shang¹[©], Yumei Wang², Jinping Hua¹*

1 Department of Plant Genetics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, China Agricultural University, Beijing, 100193, P. R. China, **2** Research Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China

• These authors contributed equally to this work.

¤ Current address: The Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institutes, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, Guangdong, China

* jinping_hua@cau.edu.cn

Abstract

Determination of genetic basis of heterosis may promote hybrid production in Upland cotton (Gossypium hirsutum L.). This study was designed to explore the genetic mechanism of heterosis for yield and yield components in $F_{2:3}$ and $F_{2:4}$ populations derived from a hybrid 'Xinza No. 1'. Replicated yield field trials of the progenies were conducted in 2008 and 2009. Phenotypic data analyses indicated overdominance in F₁ for yield and yield components. Additive and dominance effects at single-locus level and digenic epistatic interactions at two-locus level were analyzed by 421 marker loci spanning 3814 cM of the genome. A total of 38 and 49 QTLs controlling yield and yield components were identified in F2: 3 and F2: 4 populations, respectively. Analyses of these QTLs indicated that the effects of partial dominance and overdominance contributed to heterosis in Upland cotton simultaneously. Most of the QTLs showed partial dominance whereas 13 QTLs showing overdominance in F2:3 population, and 19 QTLs showed overdominance in F2:4. Among them, 21 QTLs were common in both F2: 3 and F2: 4 populations. A large number of two-locus interactions for yield and yield components were detected in both generations. AA (additive × additive) epistasis accounted for majority portion of epistatic effects. Thirty three complementary twolocus homozygotes (11/22 and 22/11) were the best genotypes for AA interactions in terms of bolls per plant. Genotypes of double homozygotes, 11/22, 22/11 and 22/22, performed best for AD/DA interactions, while genotype of 11/12 performed best for DD interactions. These results indicated that (1) partial dominance and overdominance effects at singlelocus level and (2) epistasis at two-locus level elucidated the genetic basis of heterosis in Upland cotton.

Competing Interests: The authors have declared that no competing interests exist.

Abbreviations: cM, centi-Morgan; QTL, quantitative trait loci; RIL, recombinant inbred line; SSR, simple sequence repeat; AA, additive × additive; AD or DA, additive × dominance or dominance ×additive; DD, dominance × dominance.

Introduction

Cotton (*Gossypium* spp.) is the most important fiber crop in the world. A number of experiments showed that significant heterosis existed in Upland cotton for yield and yield components [1-3]. Hybrids with acceptable heterosis have been released for cotton production in both India, and China,.

Rapid advances in high density molecular genetic linkage maps have enabled a fine dissection of quantitative traits into genetic effects of individual Mendelian loci [4]. To understand the genome of cotton and detect quantitative trait loci (QTLs) for lint yield and fiber quality, the first genetic linkage map was constructed in cotton [5]. Since then, a variety of genetic linkage maps with improved high density were constructed in different mapping populations derived from either interspecific tetraploids or cultivated allotetraploid cotton [6-12]. Because genetic polymorphism in intraspecific Upland cotton was lower than that in interspecific tetraploids, the genome coverage of genetic linkage maps in intraspecific tetraploids was relatively low [13]. An intraspecific genetic linkage map comprising 604 loci and covering 3141 cM was recently constructed in Upland cotton [14]. Some other Upland cotton intraspecific linkage maps were also reported such as a linkage map with 471 loci and coverage of 3070 cM [15], and another linkage map with 978 loci and coverage of 4,184 cM [16]. More recently, a genetic map was constructed containing 421 SSR loci with a span of 3814.3 cM using an F₂ population in Upland cotton [17]. Moreover, the most marker-rich intraspecific linkage map, which contained 1540 loci and spanned 2,842.06 cM, was constructed using recombinant inbred line (RIL) population derived from a cross between Upland cotton cultivar/line 'Yumian 1' and '7235' [18]. QTL mapping of yield and fiber quality traits based on high-density genetic linkage maps of intraspecific tetraploids can be very useful in revealing the genetic basis of lint yield and fiber properties. Recently, Liu et al. (2012) identified a total of 225 QTLs controlling yield and its components in both the XZM2-derived RILs and IF₂ populations, and from a total of 111 non-redundant QTLs, of these, 23 were detected in both two populations simultaneously [19]. Shang et al. (2015) mapped a total of 20 QTLs for fiber quality traits using 177 RILs derived from 'Xinza No. 1', a cross between 'GX11359' and 'GX100-2' [20]. Sequences of the D5-genome of G. raimondii, A2-genome of the G. arboreum and genome sequence of cultivated Upland cotton (*Gossypium hirsutum* TM-1) were publically available recently [21–25]. These physical maps provide new opportunities to develop rich SSR and functional markers for construction of high-density genetic maps and further dissect the genetic basis of complex quantitative traits as well as heterosis in Upland cotton.

Utilizations of heterosis have made significant economic benefits in crops during the last century. However, the mechanism of heterosis remains enigmatic [26]. Different hypotheses including dominance hypothesis [27-29], overdominance hypothesis [30-31] and epistasis hypothesis [32-34] were proposed to explore the mechanisms of heterosis. Epistasis is a phenomenon which the effect of one gene is modified by one or several other genes. Epistasis can be contrasted to dominance, which is an interaction between alleles at the same gene locus. The dominance hypothesis attributes the superiority of hybrids to the suppression of undesirable (deleterious) recessive alleles from one parent by dominant alleles from another parent. The overdominance hypothesis states that some combinations of alleles are especially advantageous when paired in a heterozygous individual. Recent research using quantitative molecular tools provided new evidence for different hypotheses in dissecting heterosis [26, 35-38]. In two rice BC₁F₇ populations between recombinant inbred lines (RIL) and their parents, the heterozygotes were superior to the respective homozygotes in most QTLs, which supported the hypothesis that dominance was the genetic basis of heterosis in hybrid rice [39]. Stuber et al. [40] studied heterosis in the elite maize hybrid 'B73 × Mo17' and concluded that overdominance

(or pseudo-overdominance) (*i.e.*, a higher yield in the heterozygote than that in either homozygote) was the major cause of heterosis for grain yield. The hypothesis for epistasis as the genetic basis of heterosis was supported by a series of researches too [41-43]. The fact that a large number of digenic interactions for yield and yield components were detected in an F_{2: 3} population provided evidence for epistasis as the primary genetic basis of heterosis in rice [43]. Hua et al. [41-42] and Zhou et al. [44] further verified that heterozygotes were not necessarily advantageous for phenotypic traits and epistasis was the important genetic basis of heterosis in elite rice hybrid 'Shanyou 63'. Multiple genetic mechanisms were identified to play roles in heterosis. In rapeseed, epistasis as well as all levels of dominance from partial to overdominance were responsible for the expression of heterosis [45]. Another study in hybrid maize 'Yuyu No. 22' suggested that genetic basis of grain yield heterosis relied on the cumulative effects of dominance, overdominance, and epistasis by genetic dissection using an "immortalized F₂" population [46].

Opposite to genetic mechanisms of heterosis, reports on the genetic basis of inbreeding depression were inconsistent due to diverse materials in different experiments [47-54]. Wright [51] suggested that recessive or partially recessive deleterious effects of alleles were the most important cause of inbreeding depression. However, overdominance and epistasis were suggested as the primary genetic basis of inbreeding depression in rice [48-49]. Dominance effect was clearly a cause of inbreeding depression for yield while dominance and epistasis effects were the genetic basis of heterosis in soybean [53]. To understand the genetic basis of inbreeding depression in rice, Li and Luo et al. [48-49] reported that hybrid breakdown (part of inbreeding depression) in an intersubspecific F₄ population and recombinant inbred lines and their parents, and these results implied epistasis as a genetic basis of inbreeding depression. Li et al. [54] reported that hybrid breakdown (part of inbreeding depression) when a largely due to additive epistatic loci, which implies epistasis as a genetic basis of heterosis.

In the present research, the main objective was to explore the genetic basis of heterosis using the populations of $F_{2: 3}$ and $F_{2: 4}$ generations in Upland cotton by dissecting QTLs effects at both single- and two-locus levels. These results are expected to improve our understanding of the genetic basis of heterosis in cotton which will promote cotton hybrid production for lint yield.

Materials and Methods

Ethics Statement

No permits were required to conduct the field research or genotyping analyses. The field studies did not involve endangered or protected species.

Plant Materials

As described previously [<u>17</u>, <u>20</u>, <u>55</u>–<u>56</u>], the hybrid of Upland cotton 'Xinza No. 1' from the cross of 'GX1135' (P₁) and 'GX100-2' (P₂) was bred by the Guoxin Seed Company (Hebei Province, China), and the hybrid was released as a cultivar in Anhui Province in 2006. In the present study, F_1 seeds were developed from a manual emasculated cross between P₁ and P₂ grown in Hainan Province in winter 2006, and the F₁ seeds were then grown at the Xinzhou Cotton Breeding Station (Wuhan, 30°34'N, 114°16'E) in April 2007. The genotype of the F₁ individuals was distinguished by a codominant molecular marker, and one F₁ individual with the confirmed genotype was self-pollinated to produce F₂ seeds. A total of 256 randomly selected F₂ seeds were cultured in nutrient solution [<u>57</u>] in green house at China Agricultural

University (Beijing) in October 2007. All the F_2 seedlings were transported by air and transplanted at the Hainan South Propagation Station (Sanya, Hainan Province) to produce F_3 seeds by self pollination. The F_3 family lines were bulk self-pollinated to produce F_4 seeds. A population of 173 $F_{2:3}$ family lines were planted with their parents and the only one F_1 individual as, and a population of 173 $F_{2:4}$ family lines were planted with their parents and F_2 plants as controls in 2009.

Field Planting and Traits Examination

Field trials of the F_{2: 3} and F_{2: 4} populations were conducted at two locations, Quzhou Experimental Station of China Agricultural University at Handan City, Hebei Province (36°78'N, 114°92'E) and Hejian Guoxin Cotton Breeding Experiment Station at Cangzhou City, Hebei Province (38°43'N, 116°09'E) during 2008 and 2009. The two parents GX1135 (P_1) and GX100-2 (P₂) and their F₁ hybrid, 'Xinza No. 1', were also included as controls in the field tests. Field experiments followed a randomized complete block design with two replications at each location. Plants were planted in two row plots with 14 plants each. Plots were 4 m in length with 80 cm row spacing for the experiment at Handan and 4 m in length and 60 cm row spacing for the experiment at Cangzhou. Plants were spaced 30 cm in rows. Field management followed conventional standard field practices. Seedlings of approximate 25 days old were transplanted to fields in 2008. The seeds of F2: 4 were planted by sowing directly in 2009. Bolls from seven and five consecutive plants in the middle of each plot were sampled at Handan and Cangzhou, respectively. Boll samples were ginned for seed-cotton yield (SY, t/ha), lint yield (LY, t/ha), bolls/plant (BNP), boll weight (BW, g), lint percentage (LP, %). Traits examined included yield per plant measured as the seed cotton weight of all bolls of the individual. The remaining bolls in each plot were collected for yield estimation. Mid-parent heterosis (MPH) was calculated as MPH = $(F_1-M)/M \times 100$, M = $(P_1 + P_2)/2$. Where M is the mean yield of both parents and P₁ and P₂ are maternal and paternal yield, respectively. Hybrid breakdown (part of inbreeding depression) in an intersubspecific F4 population was analyzed by the method provided previously by Li et al. [54].

DNA Isolation and Genotype Analysis

Young leaves were collected from labeled F_2 , P_1 , P_2 , and F_1 individuals, frozen in liquid nitrogen, and stored at -80°C. DNA was individually extracted as described by Paterson et al. [58]. A total of 16,405 SSR primer pairs were used to screen for polymorphic markers between parents. Among these primers, the sequences of 13,468 pairs including BNL, NAU, TM, JESPER, CIR, HAU, CM, MUSS, MUSB and MUCS primers were downloaded from Cotton Microsatellite Database (CMD, <u>http://www.cottonmarker.org</u>). The detailed information of these primers was described in literature [6–9, 14, 59]. The remaining 2,937 pairs of primers were designed and developed from DNA sequence library [60]. The polymorphic markers identified were used to genotype individuals of F_2 population.

Map Construction and QTL Analysis

MAPMAKER 3.0 [61] was employed to construct a genetic linkage map. Assignment of linkage groups to chromosomes was made based on previously chromosome-anchored SSR markers [6, 11–12, 18, 62]. When no chromosome reference was available, the linkage group was described as "un××" with "××" referring to its serial number. QTLs were detected by composite interval mapping as described by Zeng [63] using software of WinQTL Cartographer 2.5 [64]. A stringent LOD threshold of 3.0 was used to declare suggestive QTL [65], whereas the same QTL in another environment with LOD of at least 2.0 was considered to be a common QTL, as

described by Shen et al. [66]. The graphic representation of the linkage group and QTL marked were created by Map Chart 2.2 as described by Voorrips [67].

Analysis, Confirmation of Digenic Interaction and Components Partition

Analysis of digenic interactions and further confirmation followed the methods described by Yu et al. [43] and Hua et al. [42]. The detected epistasis was confirmed by a randomization test conducted to identify those interactions more likely to be 'really' significant. In doing so, the entry order of the trait data in the analysis was randomly permutated and the F-statistic values were recalculated for the digenic interactions using the same marker data. This procedure was repeated 1000 times, and the resulting 1000 F-values were compared with the F-statistic values from the original data. If no more than one F-value from the random permutations was larger than the F-statistic value from the original data, the digenic interaction was regarded to be significant [41]. Significant interactions were further partitioned into three components, each specified by a single degree of freedom: AA (additive × additive), AD/DA (additive × dominance or dominance × additive), and DD (dominance × dominance). The significance for each term was assessed in an orthogonal contrast test using the statistical package STATISTICA [68].

Results

Measurements of Yield and Yield Components in $F_{2:3}$ and $F_{2:4}$ Populations and Mid-Parent Heterosis of Hybrid 'Xinza No. 1'

The measurements of yield and yield components including boll number per plant (BNP), boll weight (BW), and lint percentage (LP) were made for hybrids and their parents in $F_{2: 3}$ and $F_{2: 4}$ populations (S1 File). Data are listed in Table 1 and illustrated in S1 Fig. The yield traits varied widely in the populations during the two-year experiments (S1 Fig). Transgressive segregation of both directions was observed for all yield traits in $F_{2: 3}$ and $F_{2: 4}$ populations. Seed cotton yield (SY) and lint yield (LY) of the $F_{2: 4}$ population grown at Handan were much lower than that of the same population grown at Cangzhou, probably due to drought conditions at Handan which caused early aging during experiments. Lint yield was significantly correlated with all other yield traits and seed-cotton yield was significantly correlated with all the traits except lint percent. The correlation coefficients between different traits varied greatly from -0.23 to 0.97. Highest correlations were detected for bolls per plant vs. lint yield, 0.55 and 0.56 at Handan and Cangzhou respectively, in $F_{2: 3}$ populations (Table 2). Significant heterosis for yield was detected in hybrid 'Xinza No. 1' with 56% and 62% mid-parent heterosis (MPH) for seed cotton yield and lint yield, respectively.

Linkage Map and QTL Mapping for Yield and Yield Components

A total of 450 polymorphic markers, screened from 16,405 pairs of SSR primer between parents, were used to construct a linkage group (<u>S2 File</u>). The linkage map was obtained with 421 loci linked into 49 groups leaving 29 loci unlinked. The map spanned 3814 cM with an average distance of 8.9 cM between adjacent markers, accounting for 73% of the entire tetraploid genome. Forty-eight of the 49 linkage groups were assigned to 26 chromosomes. The remaining one linkage group could not be associated with any chromosome, and the one group was tentatively named as 'Un 1'.

A total of 67 QTLs controlling yield and yield components were identified in $F_{2:3}$ and $F_{2:4}$ generations using composite interval mapping. The data are given in <u>Table 3</u> and <u>S2 Fig</u>. There

Trait	Mean	SD	Min	Max	GX1135	GX100-2	Xinza No.1	Mid-parent heterosis (%)
S1/N1 ^a								
SY ^b	4.16/2.70	0.80/0.49	2.17/1.47	6.65/4.16	3.66	3.75	5.78	56.23
LY	1.69/1.06	0.32/0.21	0.88/0.58	2.71/1.60	1.55	1.37	2.37	62.01
BNP	15.05/20.20	2.23/3.06	10.17/13.75	20.21/29.67	18.11	16.15	20.34	18.74
BW	5.27/5.95	0.56/0.63	3.34/4.54	6.67/7.56	5.45	5.67	5.57	0.18
LP (%)	40.56/39.16	1.90/1.98	34.47/33.32	45.25/46.05	42.49	36.49	40.91	3.60
S2/N2 ^a							F ₂	
SY ^b	1.67/3.68	0.26/0.67	0.98/1.84	2.50/5.62	2.92	2.23	3.55	38.13
LY ^b	0.62/1.53	0.14/0.28	0.35/0.73	0.93/2.32	1.17	0.82	1.42	43.31
BNP	15.24/17.35	1.96/3.13	11.29/10.57	20.93/27.45	21.99	13.58	24.86	39.80
BW	4.29/5.14	0.41/0.47	3.01/3.70	5.20/6.29	4.67	4.60	4.98	7.50
LP (%)	36.91/41.58	1.73/1.88	32.89/34.19	42.00/45.79	40.17	36.66	40.10	4.38

Table 1. Yiel	d and yield components i	n F _{2: 3} , F _{2: 4}	populations and r	mid-parent heteros	sis in F ₁ an	d F ₂ generations
---------------	--------------------------	---	-------------------	--------------------	--------------------------	------------------------------

SY: seed cotton yield; LY: lint yield; BNP: bolls per plant; BW: boll weight; LP: lint percent

^a S1/N1: F_{2:3} family (S1: 2008Handan, N1:2008Cangzhou), S2/N2: F_{2:4} family(S2: 2009Handan, N2: 2009Cangzhou) (the same below) ^b t/ha

Results in each cell are presented as S/N

doi:10.1371/journal.pone.0143548.t001

were 38 QTLs identified in $F_{2:3}$ generation, among which seven were major QTLs detected in both environments. There were 49 QTLs identified in $F_{2:4}$ generation, among which, six were major QTLs detected in both environments.

For seed cotton yield, a total of 12 QTLs were identified in two generations, of those three QTLs were detected simultaneously in the two generations. Seven QTLs were identified in $F_{2:3}$ generation, accounting for 5.2% to 12.7% of total variance, and eight QTLs were identified in $F_{2:4}$ generations, accounting for 3.6% to 23.1% of total variance, respectively. Among them, two QTLs, *qSY-chr26-1* and *qSY-chr14-1*, were identified at both Handan and Cangzhou locations in $F_{2:3}$ generation. Three QTLs, *qSY-chr11-1*, *qSY-chr12-1* and *qSY-chr14-1*, were detected in both $F_{2:3}$ and $F_{2:4}$ generations. Six QTLs identified in $F_{2:3}$ generation showed negative additive effects (Table 3) and the alleles from female parent GX1135 increased phenotypic variation (S2 Fig). Three QTLs in $F_{2:3}$ generations showed positive additive effects and the alleles from GX100-2 increased phenotypic variation. In $F_{2:3}$ and $F_{2:4}$ generations, eight QTLs

Table 2. Correlation between yield and yield components in $F_{2:\,3}$ and $F_{2:\,4}$ populations.

Trait	Population	Seed cotton yield	Lint yield	Bolls/plant	Boll weight
Lint yield	S1/N1 ^a	0.97**/0.97**	-		
	S2/N2 ^a	0.96**/0.97**			
Bolls/plant	S1/N1	0.50**/0.55**	0.55**/0.56**		
	S2/N2	0.18*/0.37**	0.23**/0.40**		
Boll weight	S1/N1	0.25**/0.30**	0.24**/0.23**	0.01/0.04	
	S2/N2	0.62**/0.27**	0.61**/0.21**	0.00/-0.03	
Lint percent (%)	S1/N1	-0.09/0.12	0.16*/0.36**	0.16*/0.17*	-0.00/-0.23**
	S2/N2	0.12/-0.05	0.40**/0.19**	0.25**/0.14	0.13/-0.23**

*, ** Significant at probability of 0.05 and 0.01 respectively.

doi:10.1371/journal.pone.0143548.t002

SY(SINI*) GSV-chr12+1* S1 11 ENL2805 TMBC22 0.62 2.78 4.33 2.18 0.34 6.08 gSV-chr12+1* S1 11 ENL2803 DPL252 14.73 3.59 2.16 5.28 2.244 7.60 gSV-chr12-1* S1 14 DPL565 CGR6803 80.05 3.15 6.33 0.23 0.51 0.04 5.28 gSV-chr13-1 N1 5 TMB1489 DCGR6803 CGR6842 6.334 0.33 8.16 2.91 0.036 6.68 gSV-chr13-1 N1 5 TMB1489 DC40111 6.28 3.33 8.16 2.91 0.036 6.68 gSV-chr13-1 N1 13 NAU2893 GH157 132.04 6.44 10.60 5.08 6.02 6.04 0.42 0.01 0.83 2.92 0.06 3.46 2.44 0.42 0.17 7.55 gSV-chr13-1 N2 10 M1118 MAU360	Trait	QTLs	Env	Chr	Marker flan	king	Position (cM)	LOD	A ^a	Db	D/A	Var% ^c
ofS'-chr12-1* S1 12 CCRF193 DPL252 14 73 3.59 2-16 5.28 -2.44 7.82 ofS'-chr14-1* S1 14 DPL555 CGR6683 78.05 5.18 5.78 3.32 0.58 12.72 ofS'-chr6-1 S1 26 CGR8880 CGR8452 63.34 2.35 4.33 -1.90 0.44 5.24 ofS'-chr6-1 N1 26 CGR8880 CGR8452 63.34 2.33 8-16 2.91 0.36 6.84 ofS'-chr3-1 N1 5 TMB489 DC40111 6.26 3.33 8-16 2.91 0.36 6.84 ofS'-chr2-1 S1 22 Offen 9.11 TMB489 DC4011 6.22 1.26 0.60 6.52 ofS'-chr1-1 N2 21 TMB482 GH1157 18.73 2.27 4.08 0.22 0.01 3.35 ofS'-chr1-2 S2 10 NA1340 GH129	SY(S1N1 ^e)	qSY-chr11-1*	S1	11	BNL2895	TMB628	0.62	2.78	-6.39	2.18	0.34	6.08
gSV-chr/4-1* S1 14 DPL565 CGR6883 78.05 5.18 5.78 3.22 0.58 12.71 gSV-chr/3-1 N1 14 DPL565 CGR6880 GGR452 G3.34 3.35 6.83 0.73 0.11 7.00 7.83 gSV-chr/3-1 N1 5 TMB1489 CGR6880 CGR452 G3.34 3.39 8.74 0.67 0.08 7.68 gSV-chr/3-1 N1 15 TMB1489 CGR6883 0.01 3.23 8.51 0.68 0.48 1.54 gSV-chr/3-7 N1 13 NAU2893 GH157 12.54 5.41 10.80 6.22 0.05 6.26 gSV-chr/1-7 N2 11 TMB268 GH316 1.73 2.02 5.08 6.22 1.00 0.08 3.64 gSV-chr/1-7 S2 12 CGR6802 DPL50a 7.37 10.15 1.93 1.05 1.00 2.83 gSV-chr/1-2 S2		qSY-chr12-1*	S1	12	CGR5193	DPL252	14.73	3.59	-2.16	-5.28	-2.44	7.62
N1 14 DPLESE CGR0883 80.05 3.15 6.83 -0.73 -0.11 7.50 qSY-chr.6-1 N1 26 CGR0880 CGR4542 63.34 2.35 4.35 4.35 4.067 0.044 5.24 qSY-chr.6-1 N1 5 TM81489 DC40111 6.26 3.33 4.16 2.91 0.36 6.68 qSY-chr.2-1 S1 23 GH489 SHIN0830 0.01 3.23 -6.67 4.64 0.92 4.50 gSY-chr.2-1 S1 2.3 GH489 SHIN0830 0.01 3.23 -6.67 4.64 0.92 4.50 gSY-chr.1-1* S2 I CGR18193 DPL252 18.73 2.75 4.08 2.28 0.56 5.28 qSY-chr.1 S2 I NAU4045 CGR129 38.52 3.66 2.46 0.42 0.17 7.50 qSY-chr.1 S2 I NAU4045 CGR129 38.52 <td< td=""><td></td><td>qSY-chr14-1*</td><td>S1</td><td>14</td><td>DPL565</td><td>CGR6683</td><td>78.05</td><td>5.18</td><td>5.78</td><td>3.32</td><td>0.58</td><td>12.71</td></td<>		qSY-chr14-1*	S1	14	DPL565	CGR6683	78.05	5.18	5.78	3.32	0.58	12.71
gSY-chr26-1 S1 26 CGR6880 CGR5452 63.34 2.35 4.35 -1.90 -0.44 5.74 gSY-chr5-1 N11 55 TMB1489 DC40111 6.26 6.333 8.16 2.91 0.08 7.59 gSY-chr5-1 N11 53 MAU2893 GH157 125.04 5.44 1.080 5.08 0.048 1.15 gSY-chr17-1 N1 23 GH499 SHIN0830 0.01 3.23 8.57 4.64 0.02 4.50 gSY-chr17-1 N2 11 TMB628 GH316 1.73 2.02 4.08 -2.28 0.05 5.50 gSY-chr17-1 S2 12 CGR5193 PL252 1.83 3.16 1.11 0.03 3.55 gSY-chr17-1 S2 10 NAU4045 CGR6119 3.82 3.66 0.22 0.07 7.77 7.97 gSY-chr17-2 S2 11 CGR5111 BL326 CGR543 6.3.34			N1	14	DPL565	CGR6683	80.05	3.15	6.83	-0.73	-0.11	7.00
N1 26 CGR8800 CGR8422 63.34 3.39 8.74 0.67 0.08 7.59 q\$Y-chr13-1 N1 5 TMB1449 DC40111 6.26 3.33 8.74 0.67 0.36 6.66 q\$Y-chr13-1 N1 13 NAU2890 0.01 3.23 6.57 5.26 0.80 6.54 q\$Y-chr13-1 N2 12 GGR5133 DPL552 18.73 2.75 4.08 -2.29 0.56 5.26 q\$Y-chr14-1* S2 14 CGR6803 PAL10157 83.06 2.22 1.25 0.10 0.08 3.56 q\$Y-chr14-1* S2 14 CGR6802 PH050a 7.25 3.08 0.22 0.07 7.35 q\$Y-chr1-1 S2 10 NAU3404 GH199 64.97 3.14 -1.11 -1.03 -3.32 7.37 7.37 q\$Y-chr1-2 S2 12 CGR6800 CGR6802 P1.050 3.13 -3.32		qSY-chr26-1	S1	26	CGR6880	CGR5452	63.34	2.35	-4.35	-1.90	-0.44	5.24
qSY-chr3-1 N1 5 TMB1499 C40111 12.64 3.33 -8.16 2.91 0.36 6.68 qSY-chr23-1 S1 23 GH357 125.04 5.44 10.60 5.08 -0.48 11.54 gSY-chr23-1 S1 23 GH439 SHIN0803 0.01 3.23 -6.57 2.58 0.08 6.45 gSY-chr1-1* N2 11 TMB628 GH316 1.73 2.02 -5.07 4.44 0.92 4.50 gSY-chr1-1* S2 12 CGR6803 DALU57 83.06 2.22 1.00 8.36 qSY-chr1-2 S2 13 NAU4046 GH199 64.97 3.14 -1.11 -1.03 -0.93 5.50 qSY-chr1-2 S2 11 CGR6602 DPL050a 7.37 10.15 1.95 1.09 2.313 qSY-chr1-2 S2 12 CGR6602 DPL050a 7.37 10.15 1.38 0.48 0.41			N1	26	CGR6880	CGR5452	63.34	3.39	-8.74	0.67	0.08	7.59
qSY-chrl3-1 N1 13 NAU2893 GH157 125.04 5.44 10.60 5.08 -0.48 11.54 qSY-chrl1-1* N2 GH499 SHIN0830 0.01 3.23 -6.57 5.26 0.80 6.54 qSY-chrl1-1* N2 11 TMBE26 113.73 2.02 -5.07 4.64 0.92 4.50 qSY-chrl2-1* S2 14 CGR6683 HAU1057 83.06 2.22 1.08 0.22 0.07 1.357 qSY-chrl2-1 S2 5 HAU911 HAU746 39.08 7.25 -3.08 0.22 0.07 1.357 qSY-chrl2-2 S2 10 NAU4046 CGR6129 3.82 3.66 2.46 0.42 0.07 1.351 1.95 1.09 1.95 1.00 2.313 qSY-chrl2-2 S2 12 CGR6119 38.52 3.66 2.46 0.42 0.17 7.77 1.015 1.95 1.99 1.30 4.32		qSY-chr5-1	N1	5	TMB1489	DC40111	6.26	3.33	-8.16	2.91	0.36	6.68
q\$Y-chr23-1 S1 23 GH499 SHIN0830 0.01 3.23 -6.57 5.26 0.80 6.54 SY(S2N2" q\$Y-chr1-1" N2 11 TMB628 GH316 1.73 2.02 5.07 4.64 0.92 4.50 q\$Y-chr1-1" S2 14 CGR6683 HAU1057 83.06 2.22 1.25 0.10 0.08 3.64 q\$Y-chr1-1 S2 S HAU191 HAU746 39.08 7.25 3.08 0.22 0.07 1.357 q\$Y-chr1-1 S2 10 NAU3404 GH199 64.97 3.14 -1.11 -1.03 -0.93 5.50 q\$Y-chr1-2 S2 11 CGR6602 DPL050a 7.77 10.15 1.95 1.00 23.13 q\$Y-chr1-2 S2 15 HAU1315 NAU3034 0.67 2.52 1.04 1.35 0.28 6.33 q\$Y-chr3-1 N1 5 HAU911 HAU335 NAU3034		qSY-chr13-1	N1	13	NAU2893	GH157	125.04	5.44	10.60	-5.08	-0.48	11.54
SY(S2N2*) qSY-chr11-1* N2 11 TMB628 GH316 1.73 2.02 -5.07 4.64 0.92 4.50 qSY-chr12-1* S2 12 CCR5193 DPL252 18.73 2.75 4.08 -2.29 4.06 5.65 5.66 qSY-chr14-1* S2 14 CGR6688 HAU1057 83.06 2.22 1.25 0.10 0.08 3.44 qSY-chr1-1 S2 8 NAU4045 GGR129 3.852 3.46 2.46 -0.42 -0.17 7.50 qSY-chr1-2 S2 10 NAU3044 GH199 64.97 3.14 -1.11 -1.03 -0.93 5.50 qSY-chr1-2 S2 10 NAU3044 GH19 64.65 -0.75 -1.77 -2.37 7.37 7.37 10.15 1.95 1.00 23.13 -3.32 1.38 0.41 5.58 qLY-chr5-1* N1 26 CGR6800 CGR5452 63.34 3.18 -1.55 -0.98 6.80 qLY-chr6-1* N1 26 DFL022 <td< td=""><td></td><td>qSY-chr23-1</td><td>S1</td><td>23</td><td>GH499</td><td>SHIN0830</td><td>0.01</td><td>3.23</td><td>-6.57</td><td>5.26</td><td>0.80</td><td>6.54</td></td<>		qSY-chr23-1	S1	23	GH499	SHIN0830	0.01	3.23	-6.57	5.26	0.80	6.54
qSY-chr12-1* S2 12 CGR5193 DPL252 18.73 2.75 4.08 -2.29 -0.56 5.26 qSY-chr3-1 S2 14 CGR6683 HAU1057 83.06 7.22 1.25 0.10 0.08 3.84 qSY-chr3-1 S2 8 NAU4045 CGR6129 38.52 3.66 2.46 -0.42 -0.17 7.50 qSY-chr10-1 S2 10 NAU3044 GH199 64.97 3.14 -1.11 -1.03 -0.93 5.50 qSY-chr12-2 S2 12 CGR5111 BNL3261 2.96 4.65 -0.75 -1.77 -2.37 7.97 LY (S1N1) qLY-chr5-1* N1 5 TMB1499 DC40111 6.26 3.33 -3.38 0.41 5.88 qLY-chr5-1* N1 8 NAU356 DPL790 18.01 2.58 3.37 -0.66 -0.26 6.28 qLY-chr6-1* N1 13 GH157 BNL1495 126.06 5.10 3.35 -0.86 -0.22 10.01 1.24 2.76	SY(S2N2 ^e)	qSY-chr11-1*	N2	11	TMB628	GH316	1.73	2.02	-5.07	4.64	0.92	4.50
qSY-chr14-1* S2 14 CGR6683 HAU1057 83.06 2.22 1.25 0.10 0.08 3.64 qSY-chr6-1 S2 5 HAU911 HAU746 39.08 7.25 -3.08 0.22 0.07 13.57 qSY-chr10-1 S2 8 NAU4046 CGR6129 38.52 366 2.46 0.42 0.01 1.35 1.00 2.31 qSY-chr17-2 S2 10 NAU3404 GH199 64.97 3.14 -1.11 -1.03 -0.93 7.37 7.97 7.97 LY (S1N1) qLY-chr5-1* N1 5 TMB1499 DC40111 6.26 3.13 -3.32 1.38 0.41 5.98 qLY-chr5-1* N1 8 NAU1356 DL4004 GGR6800 CGR4542 63.34 5.79 -4.72 0.36 0.08 12.64 qLY-chr6-1* N1 3 GH157 BNL1495 12.606 5.10 3.85 -0.86 0.22 10.00<	. ,	qSY-chr12-1*	S2	12	CGR5193	DPL252	18.73	2.75	4.08	-2.29	-0.56	5.26
gSY-chr5-2 S2 5 HAU911 HAU746 39.08 7.25 -3.08 0.22 0.07 13.57 gSY-chr0-1 S2 8 NAU4045 CGR6129 38.52 3.66 2.46 0.42 0.17 7.50 gSY-chr1-1 S2 10 NAU3044 GH199 64.97 3.14 -1.11 -1.03 0.93 5.50 gSY-chr1-2 S2 11 CGR5602 DPL050a 73.77 10.15 1.95 1.00 23.13 gSY-chr1-2 S2 12 CGR5602 DPL050a 73.77 10.15 1.95 1.00 23.13 gSY-chr1-2 S1 5 HAU1315 NAU4034 40.67 2.52 1.04 -1.36 -1.30 4.82 gLY-chr3-1 N1 8 NAU1356 DPL790 18.01 2.58 3.37 -0.86 0.22 10.01 LY (S2N2) gLY-chr3-1 N1 13 GH157 BNL1495 12.66 5.10 <td></td> <td>qSY-chr14-1*</td> <td>S2</td> <td>14</td> <td>CGR6683</td> <td>HAU1057</td> <td>83.06</td> <td>2.22</td> <td>1.25</td> <td>0.10</td> <td>0.08</td> <td>3.64</td>		qSY-chr14-1*	S2	14	CGR6683	HAU1057	83.06	2.22	1.25	0.10	0.08	3.64
qSY-chr8-1 S2 8 NAU4045 CGR6129 38.52 3.66 2.46 -0.42 -0.17 7.50 qSY-chr10-1 S2 10 NAU3404 GH199 64.97 3.14 -1.11 -1.03 -0.93 5.50 qSY-chr12-2 S2 11 CGR502 DPL050a 73.77 1.015 1.95 1.00 2.313 qSY-chr12-2 S2 11 CGR5111 BNL3261 2.96 4.65 -0.75 -1.77 -2.37 7.97 LY (S1N1) qLY-chr5-t* N1 5 TMB1489 DC40111 6.26 3.13 -3.32 1.38 0.41 5.88 qLY-chr5-t* N1 8 NAU366 DFL790 18.01 2.58 3.77 0.66 0.26 6.80 qLY-chr3-1 N1 3 GH157 BNL1495 126.06 5.10 3.85 -0.86 6.22 10.01 LY (S2N2) qLY-chr5-t* N2 5 HAU911 HAU		qSY-chr5-2	S2	5	HAU911	HAU746	39.08	7.25	-3.08	0.22	0.07	13.57
qSY-chr10-1 S2 10 NAU3404 GH199 64.97 3.14 -1.11 -1.03 -0.93 5.50 qSY-chr11-2 S2 11 CGR6602 DPL050a 73.77 10.15 1.95 1.00 23.13 qSY-chr12-2 S2 12 CGR5111 BNL3261 2.96 4.65 -0.75 -1.77 -2.37 7.97 LY (S1N1) qLY-chr5-1* N1 5 HAU1315 NAU4034 40.67 2.52 -1.04 -1.36 -1.30 4.82 qLY-chr6-1* N1 8 NAU1356 DPL790 18.01 2.56 3.37 -0.86 -0.26 6.28 qLY-chr3-1* N1 26 CGR6880 CGR5452 63.34 5.19 4.72 0.36 0.08 1.26 (S2N2) qLY-chr3-1* N1 13 GH157 BNL1495 126.06 5.10 3.85 -0.66 -0.22 10.01 9.176 0.42 2.6 HAU911 HAU746		qSY-chr8-1	S2	8	NAU4045	CGR6129	38.52	3.66	2.46	-0.42	-0.17	7.50
qSY-chrl1-2 S2 11 CGR5602 DPL050a 73.77 10.15 1.95 1.95 1.00 23.13 qSY-chrl2-2 S2 12 CGR5111 BNL3261 2.96 4.65 -0.75 -1.77 -2.37 7.97 LY (S1N1) qLY-chr5-2* S1 5 HAU1315 NAU4034 40.67 2.52 -1.04 -1.36 -1.30 4.82 qLY-chr5-2* S1 5 HAU1315 NAU4034 40.67 2.52 -1.04 -1.36 -1.30 4.82 qLY-chr3-1* N1 8 CGR6880 CGR6452 63.34 5.79 -4.72 0.36 0.08 1.26 qLY-chr3-1* N1 25 DPL022 TMB0665 0.01 2.46 2.76 -2.34 -0.85 5.22 qLY-chr6-1* N2 5 HAU911 HAU746 39.08 2.19 -1.18 -1.13 -0.66 -2.22 0.38 4.70 qLY-chr8-1* S2 <		qSY-chr10-1	S2	10	NAU3404	GH199	64.97	3.14	-1.11	-1.03	-0.93	5.50
qSY-chr12-2 S2 12 CGR5111 BNL3261 2.96 4.65 -0.75 -1.77 -2.37 7.97 LY (S1N1) qLY-chr5-1* N1 5 TMB1489 DC40111 6.26 3.13 -3.32 1.38 0.41 5.98 qLY-chr5-1* S1 5 HAU1315 NDV304 40.67 2.52 -1.04 -1.36 -1.30 4.82 qLY-chr5-1* S1 26 CGR6880 CGR5452 63.34 3.18 -1.58 -0.98 6.80 qLY-chr3-1 N1 13 GH157 BNL1495 126.06 5.10 3.85 -0.66 -0.22 10.01 LY (S2N2) qLY-chr3-1* N2 5 HAU911 HAU746 39.08 4.74 -0.98 -0.01 -0.01 9.23 qLY-chr3-1* N2 5 HAU911 HAU746 39.08 2.19 -1.18 -1.13 -0.01 9.23 qLY-chr3-1 S2 11 CGR5102		qSY-chr11-2	S2	11	CGR5602	DPL050a	73.77	10.15	1.95	1.95	1.00	23.13
LY (S1N1) qLY-chr5-1* N1 5 TMB1489 DC40111 6.26 3.13 -3.32 1.38 0.41 5.98 qLY (S1N1) qLY-chr5-2* S1 5 HAU1315 NAU4034 40.67 2.52 -1.04 -1.36 -1.30 4.82 qLY-chr8-1* N1 8 NAU1356 DPL790 18.01 2.58 3.37 -0.86 -0.26 6.28 qLY-chr8-1* N1 26 CGR6880 CGR5452 63.34 5.17 -4.72 0.36 0.08 12.64 qLY-chr3-1* N1 13 GH157 BNL1495 126.06 5.10 3.85 -0.86 -0.22 10.01 LY (S2N2) qLY-chr5-1* N2 5 DPL022 TMB0865 0.01 2.46 2.76 -2.34 -0.85 5.22 QLY-chr5-1* S2 8 DPL790 NAU4045 28.09 2.04 0.56 0.22 0.38 4.70 qLY-chr1-1 S2 11 CGR5602 DPL50a 77.77 7.49 0.60 0.76 1.28 </td <td></td> <td>, qSY-chr12-2</td> <td>S2</td> <td>12</td> <td>CGR5111</td> <td>BNL3261</td> <td>2.96</td> <td>4.65</td> <td>-0.75</td> <td>-1.77</td> <td>-2.37</td> <td>7.97</td>		, qSY-chr12-2	S2	12	CGR5111	BNL3261	2.96	4.65	-0.75	-1.77	-2.37	7.97
qLY-chr5-2* S1 5 HAU1315 NAU4034 40.67 2.52 -1.04 -1.36 -1.30 4.82 qLY-chr6-1* N1 8 NAU1356 DPL790 18.01 2.58 3.37 -0.86 -0.26 6.28 qLY-chr6-1 S1 26 CGR6880 CGR5452 63.34 3.18 -1.55 -0.98 6.80 qLY-chr13-1 N1 13 GH157 BNL1495 126.06 5.10 3.85 -0.86 -0.22 10.01 LY (S2N2) qLY-chr5-1* N2 5 DPL022 TMB0865 0.01 2.46 2.76 -2.34 -0.85 5.22 qLY chr5-2* S2 5 HAU911 HAU746 39.08 4.74 -0.98 -0.01 -0.01 9.33 qLY-chr1-1 S2 11 CGR5602 DPL050a 77.77 7.49 0.60 0.76 1.28 16.21 qLY-chr1-1 S2 12 CGR5675 20.18 3	LY (S1N1)	gLY-chr5-1*	N1	5	TMB1489	DC40111	6.26	3.13	-3.32	1.38	0.41	5.98
qLY-chr8-1* N1 8 NAU1356 DPL790 18.01 2.58 3.37 -0.86 -0.26 6.28 qLY-chr8-1 S1 26 CGR6880 CGR5452 63.34 3.18 -1.55 -0.98 6.80 qLY-chr13-1 N1 13 GH157 BNL1495 126.06 5.10 3.85 -0.86 -0.22 10.01 LY (S2N2) qLY-chr5-1* N2 5 DPL022 TMB0865 0.01 2.46 2.76 -2.34 -0.85 5.22 qLY-chr5-2* S2 5 HAU911 HAU746 39.08 4.74 -0.98 -0.01 -0.01 9.23 QLY-chr6-1* S2 8 DPL790 NAU4045 28.09 2.04 0.66 0.22 0.38 4.70 qLY-chr1-1 S2 11 CGR567D PL131 109.77 7.49 0.60 0.76 1.28 16.21 qLY-chr1-2 N2 11 CGR5675 20.18 3.06 </td <td>,</td> <td>qLY-chr5-2*</td> <td>S1</td> <td>5</td> <td>HAU1315</td> <td>NAU4034</td> <td>40.67</td> <td>2.52</td> <td>-1.04</td> <td>-1.36</td> <td>-1.30</td> <td>4.82</td>	,	qLY-chr5-2*	S1	5	HAU1315	NAU4034	40.67	2.52	-1.04	-1.36	-1.30	4.82
qLY-chr26-1 S1 26 CGR6880 CGR5452 63.34 3.18 -1.55 -0.98 6.80 N1 26 CGR6880 CGR5452 63.34 5.79 -4.72 0.36 0.08 12.64 qLY-chr3-1 N1 13 GH157 BNL1495 126.06 5.10 3.85 -0.86 -0.22 10.01 LY (S2N2) qLY-chr5-1* N2 5 DPL022 TMB0865 0.01 2.46 2.76 -2.34 -0.65 5.22 qLY-chr6-1* N2 5 HAU911 HAU746 39.08 4.74 -0.98 -0.01 -0.01 9.23 qLY-chr6-1* S2 8 DPL790 NAU4045 28.09 2.04 0.56 0.22 0.38 4.70 qLY-chr1-1 S2 11 CGR5617 DPL131 109.77 7.49 0.60 0.76 1.28 16.21 qLY-chr1-1 S2 12 CGR511 BN1251 4.96 3.68		gLY-chr8-1*	N1	8	NAU1356	DPL790	18.01	2.58	3.37	-0.86	-0.26	6.28
N1 26 CGR6880 CGR5452 63.34 5.79 -4.72 0.36 0.08 12.64 qLY-chr13-1 N1 13 GH157 BNL1495 126.06 5.10 3.85 -0.86 -0.22 10.01 LY (S2N2) qLY-chr5-1* N2 5 DPL022 TMB0865 0.01 2.46 2.76 -2.34 -0.85 5.22 qLY-chr5-2* S2 5 HAU911 HAU746 39.08 4.74 -0.98 -0.01 9.03 4.75 qLY-chr5-2* S2 8 DPL790 NAU4045 28.09 2.04 0.56 0.22 0.38 4.70 qLY-chr1-1 S2 11 CGR5602 DPL050a 77.77 7.49 0.60 0.76 1.28 16.21 qLY-chr1-2 N2 11 CGR5617 DPL131 109.77 3.69 1.76 0.62 0.35 8.53 qLY-chr1-2 N2 19 DC40122 NAU1221a 45.80		gLY-chr26-1	S1	26	CGR6880	CGR5452	63.34	3.18	-1.58	-1.55	-0.98	6.80
qLY-chr13-1 N1 13 GH157 BNL1495 126.06 5.10 3.85 -0.86 -0.22 10.01 LY (S2N2) qLY-chr5-1* N2 5 DPL022 TMB0865 0.01 2.46 2.76 -2.34 -0.85 5.22 qLY-chr5-2* S2 5 HAU911 HAU746 39.08 4.74 -0.98 -0.01 -0.01 9.23 qLY-chr1-1* S2 5 HAU911 HAU746 39.08 2.19 -1.18 -1.13 -0.96 4.95 qLY-chr11-1 S2 11 CGR5602 DPL050a 77.77 7.49 0.60 0.76 1.28 16.21 qLY-chr11-2 N2 11 CGR5602 DPL050a 77.77 7.49 0.60 0.76 1.28 16.21 qLY-chr12-1 S2 12 CGR511 DNL3261 4.96 3.69 -0.29 -0.66 -2.32 7.16 qLY-chr19-1 S2 19 DC40122 NAU1221a 45.80 3.68 -1.03 0.60 0.58 6.85		•	N1	26	CGR6880	CGR5452	63.34	5.79	-4.72	0.36	0.08	12.64
LY (S2N2) qLY-chr5-1* N2 5 DPL022 TMB0865 0.01 2.46 2.76 -2.34 -0.85 5.22 qLY-chr5-2* S2 5 HAU911 HAU746 39.08 4.74 -0.98 -0.01 9.23 N2 5 HAU911 HAU9746 39.08 2.19 -1.18 -1.13 -0.96 4.95 qLY-chr1-1 S2 8 DPL790 NAU4045 28.09 2.04 0.56 0.22 0.38 4.70 qLY-chr11-1 S2 11 CGR5602 DPL031 109.77 7.49 0.60 0.76 1.28 16.21 qLY-chr12-1 N2 11 CGR5617 DPL131 109.77 3.69 1.76 0.62 0.35 8.53 qLY-chr12-1 S2 12 CGR5617 DPL131 109.77 3.69 1.76 0.62 0.35 8.53 qLY-chr14-1 S2 19 DC40122 NAU1221a 4.96 3.66		gLY-chr13-1	N1	13	GH157	BNL1495	126.06	5.10	3.85	-0.86	-0.22	10.01
qLY-chr5-2* S2 5 HAU911 HAU746 39.08 4.74 -0.98 -0.01 -0.01 9.23 qLY-chr8-1* S2 8 DPL790 NAU4045 28.09 2.04 0.56 0.22 0.38 4.70 qLY-chr1-1 S2 8 DPL790 NAU4045 28.09 2.04 0.56 0.22 0.38 4.70 qLY-chr1-1 S2 11 CGR5602 DPL050a 77.77 7.49 0.60 0.76 1.28 16.21 qLY-chr11-2 N2 11 CGR5617 DPL131 109.77 3.69 1.76 0.62 0.35 8.53 qLY-chr12-1 S2 12 CGR5111 BNL3261 4.96 3.66 0.74 0.30 0.41 6.84 qLY-chr13-1 S2 19 DC40122 NAU1221a 45.80 3.68 1.03 0.60 0.58 6.85 BNP (S1N1) gBNP-chr14-1* S1 19 NAU3437 GH616 </td <td>LY (S2N2)</td> <td>gLY-chr5-1*</td> <td>N2</td> <td>5</td> <td>DPL022</td> <td>TMB0865</td> <td>0.01</td> <td>2.46</td> <td>2.76</td> <td>-2.34</td> <td>-0.85</td> <td>5.22</td>	LY (S2N2)	gLY-chr5-1*	N2	5	DPL022	TMB0865	0.01	2.46	2.76	-2.34	-0.85	5.22
N2 5 HAU911 HAU746 39.08 2.19 -1.18 -1.13 -0.96 4.95 qLY-chr8-1* S2 8 DPL790 NAU4045 28.09 2.04 0.56 0.22 0.38 4.70 qLY-chr11-1 S2 11 CGR5602 DPL050a 77.77 7.49 0.60 0.76 1.28 16.21 qLY-chr11-2 N2 11 CGR5217 DPL131 109.77 3.69 1.76 0.62 0.35 8.53 qLY-chr12-1 S2 12 CGR5111 BNL3261 4.96 3.69 -0.29 -0.66 -2.32 7.16 qLY-chr14-1 S2 14 GH529 CGR5675 20.18 3.06 0.74 0.30 0.41 6.84 qLY-chr19-1 S2 19 DC40122 NAU1221a 45.80 3.68 -1.03 0.60 0.58 6.85 BNP (S1N1) qBNP-chr14-1* S1 19 NAU3437 GH616 12.01 </td <td>,</td> <td>aLY-chr5-2*</td> <td>S2</td> <td>5</td> <td>HAU911</td> <td>HAU746</td> <td>39.08</td> <td>4.74</td> <td>-0.98</td> <td>-0.01</td> <td>-0.01</td> <td>9.23</td>	,	aLY-chr5-2*	S2	5	HAU911	HAU746	39.08	4.74	-0.98	-0.01	-0.01	9.23
qLY-chr8-1* S2 8 DPI.790 NAU4045 28.09 2.04 0.56 0.22 0.38 4.70 qLY-chr11-1 S2 11 CGR5602 DPL050a 77.77 7.49 0.60 0.76 1.28 16.21 qLY-chr11-2 N2 11 CGR5217 DPL131 109.77 3.69 1.76 0.62 0.35 8.53 qLY-chr12-1 S2 12 CGR5111 BNL3261 4.96 3.69 -0.29 -0.66 -2.32 7.16 qLY-chr14-1 S2 14 GH529 CGR5675 20.18 3.06 0.74 0.30 0.41 6.84 qLY-chr19-1 S2 19 DC40122 NAU2960 13.58 2.29 0.83 -0.98 -1.18 4.78 gBNP-chr19-1* S1 19 DAU3437 GH616 12.01 2.04 -0.96 1.10 1.15 8.21 gBNP-chr19-1* S1 5 NAU2140 NAU395 17.0			N2	5	HAU911	HAU746	39.08	2.19	-1.18	-1.13	-0.96	4.95
qLY-chr11-1 S2 11 CGR5602 DPL050a 77.77 7.49 0.60 0.76 1.28 16.21 qLY-chr11-2 N2 11 CGR5217 DPL131 109.77 3.69 1.76 0.62 0.35 8.53 qLY-chr12-1 S2 12 CGR5111 BNL3261 4.96 3.69 -0.29 -0.66 -2.32 7.16 qLY-chr12-1 S2 14 GH529 CGR5675 20.18 3.06 0.74 0.30 0.41 6.84 qLY-chr19-1 S2 19 DC40122 NAU1221a 45.80 3.68 -1.03 0.60 0.58 6.85 BNP (S1N1) qBNP-chr14-1* S1 14 DPL502 NAU2960 13.58 2.29 0.83 -0.98 -1.18 4.78 qBNP-chr14-1* S1 19 NAU3437 GH616 12.01 2.04 -0.96 1.10 1.15 8.21 qBNP-chr21-1* N1 21 DPL500b		gLY-chr8-1*	S2	8	DPL790	NAU4045	28.09	2.04	0.56	0.22	0.38	4.70
qLY-chr11-2 N2 11 CGR5217 DPL131 109.77 3.69 1.76 0.62 0.35 8.53 qLY-chr12-1 S2 12 CGR5111 BNL3261 4.96 3.69 -0.29 -0.66 -2.32 7.16 qLY-chr14-1 S2 14 GH529 CGR5675 20.18 3.06 0.74 0.30 0.41 6.84 qLY-chr19-1 S2 19 DC40122 NAU1221a 45.80 3.68 -1.03 0.60 0.58 6.85 BNP (S1N1) qBNP-chr14-1* S1 14 DPL502 NAU2960 13.58 2.29 0.83 -0.98 -1.18 4.78 qBNP-chr19-1* S1 19 NAU3437 GH616 12.01 2.04 -0.96 1.10 1.15 8.21 qBNP-chr21-1* N1 21 DPL050b NAU3695 17.09 2.58 -1.21 0.50 0.41 6.27 qBNP-chr3-1 N1 8 NAU6240 DPL591 63.82 3.25 1.31 -2.13 -1.63 12.15 <td></td> <td>aLY-chr11-1</td> <td>S2</td> <td>11</td> <td>CGR5602</td> <td>DPL050a</td> <td>77.77</td> <td>7.49</td> <td>0.60</td> <td>0.76</td> <td>1.28</td> <td>16.21</td>		aLY-chr11-1	S2	11	CGR5602	DPL050a	77.77	7.49	0.60	0.76	1.28	16.21
qLY-chr12-1 S2 12 CGR5111 BNL3261 4.96 3.69 -0.29 -0.66 -2.32 7.16 qLY-chr14-1 S2 14 GH529 CGR5675 20.18 3.06 0.74 0.30 0.41 6.84 qLY-chr14-1 S2 19 DC40122 NAU1221a 45.80 3.68 -1.03 0.60 0.58 6.85 BNP (S1N1) qBNP-chr14-1* S1 14 DPL502 NAU2960 13.58 2.29 0.83 -0.98 -1.18 4.78 qBNP-chr19-1* S1 19 NAU3437 GH616 12.01 2.04 -0.96 1.10 1.15 8.21 qBNP-chr2-1* N1 21 DPL050b NAU3695 17.09 2.58 -1.21 0.50 0.41 6.27 qBNP-chr3-1 S1 5 NAU2140 NAU792 88.07 2.06 -0.50 1.02 2.04 5.24 N1 5 NAU6240 DPL591 63.82 3.25 1.31 -2.13 -1.63 12.15 qBNP-chr3-1		aLY-chr11-2	N2	11	CGR5217	DPL131	109.77	3.69	1.76	0.62	0.35	8.53
qLY-chr14-1 S2 14 GH529 CGR5675 20.18 3.06 0.74 0.30 0.41 6.84 qLY-chr19-1 S2 19 DC40122 NAU1221a 45.80 3.68 -1.03 0.60 0.58 6.85 BNP (S1N1) qBNP-chr14-1* S1 14 DPL502 NAU2960 13.58 2.29 0.83 -0.98 -1.18 4.78 qBNP-chr19-1* S1 19 NAU3437 GH616 12.01 2.04 -0.96 1.10 1.15 8.21 qBNP-chr21-1* N1 21 DPL050b NAU3695 17.09 2.58 -1.21 0.50 0.41 6.27 qBNP-chr5-1 S1 5 NAU2140 NAU792 88.07 2.06 -0.50 1.02 2.04 5.24 N1 5 NAU6240 DPL591 63.82 3.25 1.31 -2.13 -1.63 12.15 qBNP-chr8-1 N1 8 NAU4045 CGR6129 34.52 3.06 1.67 -0.96 -0.57 6.81 qBNP-chr14-2 <td></td> <td>aLY-chr12-1</td> <td>S2</td> <td>12</td> <td>CGR5111</td> <td>BNL3261</td> <td>4.96</td> <td>3.69</td> <td>-0.29</td> <td>-0.66</td> <td>-2.32</td> <td>7.16</td>		aLY-chr12-1	S2	12	CGR5111	BNL3261	4.96	3.69	-0.29	-0.66	-2.32	7.16
qLY-chr19-1 S2 19 DC40122 NAU1221a 45.80 3.68 -1.03 0.60 0.58 6.85 BNP (S1N1) qBNP-chr14-1* S1 14 DPL502 NAU2960 13.58 2.29 0.83 -0.98 -1.18 4.78 qBNP-chr19-1* S1 19 NAU3437 GH616 12.01 2.04 -0.96 1.10 1.15 8.21 qBNP-chr21-1* N1 21 DPL050b NAU3695 17.09 2.58 -1.21 0.50 0.41 6.27 qBNP-chr21-1* N1 21 DPL050b NAU3695 17.09 2.58 -1.21 0.50 0.41 6.27 qBNP-chr51 S1 5 NAU2140 NAU792 88.07 2.06 -0.50 1.02 2.04 5.24 M1 5 NAU6240 DPL591 63.82 3.25 1.31 -2.13 -1.63 12.15 qBNP-chr14-2 S1 14 BNL2485 CIR228 2.01 3.04 0.66 -1.22 -1.85 7.50 qBNP-chr24-1		, aLY-chr14-1	S2	14	GH529	CGR5675	20.18	3.06	0.74	0.30	0.41	6.84
BNP (S1N1) qBNP-chr14-1* S1 14 DPL502 NAU2960 13.58 2.29 0.83 -0.98 -1.18 4.78 qBNP-chr19-1* S1 19 NAU3437 GH616 12.01 2.04 -0.96 1.10 1.15 8.21 qBNP-chr21-1* N1 21 DPL050b NAU3695 17.09 2.58 -1.21 0.50 0.41 6.27 qBNP-chr51 S1 5 NAU2140 NAU792 88.07 2.06 -0.50 1.02 2.04 5.24 N1 5 NAU6240 DPL591 63.82 3.25 1.31 -2.13 -1.63 12.15 <i>qBNP-chr8-1</i> N1 8 NAU4045 CGR6129 34.52 3.06 1.67 -0.96 -0.57 6.81 <i>qBNP-chr14-2</i> S1 14 BNL2485 CIR228 2.01 3.04 0.66 -1.22 -1.85 7.50 <i>qBNP-chr24-1</i> N1 24 DPL551 GH273 23.47 3.27 -1.06 -0.21 -0.20 8.37 <i></i>		aLY-chr19-1	S2	19	DC40122	NAU1221a	45.80	3.68	-1.03	0.60	0.58	6.85
qBNP-chr19-1* S1 19 NAU3437 GH616 12.01 2.04 -0.96 1.10 1.15 8.21 qBNP-chr21-1* N1 21 DPL050b NAU3695 17.09 2.58 -1.21 0.50 0.41 6.27 qBNP-chr21-1* N1 21 DPL050b NAU3695 17.09 2.58 -1.21 0.50 0.41 6.27 qBNP-chr5-1 S1 5 NAU2140 NAU792 88.07 2.06 -0.50 1.02 2.04 5.24 N1 5 NAU6240 DPL591 63.82 3.25 1.31 -2.13 -1.63 12.15 qBNP-chr8-1 N1 8 NAU4045 CGR6129 34.52 3.06 1.67 -0.96 -0.57 6.81 qBNP-chr14-2 S1 14 BNL2485 CIR228 2.01 3.04 0.66 -1.22 -1.85 7.50 qBNP-chr24-1 N1 24 DPL551 GH273 23.47 3.27 -1.06 -0.21 -0.20 8.37 qBNP (S2N2) qBNP-chr14-1*	BNP (S1N1)	gBNP-chr14-1*	S1	14	DPL502	NAU2960	13.58	2.29	0.83	-0.98	-1.18	4.78
qBNP-chr21-1* N1 21 DPL050b NAU3695 17.09 2.58 -1.21 0.50 0.41 6.27 qBNP-chr5-1 S1 5 NAU2140 NAU792 88.07 2.06 -0.50 1.02 2.04 5.24 N1 5 NAU6240 DPL591 63.82 3.25 1.31 -2.13 -1.63 12.15 qBNP-chr8-1 N1 8 NAU4045 CGR6129 34.52 3.06 1.67 -0.96 -0.57 6.81 qBNP-chr14-2 S1 14 BNL2485 CIR228 2.01 3.04 0.66 -1.22 -1.85 7.50 qBNP-chr24-1 N1 24 DPL551 GH273 23.47 3.27 -1.06 -0.21 -0.20 8.37 qBNP-chr24-2 S1 24 CGR5423 SHIN1076 56.71 4.39 -0.64 -0.55 -0.86 9.78 BNP (S2N2) qBNP-chr14-1* S2 14 DPL502 NAU2960 17.58 2.72 0.91 -0.72 -0.79 6.87 qBNP-chr14	, ,	aBNP-chr19-1*	S1	19	NAU3437	GH616	12.01	2.04	-0.96	1.10	1.15	8.21
qBNP-chr5-1 S1 5 NAU2140 NAU792 88.07 2.06 -0.50 1.02 2.04 5.24 N1 5 NAU6240 DPL591 63.82 3.25 1.31 -2.13 -1.63 12.15 qBNP-chr8-1 N1 8 NAU4045 CGR6129 34.52 3.06 1.67 -0.96 -0.57 6.81 qBNP-chr14-2 S1 14 BNL2485 CIR228 2.01 3.04 0.66 -1.22 -1.85 7.50 qBNP-chr24-1 N1 24 DPL551 GH273 23.47 3.27 -1.06 -0.21 -0.20 8.37 qBNP-chr24-2 S1 24 CGR5423 SHIN1076 56.71 4.39 -0.64 -0.55 -0.86 9.78 BNP (S2N2) qBNP-chr14-1* S2 14 DPL502 NAU2960 17.58 2.72 0.91 -0.72 -0.79 6.87 qBNP-chr19-1* N2 19 NAU3437 GH616 4.01 2.43 -0.85 0.97 1.14 20.23 qBNP-chr21-1		aBNP-chr21-1*	N1	21	DPL050b	NAU3695	17.09	2.58	-1.21	0.50	0.41	6.27
N1 5 NAU6240 DPL591 63.82 3.25 1.31 -2.13 -1.63 12.15 qBNP-chr8-1 N1 8 NAU4045 CGR6129 34.52 3.06 1.67 -0.96 -0.57 6.81 qBNP-chr14-2 S1 14 BNL2485 CIR228 2.01 3.04 0.66 -1.22 -1.85 7.50 qBNP-chr24-1 N1 24 DPL551 GH273 23.47 3.27 -1.06 -0.21 -0.20 8.37 qBNP-chr24-2 S1 24 CGR5423 SHIN1076 56.71 4.39 -0.64 -0.55 -0.86 9.78 BNP (S2N2) qBNP-chr14-1* S2 14 DPL502 NAU2960 17.58 2.72 0.91 -0.72 -0.79 6.87 qBNP (S2N2) qBNP-chr19-1* N2 19 NAU3437 GH616 4.01 2.43 -0.85 0.97 1.14 20.23 qBNP-chr21-1* S2 21 NAU965 CGR6525 35.99 4.66 -1.01 0.79 0.79 10.13		aBNP-chr5-1	S1	5	NAU2140	NAU792	88.07	2.06	-0.50	1.02	2.04	5.24
qBNP-chr8-1 N1 8 NAU4045 CGR6129 34.52 3.06 1.67 -0.96 -0.57 6.81 qBNP-chr14-2 S1 14 BNL2485 CIR228 2.01 3.04 0.66 -1.22 -1.85 7.50 qBNP-chr24-1 N1 24 DPL551 GH273 23.47 3.27 -1.06 -0.21 -0.20 8.37 qBNP-chr24-2 S1 24 CGR5423 SHIN1076 56.71 4.39 -0.64 -0.55 -0.86 9.78 BNP (S2N2) qBNP-chr14-1* S2 14 DPL502 NAU2960 17.58 2.72 0.91 -0.72 -0.79 6.87 qBNP-chr19-1* N2 19 NAU3437 GH616 4.01 2.43 -0.85 0.97 1.14 20.23 qBNP-chr21-1* S2 21 NAU965 CGR6525 35.99 4.66 -1.01 0.79 0.79 10.13 N2 21 NAU965 CGR6525 37.99 3.31 -1.30 1.74 1.34 8.65		• • •	N1	5	NAU6240	DPL591	63.82	3.25	1.31	-2.13	-1.63	12.15
qBNP-chr14-2 S1 14 BNL2485 CIR228 2.01 3.04 0.66 -1.22 -1.85 7.50 qBNP-chr24-1 N1 24 DPL551 GH273 23.47 3.27 -1.06 -0.21 -0.20 8.37 qBNP-chr24-2 S1 24 CGR5423 SHIN1076 56.71 4.39 -0.64 -0.55 -0.86 9.78 BNP (S2N2) qBNP-chr14-1* S2 14 DPL502 NAU2960 17.58 2.72 0.91 -0.72 -0.79 6.87 qBNP-chr19-1* N2 19 NAU3437 GH616 4.01 2.43 -0.85 0.97 1.14 20.23 qBNP-chr21-1* S2 21 NAU965 CGR6525 35.99 4.66 -1.01 0.79 0.79 10.13 N2 21 NAU965 CGR6525 37.99 3.31 -1.30 1.74 1.34 8.65		aBNP-chr8-1	N1	8	NAU4045	CGR6129	34.52	3.06	1.67	-0.96	-0.57	6.81
qBNP-chr24-1 N1 24 DPL551 GH273 23.47 3.27 -1.06 -0.21 -0.20 8.37 qBNP-chr24-2 S1 24 CGR5423 SHIN1076 56.71 4.39 -0.64 -0.55 -0.86 9.78 BNP (S2N2) qBNP-chr14-1* S2 14 DPL502 NAU2960 17.58 2.72 0.91 -0.72 -0.79 6.87 qBNP-chr19-1* N2 19 NAU3437 GH616 4.01 2.43 -0.85 0.97 1.14 20.23 qBNP-chr21-1* S2 21 NAU965 CGR6525 35.99 4.66 -1.01 0.79 0.79 10.13 N2 21 NAU965 CGR6525 37.99 3.31 -1.30 1.74 1.34 8.65		aBNP-chr14-2	S1	14	BNL2485	CIB228	2.01	3.04	0.66	-1.22	-1.85	7.50
qBNP-chr24-2 S1 24 CGR5423 SHIN1076 56.71 4.39 -0.64 -0.55 -0.86 9.78 BNP (S2N2) qBNP-chr14-1* S2 14 DPL502 NAU2960 17.58 2.72 0.91 -0.72 -0.79 6.87 qBNP-chr19-1* N2 19 NAU3437 GH616 4.01 2.43 -0.85 0.97 1.14 20.23 qBNP-chr21-1* S2 21 NAU965 CGR6525 35.99 4.66 -1.01 0.79 0.79 10.13 N2 21 NAU965 CGR6525 37.99 3.31 -1.30 1.74 1.34 8.65		aBNP-chr24-1	N1	24	DPI 551	GH273	23.47	3.27	-1.06	-0.21	-0.20	8.37
BNP (S2N2) qBNP-chr14-1* S2 14 DPL502 NAU2960 17.58 2.72 0.91 -0.72 -0.79 6.87 qBNP-chr19-1* N2 19 NAU3437 GH616 4.01 2.43 -0.85 0.97 1.14 20.23 qBNP-chr21-1* S2 21 NAU965 CGR6525 35.99 4.66 -1.01 0.79 0.79 10.13 N2 21 NAU965 CGR6525 37.99 3.31 -1.30 1.74 1.34 8.65		aBNP-chr24-2	S1	24	CGR5423	SHIN1076	56.71	4.39	-0.64	-0.55	-0.86	9.78
qBNP-chr19-1* N2 19 NAU3437 GH616 4.01 2.43 -0.85 0.97 1.14 20.23 qBNP-chr21-1* S2 21 NAU965 CGR6525 35.99 4.66 -1.01 0.79 0.79 10.13 N2 21 NAU965 CGR6525 37.99 3.31 -1.30 1.74 1.34 8.65	BNP (S2N2)	aBNP-chr14-1*	S2	14	DPI 502	NAU2960	17.58	2.72	0.91	-0.72	-0.79	6.87
qBNP-chr21-1* S2 21 NAU965 CGR6525 35.99 4.66 -1.01 0.79 0.79 10.13 N2 21 NAU965 CGR6525 37.99 3.31 -1.30 1.74 1.34 8.65		aBNP-chr19-1*	N2	19	NAU3437	GH616	4.01	2.43	-0.85	0.97	1.14	20.23
N2 21 NAU965 CGR6525 37.99 3.31 -1.30 1.74 1.34 8.65		aBNP-chr21-1*	S2	21	NAU965	CGB6525	35.99	4.66	-1.01	0.79	0.79	10.13
			N2	21	NAU965	CGR6525	37.99	3.31	-1.30	1.74	1.34	8.65
aBNP-chr1-1 N2 1 CIR307 HAU1417b 116.44 3.98 0.95 1.16 1.22 13.46		aBNP-chr1-1	N2	1	CIR307	HAU1417b	116.44	3.98	0.95	1.16	1.22	13.46
qBNP-chr11-1 N2 11 CGR5808 CGR5217 101.47 3.03 1.46 -1.16 -0.79 8.79		gBNP-chr11-1	N2	11	CGR5808	CGR5217	101.47	3.03	1.46	-1.16	-0.79	8.79

Table 3. QTLs for yield and yield-components in $F_{2:3}$ and $F_{2:4}$ populations identified using composite interval mapping.

(Continued)

Table 3. (Continued)

Trait	QTLs	Env	Chr	Marker flan	king	Position (cM)	LOD	A ^a	Db	D/A	Var% ^c
	qBNP-chr12-1	S2	12	DPL252	DC20127	33.65	5.13	-0.56	-0.80	-1.43	16.63
	qBNP-chr20-1	N2	20	GH451	CGR5548	23.57	3.39	-0.08	-1.47	-17.31	8.86
	qBNP-chr22-1	S2	22	CGR5806	CGR6410	25.49	3.26	-0.21	1.07	5.11	6.96
	qBNP-chr23-1	S2	23	GH327	NAU3100	6.01	2.00	0.42	0.35	0.83	4.49
BW (S1N1)	qBW-chr5-1*	S1	5	BNL3447	GH260	26.01	2.40	-0.24	0.17	0.71	7.54
		N1	5	BNL3447	GH260	26.01	2.50	-0.18	-0.01	-0.06	8.14
	qBW-chr5-2*	N1	5	NAU2865	GH388	37.34	4.61	-0.25	-0.09	-0.35	9.69
		S1	5	HAU1603	TMB1296	38.92	2.70	-0.23	0.07	0.30	5.94
	qBW-chr6-1*	S1	6	DPL124	HAU1460	52.74	2.90	0.20	-0.04	-0.21	7.05
	qBW-chr13-1*	N1	13	BNL1495	DPL687	130.09	2.91	0.08	-0.32	-4.06	6.18
	qBW-chr25-1*	N1	25	HAU1382	BNL3594	8.01	2.38	0.13	-0.32	-2.57	6.59
	qBW-chr2-1	S1	2	MGHE24	COT064	65.20	3.14	-0.20	-0.03	-0.12	6.97
	qBW-chr7-1	S1	7	GH308	GH474	22.08	3.10	0.23	-0.25	-1.12	6.21
	qBW-chr15-1	S1	15	DPL0752	CGR6847	103.01	3.46	0.08	0.20	2.40	7.72
BW (S2N2)	qBW-chr5-1*	N2	5	BNL3447	GH260	32.01	2.63	-0.14	-0.04	-0.29	7.20
	qBW-chr5-2*	S2	5	GH388	HAU1603	38.59	2.05	-0.11	-0.01	-0.10	3.84
	qBW-chr6-1*	S2	6	CGR6749	DPL124	50.32	2.69	0.06	0.07	1.23	5.13
	qBW-chr13-1*	S2	13	DPL687	DPL286	134.49	3.65	0.23	-0.24	-1.03	7.75
	qBW-chr25-1*	N2	25	BNL3594	CGR6864	15.09	2.90	0.20	-0.20	-0.99	6.28
	qBW-chr4-1	S2	4	BNL3990	BNL0530	38.01	2.86	-0.17	0.09	0.54	5.30
		N2	4	BNL3990	BNL0530	38.01	3.27	-0.23	0.14	0.63	7.23
	qBW-chr6-2	S2	6	DPL590	BNL3567	71.65	2.64	0.08	0.06	0.82	5.47
		N2	6	DPL590	BNL3567	63.65	2.04	0.04	0.12	2.77	5.11
	qBW-chr6-3	S2	6	GH119	BNL3650	87.26	3.20	0.14	0.00	-0.03	6.44
	qBW-chr11-1	S2	11	BNL3171	CGR5808	87.95	6.70	0.23	-0.04	-0.18	14.11
		N2	11	DPL050a	HAU423	85.10	2.68	0.21	-0.18	-0.85	6.68
	qBW-chr11-2	N2	11	CGR5808	CGR5217	99.47	3.74	0.23	-0.14	-0.61	10.44
	qBW-chr12-1	S2	12	CGR5111	BNL3261	2.96	3.93	-0.14	-0.03	-0.19	7.96
	qBW-chr14-1	S2	14	NAU3839	BNL3033	83.89	5.16	0.10	0.12	1.13	10.16
	qBW-chr24-1	S2	24	SHIN0272	DPL551	0.01	3.00	0.00	0.15	39.48	22.13
LP(S1N1)	qLP-chr1-1*	S1	1	CIR307	HAU1417b	94.44	3.75	0.88	-0.67	-0.76	8.12
	qLP-chr4-1*	S1	4	BNL0530	JESP295	46.02	2.83	0.78	-0.67	-0.86	5.37
	qLP-chr5-1*	S1	5	GH260	NAU6240	46.92	3.76	0.95	-0.77	-0.81	9.33
	-	N1	5	GH260	NAU6240	42.92	6.10	1.34	-0.75	-0.56	16.7
	qLP-chr6-1*	S1	6	NAU3490	DC40076	24.01	3.41	-0.03	0.83	31.09	14.32
	qLP-chr7-1*	S1	7	NAU1043	SHIN0376	82.41	6.69	1.06	0.07	0.07	14.5
	qLP-chr13-1*	N1	13	DPL687	DPL286	140.49	3.27	0.56	0.47	0.84	7.65
	qLP-chr26-1*	N1	26	NAU5072	BNL2495	88.09	2.95	-0.49	-0.40	-0.82	6.43
	gLP-chr2-2	N1	2	TMB1268	JESP304	31.61	3.05	-0.86	0.59	0.68	5.95
	qLP-chr11-1	N1	11	CGR5602	DPL050a	73.77	3.20	0.86	-0.16	-0.19	8.36
	qLP-chr20-1	N1	20	HAU1314	HAU748	0.01	3.57	-0.83	0.97	1.16	7.02
LP (S2N2)	qLP-chr1-1*	S2	1	DC40175	CIR307	85.83	3.00	0.67	-0.24	-0.36	7.84
, ,	gLP-chr4-1*	S2	4	BNL0530	JESP295	50.02	2.38	0.64	-0.79	-1.24	6.61
		N2	4	BNL0530	JESP295	48.02	2.73	0.57	-0.92	-1.61	6.24
	qLP-chr5-1*	N2	5	GH260	NAU6240	38.92	6.68	1.20	-0.56	-0.47	16.18
	qLP-chr6-1*	S2	6	NAU3490	DC40076	18.01	2.14	-0.88	1.07	1.21	8.16
	qLP-chr7-1*	S2	7	NAU1043	SHIN0376	82.41	4.05	0.81	-0.07	-0.09	9.17

(Continued)

Trait	QTLs	Env	Chr	Marker flan	king	Position (cM)	LOD	A ^a	Db	D/A	Var% ^c
	qLP-chr13-1*	N2	13	DPL687	DPL286	140.49	4.33	0.54	0.68	1.26	10.7
	qLP-chr26-1*	N2	26	CER144	NAU5072	79.42	2.47	-0.89	0.48	0.54	7.36
	qLP-chr2-1	N2	2	CGR6695	DPL217	39.71	3.14	-0.91	0.82	0.90	7.54
	qLP-chr6-1	S2	6	HAU1460	DPL127	60.53	3.22	-1.21	0.34	0.28	6.60
	qLP-chr12-1	N2	12	NAU3519	NAU3860	34.01	3.64	0.25	1.46	5.92	13.88
	qLP-chr13-1	S2	13	COT009	DPL308	96.39	2.09	0.71	-0.20	-0.28	4.80
	qLP-chr19-1	S2	19	NAU1042	NAU797	44.42	3.17	-0.78	0.64	0.82	6.81

Table 3. (Continued)

* Common QTLs identified in the two generations

^a Additive effects; positive values of the additive effects indicate increase of traits from alleles of GX1135; negative values of the additive effects indicate decrease of traits from alleles of GX100-2

^b Dominance effects; positive values of the dominance effect indicate that heterozygotes have higher phenotypic values than the respective means of two homozygotes, and negative values indicate that heterozygotes have lower values than the means of the two homozygotes

^c Var%, phenotypic variation explained by a single QTL

doi:10.1371/journal.pone.0143548.t003

showed negative dominance effects and the remaining nine QTLs showed positive dominance effects.

For lint yield, a total of 10 QTLs were identified in two generations, among which three QTLs were detected simultaneously in the two generations. Five and eight QTLs were identified in $F_{2: 3}$ and $F_{2: 4}$ generations, respectively, accounting for 4.8% to 12.6% and 4.7% to 16.2% of total phenotypic variance in the two generations, respectively. Four QTLs among these were identified simultaneously in more than two environments. Two QTLs, *qLY-chr26-1* for lint yield and *qSY-chr26-1* for seed cotton yield, were mapped to the same interval on chromosome 26 in the same environments (S2 Fig).

For bolls per plant, 14 QTLs were found in two generations, among which, three QTLs were detected simultaneously in the two generations. Eight and nine QTLs were identified in $F_{2: 3}$ and $F_{2: 4}$ generations, respectively, accounting for 4.8% to 12.2% and 4.5% to 20.2% of total phenotypic variance in the two respective generations. Four of them were detected simultaneously in more than two environments. Five and six QTLs with negative additive effects were detected in $F_{2: 3}$ and $F_{2: 4}$ generations, respectively. The alleles from female parent GX1135 increased phenotypic variation of lint yield. The remaining eight QTLs showed positive additive effects in the two generations. For the effects of these QTLs, the alleles from GX100-2 increased phenotypic variation. There were six and four QTLs identified with negative dominance effects in $F_{2: 3}$ and $F_{2: 4}$ generations, respectively. The results suggested that heterozygotes would have lower values than the two homozygotes for these QTLs. The remaining nine QTLs showed positive dominance effects indicating that heterozygotes would have higher phenotypic values than the two respective homozygotes for the effects of these nine QTLs.

A total of 15 QTLs referring boll weight were resolved in two generations, among which five QTLs were detected simultaneously in the two generations. Eight and 12 QTLs were identified in $F_{2: 3}$ and $F_{2: 4}$ generations, respectively, explaining 5.9% to 9.7% and 3.8% to 22.1% of phenotypic variance in the two respective generations. There were two QTLs (*qBW-chr5-1* and *qBW-chr5-2*) simultaneously detected in $F_{2: 3}$ and $F_{2: 4}$ generations with negative additive effects. The alleles from the female parent GX1135 increased phenotypic variation for the effects of these QTLs. There were seven and eight QTLs showing negative dominance effects in $F_{2: 3}$ and $F_{2: 4}$ generations, respectively. There were three and eight QTLs in $F_{2: 3}$ and $F_{2: 4}$ generations, respectively.

For lint percent, a total of 15 QTLs were identified in two generations, among which seven QTLs were observed simultaneously in the two generations. Ten and 12 QTLs were identified in $F_{2: 3}$ and $F_{2: 4}$ generations, respectively, explaining 5.4% to 14.3% and 4.8% to 16.2% of phenotypic variance in the two respective generations. Among them, there were seven QTLs detected in more than two environments. There were four and five QTLs in $F_{2: 3}$ and $F_{2: 4}$ generations, respectively, with negative additive effects. For these QTLs, alleles from the female parent GX1135 increased phenotypic variation (Table 3). The remaining 15 QTLs in the two generations showed positive additive effects with the alleles from female parent GX100-2 increasing phenotypic variation. There were six and six QTLs detected in $F_{2: 3}$ and $F_{2: 4}$ generations, respectively, with negative dominance effects. The remaining 12 QTLs in the two generations showed positive dominance effects.

Dominance and Overdominance Effects of QTL

A locus is regarded as having overdominance if the ratio of the estimated dominance to the absolute value of additive effect is larger than one. Similarly, a locus is regarded as having partial dominance if the ratio is between 0 and 1 [34]. A total of 32 and 36 QTLs in $F_{2: 3}$ and $F_{2: 4}$ populations, respectively, showed partial dominance with their ratios ranging from 0 to 1. One QTL was detected for seed cotton yield showing dominance in $F_{2: 4}$ generation. Thirteen and 19 QTLs in $F_{2: 3}$ and $F_{2: 4}$ populations, respectively, showed partial dominance in $F_{2: 4}$ generation. Thirteen and 19 QTLs in $F_{2: 3}$ and $F_{2: 4}$ populations, respectively, showed overdominance with ratio greater than 1. Partial dominance occurred more frequently than overdominance and dominance. More than half of the QTLs listed in <u>Table 3</u> showed varying degrees of negative dominance indicating that heterozygosity does not necessarily favor over homozygosity for yield. Similar results were reported previously in a study in an elite rice hybrid [41].

Relationship between Marker Heterozygosity and Performance

Correlation coefficients were not significant between heterozygosity of the marker genotypes and the performance of these genotypes in terms of yield and yield components in four environments (Table 4). These results implied difficulty in prediction of agronomic performance based on heterozysity of marker genotypes. One possibility for the low correlation is that only a portion of the 362 marker loci is related to the performance of those traits. These results were consistent with previous reports [41, 69].

Identification and Verification of Digenic Interactions

The number of digenic interactions identified by two-way ANOVA for lint yield and yield components are given in Table 5. There were a total of 65,341 tests using 362 co-dominant markers at the whole genome level. For individual tests at the 0.001 probability level, the expected number of spurious interactions would be 65. The interaction number of the traits analyzed in the four environments ranged from 70 to 234, although the number analyzed for boll weight of $F_{2: 3}$ population at Handan (S1) and the number analyzed for lint percent of $F_{2: 4}$

Table 4. Correlation coefficients between genotypic heterozygosity and trait performance in $F_{2:\;3}$ and $F_{2:\;4}$ populations.

Trait	S1	N1	S2	N2
Seed cotton yield	0.03	-0.07	0.00	-0.01
Lint yield	0.02	-0.07	-0.01	0.01
Bolls/plant	0.05	-0.03	0.10	0.00
Boll weight	-0.05	-0.10	-0.06	-0.03
Lint percent	-0.04	0.01	-0.05	0.06

doi:10.1371/journal.pone.0143548.t004

Trait	Whole- genome searching		Whole- genome searching		Whole- genome searching		it Whole- genome searchin		Common in F _{2: 3}	Conf rand	irmed by omizatio	y on test	Whole genor searc	e- ne hina	Common in F _{2: 4}	Confi rando	rmed by mizatior	ı test
	S1	N1		S1	N1	Common	S2	N2		S2	N2	Common						
Lint yield	109	106	1	97	93	1	99	160	0	93	149	0						
Bolls/plant	82	234	1	77	211	1	107	82	0	104	76	0						
Boll weight	82	64	0	77	60	0	116	115	2	104	110	2						
Lint percent	108	70	6	98	61	6	116	78	1	107	65	1						

Table 5. Number of significant interactions for yield and yield components detected at 0.001 probability by permutation tests of all possible two loci combinations in hybrids evaluated at Handan (S1) and Cangzhou (N1.).

doi:10.1371/journal.pone.0143548.t005

population at Cangzhou (N1) was 64 and 65, respectively. To further assess the likelihood of the interactions identified above as chance events, each of the declared significant interactions was subjected to randomization tests [41]. The numbers of significant interactions decreased after randomization tests, and the reductions were more than the expected numbers based on chance events in all the cases. Current result indicated that the randomization test was highly stringent in identification of the significant interactions. For example, the number of significant interactions identified for lint yield in $F_{2: 3}$ populations was 109 and 106 at the two respective experimental sites, and reduced to 97 and 93, respectively, after randomization test. In $F_{2: 4}$ populations, the number of significant interactions was from 99 and 160 at the two respective experimental sites, and reduced to 93 and 149, respectively, after randomization tests (Table 5). The interactions that survived randomization tests may therefore be regarded as the minimum number of significant interactions for each trait at the 0.001 probability level. In this way, large numbers of significant digenic interactions in the two populations were confirmed.

In the $F_{2:3}$ population, 97 digenic interactions for lint yield were detected at location of S1, and 93 digenic interactions were detected at location of N1 with one digenic interaction detected at both of the two locations. For the yield component of bolls per plant, 77 and 211 digenic interactions were detected at Handan (S1) and Cangzhou (N1), respectively, with one digenic interaction detected at both locations. For boll weight, 77 digenic interactions were detected at location of Cangzhou. There was no common digenic interaction detected at both locations for this yield component. For the yield component of lint percent, 98 digenic interactions were detected at location of Handan, and 61 digenic interactions were detected at location of Cangzhou with six common digenic interactions detected at both locations.

Interactions were partitioned by orthogonal contrasts into significant genetic components, and the significant genetic components were further confirmed by randomization tests (Table 6). In general, among two-locus interaction components, AA interactions for lint yield and yield components had the highest frequencies.

These results indicated that all genetic components, AA, AD/DA, DD, existed in $F_{2:3}$ generation for all traits detected with significant interactions. In contrast, DD interactions occurred with the lowest frequencies and AD/DA occurred with intermediate frequencies.

Effects of Epistatic Interaction

Significant heterosis was detected for boll number per plant, and this yield component contributed directly to lint yield [3]. This yield component was also identified as the most important yield component to lint yield in recent studies [70–71]. This yield component was used as an example in this study to illustrate digenic effects in $F_{2: 3}$ population.

Trait	Interaction	S1ª	N1 ^a	Common in F _{2: 3}
Lint yield	Positive pairs	97	93	1
	AA	69	62	0
	AD/DA	48	34	0
	DD	6	19	0
Bolls/plant	Positive pairs	77	211	1
	AA	56	149	0
	AD/DA	29	100	0
	DD	8	12	0
Boll weight	Positive pairs	77	60	0
	AA	53	34	0
	AD/DA	30	36	0
	DD	8	4	0
Lint percent	Positive pairs	98	61	6
	AA	59	29	2
	AD/DA	51	38	2
	DD	12	10	0

Table 6. Summary of the significant ($p \le 0.001$) interactions detected for lint yield and yield components by permutation tests of all possible two loci combinations.

doi:10.1371/journal.pone.0143548.t006

Effects of digenic interactions for the best double homozygotes, i.e., homozygotes of twolocus combinations with significant AA, are given in Table 7. A total of 56 two-locus combinations with significant AA, 33 interactions of complementary two-locus homozygotes (11/22 or 22/11) had distinct advantages over the means of two parental genotypes (11/11 or 22/22) (Table 7). Among them, twenty-two cases were for complementary two-locus homozygotes, 11/ 22, and eleven cases were for complementary two-locus homozygotes, 22/11. Among the 56 epistasis, sixteen and six cases were the best loci combination from homozygotes of 22/22 and 11/11, respectively. Occasionally, single heterozygotes (six and one cases out of 27 tests for 11/12 and 22/12, respectively) could be comparable to the best two-locus genotypes. Generally, the heterotic values of the two-locus combinations (11/22 or 22/11, eight cases out of 27 tests) and homozygotes (22/22, 11 cases out of 27 tests) with significant AD/DA interactions had larger heterosis effects than single heterozygotes (11/12, 22/12) (Table 8). These results indicated the complementary effects in two-locus homozygotes. In order to test the hypothesis that double heterozygotes (12/12) have advantage over single heterozygotes, two-locus combinations with significant DD effects were compared with two locus heterozygotes (Table 9). Most of the best two-locus genotypes were homozygous at one locus and heterozygous at the other locus (11/12 and 22/12). Advantage of the double heterozygotes over single heterozygotes was not observed. In summary of these results, the complementary two-locus homozygotes (11/22 or 22/11) frequently showed large effects in heterosis. Single heterozygotes (11/12 and 22/12) and homozygotes (22/22) were the best two-locus genotypes for yield in a few cases while in no case did double heterozygotes (12/12) showed larger effects of heterosis than double homozygotes and single heterozygotes.

Discussion

Necessity for Constructing a High-Density Linkage Map in Upland Cotton

Microsatellite markers were widely used, even as framework markers, to construct linkage maps in crops [72], because of their relatively high polymorphisms, detectability, and stability

Locus 1 ^a	Locus 2 ^a	Var%	Genotype ^b	Over midparent ^c	Over GX1135 ^d	Over 12/12 ^e	Best genotype ^f	Worst genotype ^g
BNL3567(6)	NAU2715(26)	8.21	22/22	1.20	2.40*	2.61*	22/22	11/22
BNL569(13)	CGR5217(11)	6.11	11/22	3.00*	2.88*	2.41*	11/22	11/12
C2_115(12)	CGR6695(2)	5.48	22/22	1.15	2.29*	1.98*	22/22	22/11
CER098(11)	SHIN0219(13)	5.54	11/22	1.96*	3.16**	1.18	11/12	11/11
CER165(13)	CGR6683(14)	7.5	11/22	3.23	3.01	2.53	11/22	22/22
CER165(13)	HAU1057(14)	5.06	11/22	2.77	2.95*	2.30	11/22	11/11
CER165(13)	NAU3308(14)	6.91	11/22	3.13*	2.91*	2.37	11/22	22/22
CER165(13)	NAU3839(14)	6.98	11/22	3.23	3.01	2.69	11/22	22/22
CGR115(12)	CGR6695(2)	4.99	22/22	1.15	2.29*	1.98*	22/22	22/11
CGR5056(15)	DPL790(8)	6.15	11/11	1.10	0.00	1.63	11/11	11/22
BNL1040(13)	BNL243(18)	4.65	11/22	3.31**	3.27**	3.23**	11/22	11/12
CGR5108(6)	CGR6867(15)	9.8	22/11	3.07**	2.76**	1.98*	22/11	22/22
CGR5108(6)	NAU2894(19)	10.02	11/11	0.15	0.00	1.26**	11/11	11/22
CGR5111(12)	CGR6695(2)	5.17	22/22	0.99	1.97*	1.70	22/22	12/22
CGR5871a(14)	CGR6539(13)	7.07	22/11	3.51*	3.56*	2.34	22/11	11/11
CGR5873(10)	NAU792(5)	4.32	22/22	1.16	2.33*	1.68	22/22	11/22
CGR5951(5)	DPL022(5)	9.63	22/22	1.27	2.53**	2.37**	22/22	22/11
BNL1053(11)	CGR5758(9)	7.09	22/22	0.30	0.59	0.65	22/22	22/11
CGR6017(3)	NAU5428(11)	11.92	22/11	3.14**	3.41**	0.85	22/11	11/11
CGR6129(8)	NAU5428(11)	7.96	11/22	4.12**	3.97*	2.96*	11/22	22/22
CGR6378(15)	NAU4034(5)	7.02	11/22	2.71*	2.70*	1.97	11/22	12/11
CGR6732(13)	HAU1455(14)	6.36	11/22	3.03*	2.70*	2.62*	11/22	22/22
CGR6732(13)	NAU3308(14)	6.03	11/22	3.21*	3.37*	2.71*	11/22	11/11
CGR6864(25)	COT107(12)	8.78	11/22	3.13**	2.80**	0.67	11/22	22/22
CGR6864(25)	GH631(12)	7.38	11/22	3.03**	2.60*	0.64	11/12	22/22
CGR6864(25)	NAU943(12)	8.83	11/22	3.04**	2.84**	0.58	11/22	22/22
CGR6867(15)	HAU1460(6)	6.2	11/22	2.60*	2.43	1.57	11/22	12/11
BNL243(18)	CGR5554(13)	6.38	22/11	3.18**	3.14**	3.01**	22/11	12/22
BNL243(18)	NAU3177(8)	8.63	22/22	0.06	0.12	1.64	22/22	11/22
COT107(12)	DPL282(25)	7.64	11/22	3.29**	2.77**	0.55	11/22	22/22
COT107(12)	HAU250(18)	6.56	11/22	3.29**	3.86**	2.14*	11/22	11/11
DC40052(15)	DPL790(8)	6.96	11/11	1.30	0.00	2.11*	11/11	11/22
DC40129a(9)	NAU2140(5)	9.85	11/22	3.47**	3.59**	1.13	11/22	11/11
DC40183(24)	MUSS059(2)	9.5	22/22	0.56	1.12	1.66*	22/22	11/22
DC40183(24)	NAU2265(2)	7.79	22/22	0.80	1.59	2.03*	22/22	22/11
DC40183(24)	NAU895(2)	7.99	22/22	0.73	1.45	1.90*	22/22	11/22
DPL056a(5)	DPL0847(6)	6.74	11/22	2.96**	2.88*	1.67	11/22	22/22
DPL056a(5)	DPL564(6)	4.38	11/22	3.61**	3.09*	2.71*	11/22	22/22
DPL056a(5)	DPL590(6)	6.23	11/22	3.13**	3.11**	2.04*	11/22	22/22
DPL090(8)	DPL502(14)	7.72	11/22	2.77**	2.86**	2.15*	11/22	22/12
BNL2469(14)	CER165(13)	6.89	22/11	3.23	3.01	2.47	22/11	22/22
DPL282(25)	DPL303(12)	6.51	22/11	3.09**	3.49**	1.14	22/11	11/11
DPL282(25)	GH631(12)	7.36	22/11	3.01**	2.59*	0.13	22/11	22/22
DPL282(25)	NAU943(12)	8.46	22/11	3.16**	2.94**	0.36	22/11	22/22
DPL588(24)	NAU3217(19)	15.82	22/22	0.52	1.04	2.59*	22/22	11/22
DPL591(5)	BNL3661(14)	5.7	22/22	1.22	2.44**	1.75	22/22	11/22

Table 7. The best and the worst double homozygotes in each of the two loci combinations showing significant AA interactions for bolls/plant in $F_{2:}$ 3 population.

(Continued)

Locus 1 ^a	Locus 2 ^a	Var%	Genotype ^b	Over midparent ^c	Over GX1135 ^d	Over 12/12 ^e	Best genotype ^f	Worst genotype ^g
DPL591(5)	MGHE46(9)	6.57	22/11	2.68**	2.81**	0.99	22/11	11/11
BNL2496(17)	BNL3442(11)	5.96	22/22	1.13*	2.26**	1.79**	22/22	11/22
GH220(25)	MGHE34(9)	7.25	22/11	2.63**	2.86**	1.01	22/11	11/11
HAU1314(un5)	NAU792(5)	6.91	11/11	0.30	0.00	0.41	11/11	11/22
HAU190(un1)	SHIN1076(24)	8.51	22/22	1.44**	2.88**	2.30**	22/22	11/22
MGHE58(7)	NAU3217(19)	8.38	11/11	0.78	0.00	3.37**	11/11	11/22
BNL3033(14)	CER165(13)	6.82	22/11	3.23	3.01	2.47	22/11	22/22
NAU1014(11)	NAU748(18)	6.42	11/22	2.21**	3.04**	0.59	11/22	11/11
BNL3085(15)	CGR5108(6)	7.08	11/22	2.26*	1.92*	1.49	11/22	22/22
NAU3519(12)	JESP056(2)	7.03	22/22	0.65	1.30	1.68*	22/22	22/11

Table 7. (Continued)

^a Interaction markers and its chromosomal locations (in parentheses).

^b Genotype of the first locus/genotype of the second locus; 11, homozygous for the P1 allele; 22, homozygous for the P2 allele

^c Advantage of the best homozygote over the mean of the two parental genotypes.

^d Advantage of the best homozygote over GX1135 genotype

^e Advantage of the best homozygote over heterozygote genotype.

^f The best genotype identified in the nine interaction types.

^g The worst genotype identified in the nine interaction types.

* and * * Significant different from zero at p = 0.05 and p = 0.01 levels respectively.

doi:10.1371/journal.pone.0143548.t007

in genome. Although the available EST-SSR sequences are now rich in GenBank, these sequences are so conserved that the polymorphism of SSR markers developed is comparatively low in Upland cotton [15].

Since the first genetic linkage map was constructed in an F_2 population derived from crosses between *G. hirsutum* and *G. barbadense* [5], a variety of linkage maps have been constructed and a number of QTLs for yield and fiber quality traits have been identified from these linkage maps. However, heterosis of yield and yield components had not been analyzed in these highdensity maps.

In order to construct a high-density linkage map for analysis of yield heterosis in Upland cotton, 450 polymorphic primers were used to construct a linkage map in 173 $F_{2: 3}$ progeny lines derived from two mapping parents 'GX1135' and 'GX100-2'. The genetic linkage map was constructed with 421 loci mapped and coverage of 3814 cM genetic length in the cotton genome. In this research, the majority of primers with high rate of polymorphism were developed by genomic clones from microsatellite-enriched cotton DNA libraries which were sequenced to identify SSR-containing target regions and SSR-containing EST collections [73] (S1 Table). Physical map of D₅-genome cotton species, A₂-genome cotton species, and AD₁-genome in Upland cotton have been completed [21–25]. The physical map of whole genome in Sea Island cotton is not currently available, but the sequencing of this physical map will be released soon (www.cottongen.org). These physical maps will provide extensive information in constructing high-density genetic linkage map, molecular marker selection, and map-based cloning in Upland cotton. With emergence of next generation sequencing technology and more sequences from newly released expression DNA libraries, more and more functional markers will be developed for gene mapping and tagging.

	ONE
--	-----

Locus 1 ^a	Locus 2 ^a	Var%	Genotype ^b	Over midparent ^c	Over GX1135 ^d	Over 12/12 ^e	Best genotype ^f	Worst genotype ^g
BNL3447(5)	GH137(16)	5.74	11/12	-0.21	0.18	0.52	22/11	12/11
CER098(11)	SHIN0219(13)	6.44	11/12	2.19**	3.39	1.41*	11/12	11/11
BNL1040(13)	BNL243(18)	5.17	22/12	0.95*	0.92	0.88*	11/22	11/12
CGR5352(18)	DC40052(15)	7.18	11/12	1.18	2.08**	0.17	22/11	11/11
CGR5534(11)	NAU2277(2)	7.06	11/12	0.85	1.11*	1.10*	11/12	11/22
CGR5873(10)	NAU792(5)	5	11/12	0.35	1.51**	0.86	22/22	11/22
CGR5951(5)	TMB1268(2)	10.51	22/12	1.39**	-0.37	0.29	11/22	22/22
CGR6539(13)	CGR6864(25)	10.67	11/12	1.58**	2.57**	0.92	22/11	11/11
DC40183(24)	MUSS059(2)	4.97	11/12	0.10	0.66	1.20*	22/22	11/22
DC40183(24)	NAU895(2)	7.15	11/12	0.07	0.80	1.25**	22/22	11/22
DPL056a(5)	DPL564(6)	7.03	22/12	1.84**	1.31*	0.94	11/22	22/22
DPL124(6)	GH256(11)	8.3	11/12	0.09	1.42**	0.44	22/22	22/12
DPL551(24)	DPL687(13)	8.18	22/12	2.47**	1.53**	2.79**	22/12	22/11
BNL2496(17)	BNL3442(11)	4.77	11/12	-1.16*	-0.03	-0.50	22/22	11/22
GH144(10)	GH388(5)	4.94	11/12	1.25**	2.27**	2.49**	11/12	12/12
C2_115(12)	CGR6695(2)	6.71	12/11	-0.83	0.32	0.00	22/22	22/11
CGR115(12)	CGR6695(2)	6.71	12/11	-0.83	0.32	0.00	22/22	22/11
CGR5111(12)	CGR6695(2)	6.44	12/11	-0.88	0.11	-0.16	22/22	12/22
CGR5554(13)	DPL244(6)	9.11	12/11	0.49	0.83	0.45	11/22	12/22
CGR5554(13)	HAU1460(6)	13.42	12/11	0.55	1.33*	0.54	11/22	12/22
CGR6864(25)	DPL687(13)	7.96	12/11	1.51**	2.79**	0.29	11/22	11/11
BNL243(18)	CER165(13)	7.94	12/22	0.76*	0.29	0.99*	22/11	12/11
DPL564(6)	TMB1296(5)	6.16	12/22	1.64**	1.31*	0.97	22/11	22/22
GH256(11)	HAU1371(6)	9.67	12/11	0.43	1.69**	0.40	22/22	12/22
BNL2960(10)	CIR307(1)	7.36	12/11	2.63**	2.92	1.78**	12/11	11/11
NAU3519(12)	JESP056(2)	5.97	12/11	-0.47	0.19	0.57	22/22	22/11
BNL3261(12)	CGR6695(2)	5.09	12/11	-1.37*	-0.20	-0.67	22/22	12/22

Table 8. The best and the worst single heterozygotes in each of the two loci combinations showing significant AD/DA interactions for bolls/plant in $F_{2:3}$ population.

See footnotes of Table 7 for explanations

doi:10.1371/journal.pone.0143548.t008

Table 9. The best and the worst double heterozygotes in the two loci combinations consistently showing significant DD interaction for b	olls/plant
in F _{2: 3} population.	

Locus 1 ^a	Locus 2 ^a	Var%	Genotype ^b	Over midparent ^c	Over GX1135 ^d	Best genotype ^f	Worst genotype ^g
BNL3447(5)	GH137(16)	5.53	12/12	-0.73*	-0.34	22/11	12/11
C2_115(12)	DC40250(21)	6.69	12/12	1.54**	0.90*	11/12	22/22
CER165(13)	NAU3839(14)	4.99	12/12	0.54	0.32	11/22	22/22
CGR115(12)	DC40250(21)	6.69	12/12	1.54**	0.90*	11/12	22/22
CGR6864(25)	GH631(12)	4.65	12/12	2.40**	1.97**	11/12	22/22
DPL551(24)	DPL687(13)	5.67	12/12	-0.32	-1.26**	22/12	22/11
BNL3261(12)	CGR6695(2)	4.46	12/12	-0.70*	0.48	22/22	12/22

See footnotes of Table 7 for explanations

doi:10.1371/journal.pone.0143548.t009

Genetic Effects of QTL for Yield and Yield Components

In present study, only a few QTLs showed overdominance while majority of them showed partial dominance. Alleles from both female and male parents were in direction of increasing phenotypic variation, which has been observed in previous studies [<u>39–41</u>].

There were a number of QTLs for yield traits that were detected simultanuously in $F_{2:3}$ and $F_{2:4}$ populations with both additive and dominant types of genetic effects. QTLs identified for yield and yield components simultaneously in $F_{2:3}$ and $F_{2:4}$ populations as shown in <u>Table 3</u> were further analyzed. Generally, QTLs detected in $F_{2:3}$ generation had larger effects than those in $F_{2:4}$ generation which indicated depression. For their QTL effects, the dominance effect of *qSY-chr14-1* was 3.32 in $F_{2:3}$ generation, larger than its dominance effect, 0.10, in $F_{2:4}$ generation. For lint percent, seven QTLs were detected in both populations with similar magnitudes of additive and dominance effects in two populations. So the effects of the QTLs detected in $F_{2:3}$ population were substantially larger than those detected in $F_{2:4}$ population. Same phenomenon was observed in a previous study of QTLs for yield using F_2 and $F_{2:3}$ populations using a vegetatively reproduced rice [74]. These results are consistent with the contention that dominance effects were the genetic basis of heterosis and inbreeding depression in Upland cotton.

Repeatability of QTLs among Different Studies

Although a number of QTLs for yield and yield components were identified in earlier reports using both inter-specific populations and intra-specific Upland cotton populations, only a limited number of markers were reported to be common among different populations in cotton genome. Therefore, it is necessary to fill this gap by identification of enough QTLs for yield traits consistent in different segregating populations and different environments. Some QTLs contributing to yield traits were identified on the same chromosomes in different studies. For example, QTLs for lint yield were detected on chromosome 1, 2, 3, 5, 6, 9, 12, 13, 14, 15, 16, 20, 23, 24, 25 and 26 [7, 75–80]. Among these, a common QTL for lint yield on chromosome 14 was detected in different mapping populations and environments [7, 77]. In current study, the QTL *qLY-chr13-1* was also detected on chromosome 13 with interval between markers of GH157 and BNL 1495. Another QTL for lint yield was detected in a study by Wu et al. [79] with flanking markers BNL1421 and BNL1495. These two QTLs for lint yield may be overlapped or a common one due to their location proximity in the genome.

Digenic Interactions in $F_{2:3}$ and $F_{2:4}$ Populations

A total of nine genotypes were detected with significant interactions in three types of two-locus epistasis. In all interaction types, AA was an interaction for genotypes homozygous in both parents, including 11/11, 11/22, 22/11 and 22/22 (11 representing Parent 1 and 22 representing Parent 2); AD/DA was interaction for genotypes homozygous in one of parent and heterozygous in another parent, including 11/12, 22/12, 12/11 and 12/22; DD was interaction for genotypes heterozygous in both parents, i.e., 12/12 [41–42].

In F_{2: 3} and F_{2: 4} populations, three types of digenic interactions, AA, AD/DA and DD, were detected. AA interactions were detected with the highest frequency and DD interactions were detected with the lowest frequency. None of the double heterozygotes was detected as the best genotypes in terms of bolls per plant. The large number of significant digenic interactions for yield traits identified in F_{2: 3} and F_{2: 4} populations indicated that epistasis was the genetic basis of heterosis in Upland cotton.

In two-locus combinations showing significant AA effects, the best genotypes for bolls per plant were complementary two-locus homozygotes (11/22 or 22/11). Only one single

heterozygote (11/12) was detected as the best genotype. The high heterotic values of two-locus combinations with significant AD/DA interactions indicated that the complementary two-locus homozygotes (11/22 or 22/11) were the best genotypes. In two-locus combinations with significant DD, the best genotypes were frequently single heterozygotes (11/12 and 22/12). No double heterozygote (12/12) was detected as the genotype with best performance. Similar results were also reported in previous studies by Hua et al. [41] and Zhou et al. [44]. These phenomena indicated a low correlation between heterozygosity of parental genotypes and their performance. However, single locus heterozygotes showed higher correlations between parental genotypes and their performance than those of double heterozygotes. These results implied that the double heterozygous does not necessarily favor the expression of a trait. The lack of correlation between heterosis [41]. The lack of correlation could also be caused by low association between marker heterozygosity and QTL [81].

Genetic basis of heterosis has been analyzed extensively by different research groups [37– 41, 44, 82]. Due to different materials and methods used, these reported genetic and molecular mechanisms underlying heterosis were inconsistent in previous studies. In this research, we dissected the genetic basis of heterosis in $F_{2: 3}$ and $F_{2: 4}$ populations at single- and two-locus levels and concluded that dominance effects at single-locus and epistasis effects at two-locus level were the genetic basis of heterosis in Upland cotton.

Supporting Information

S1 Fig. Variation of lint yield and yield components in $F_{2: 3}$ and $F_{2: 4}$ populations. (a). vertical axis: Number of lines, (b). horizontal axis: Traits values, (c). red arrows: GX1135, blue arrows: GX100-2, black arrows: F1. (TIFF)

S2 Fig. Locations of QTLs for yield and yield component traits in four environments. SY, seed cotton yield; LY, lint yield; BNP, bolls/plant; BW, boll weight;; LP, lint percent. Markers underlined were published previously. (DOC)

200)

S1 File. Traits phenotype value. (XLS)

S2 File. Molecular marker data. (XLS)

S1 Table. Percentages of polymorphism for the markers between two parents of hybrid 'Xinza No. 1'. (DOC)

Acknowledgments

We thank Dr. Linghe Zeng (USDA-ARS, Crop Genetics Research Unit, Stoneville, MS 38776, USA) for his carefully critical revision on the manuscript. We thank Dr. Jihua Tang (Henan Agricultural University) and Dr. Huihui Li (Chinese Academy of Agricultural Sciences) for their kind helps in data analysis. We also thank Pengbo Li, Cheng Hu, and Hua Hua for the kind helps in genetic marker screening and analysis.

Author Contributions

Conceived and designed the experiments: JH. Performed the experiments: QL YW. Analyzed the data: QL LS. Contributed reagents/materials/analysis tools: JH. Wrote the paper: QL JH. Screened polymorphic primers: QL.

References

- 1. Galanopoulou-Sendouca S, Roupakias D. Performance of cotton F1 hybrids and its relation to the mean yield of advanced bulk generations. Eur J Agron. 1999; 11(1): 53–62.
- Meredith WR, Bridge RR. Heterosis and gene action in cotton, Gossypium hirsutum L. Crop Sci. 1972; 12(3): 304–310.
- Sun J, Liu J, Zhang J. A review on research and utilization of hybrid vigor of cotton. Acta Gossypii Sinica. 1994; 3: 135–139.
- Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD. Resolution of quantitative traits into mendelian factors by using a complete linkage map of restriction length polymorphisms. Nature. 1988; 335: 721–726.
- Reinisch AJ, Dong JM, Brubaker CL, Stelly DM, Wendel JF, Paterson AH. A detailed RFLP map of cotton, Gossypium hirsutum × Gossypium barbadense: chromosome organization and evolution in a disomic polyploid genome. Genetics. 1994; 138(3): 829–847. PMID: 7851778
- Guo WZ, Cai CP, Wang CB, Han ZG, Song XL, Wang K, et al. A microsatellite-based, gene-rich linkage map reveals genome structure, function, and evolution in *Gossypium*. Genetics. 2007; 176(1): 527– 541. PMID: <u>17409069</u>
- He DH, Lin ZX, Zhang XL, Nie YC, Guo XP, Zhang YX, et al. QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense. Euphytica. 2007; 153(1–2): 181–197.
- Lacape JM, Nguyen TB, Thibivilliers S, Bojinov B, Courtois B, Cantrell RG, et al. A combined RFLP SSR AFLP map of tetraploid cotton based on a *Gossypium hirsutum*×*Gossypium barbadense* backcross population. Genome. 2003; 46(4): 612–626. PMID: <u>12897870</u>
- Rong J, Abbey C, Bowers JE, Brubaker CL, Chang C, Chee PW, et al. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics. 2004; 166(1): 389–417. PMID: <u>15020432</u>
- Yu Y, Yuan DJ, Liang SG, Li XM, Wang XQ, Lin ZX, et al. Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC₁ population between *Gossypium hirsutum* and *G. barbadense*. BMC Genomics. 2011; 12(1): 15.
- 11. Guo WZ, Cai CP, Wang CB, Zhao L, Wang L, Zhang TZ. A preliminary analysis of genome structure and composition in *Gossypium hirsutum*. BMC Genomics. 2008; 9(1): 314–332.
- Zhao L, Lv YD, Cai CP, Tong XC, Chen XD, Zhang W, et al. Toward allotetraploid cotton genome assembly, integration of a high-density molecular genetic linkage map with DNA sequence information. BMC Genomics. 2012; 13(1): 539–539.
- 13. Ulloa M and Meredith WR. Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population. J Cotton Sci. 2000; 4(3): 161–170.
- Zhang ZS, Hu MC, Zhang J, Liu DJ, Zheng J, Zhang K, et al. Construction of a comprehensive PCRbased marker linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Mol Breeding. 2009; 24(1): 49–61.
- **15.** Lin Z, Zhang Y, Zhang X, Guo X. A high-density integrative linkage map for *Gossypium hirsutum*. Euphytica. 2009; 166(1): 35–45.
- Zhang K, Zhang J, Ma J, Tang S, Li D. Genetic mapping and quantitative trait locus analysis of fiber quality traits using a three-parent composite population in upland cotton (Gossypium hirsutum L.). Mol Breeding. 2012; 29(2): 335–348.
- Liang QZ, Hu C, Hua H, Li ZH, Hua JP. Construction of a linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Chinese Sci Bull. 2013; 58(26): 3233–3243.
- Tang SY, Teng ZH, Zhai TF, Fang XM, Liu F, Liu DJ, et al. Construction of genetic map and QTL analysis of fiber quality traits for Upland cotton (Gossypium hirsutum L.). Euphytica. 2015; 201(2): 195–213.
- Liu RZ, Wang BH, Guo WZ, Qin YS, Wang LG, Zhang YM. Quantitative trait loci mapping for yield and its components by using two immortalized populations of a heterotic hybrid in Gossypium hirsutum L. Mol Breeding. 2012; 29(2): 297–311.

- Shang L, Liang Q, Wang Y, Wang X, Wang K, Abduweli A, et al. Identification of stable QTLs controlling fiber traits properties in multi-environment using recombinant inbred lines in Upland cotton (Gossypium hirsutum L.). Euphytica. 2015; 205(3): 877–888.
- Wang KB, Wang ZW, Li FG, Ye WW, Wang JY, Song GL, et al. The draft genome of a diploid cotton Gossypium raimondii. Nat Genet. 2012; 44(10): 1098–1103. doi: <u>10.1038/ng.2371</u> PMID: <u>22922876</u>
- Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin DC, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature. 2012; 492(7429): 423–427. doi: 10.1038/nature11798 PMID: 23257886
- Li FG, Fan GY, Wang KB, Sun FM, Yuan YL, Song GL, et al. Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet. 2014; 46(6): 567–572. doi: <u>10.1038/ng.2987</u> PMID: <u>24836287</u>
- Li FG, Fan GY, Lu CR, Xiao GH, Zou CS, Kohel RJ, et al. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol. 2015; 33(5): 524–530. doi: 10.1038/nbt.3208 PMID: 25893780
- Zhang TZ, Hu Y, Jiang WK, Fang L, Guan XY, Chen JD, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol. 2015; 33: 531–537. doi: <u>10.1038/nbt.3207</u> PMID: <u>25893781</u>
- Basunanda P, Radoev M, Ecke W, Friedt W, Becker HC, Snowdon Rod. Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theor Appl Genet. 2010; 120(2): 271–281. doi: <u>10.1007/s00122-009-1133-z</u> PMID: <u>19707740</u>
- 27. Bruce A. The Mendelian theory of heredity and the augmentation of vigor. Science. 1910; 32: 627-628.
- 28. Davenport C. Depopulation, albinism and inbreeding. Science. 1908; 28: 454–455. PMID: 17771943
- Jones DF. Dominance of linked factors as a means of accounting for heterosis. Genetics. 1917; 2(5): 466–479. PMID: <u>17245892</u>
- Hull FH. Recurrent selection for specific combining ability in corn. J Am Soc Agron. 1945; 37(2): 134– 145.
- 31. Crow JF. Alternative hypotheses of hybrid vigor. Genetics. 1948; 33(5): 477–487. PMID: 17247292
- Fasoulas A, Allard RW. Nonallelic gene interactions in the inheritance of quantitative characters in barley. Genetics. 1962; 47(7): 899–907. PMID: <u>17248119</u>
- Powers L. An expansion of Jones's theory for the explanation of heterosis. Am Nat. 1944; 78: 275–280.
- Williams W. Heterosis and the genetics of complex characters. Nature. 1959; 184: 527–530. PMID: 13844942
- Lu H, Romero-SeVerson J, Bernardo R. Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Theor Appl Genet. 2003; 107(3): 494–502. PMID: <u>12759730</u>
- Meyer RC, Kusterer B, Lisec J, Steinfath M, Becher M, Scharr H, Melchinger AE, et al. QTL analysis of early stage heterosis for biomass in Arabidopsis. Theor Appl Genet. 2010; 120(2): 227–237. doi: <u>10.</u> <u>1007/s00122-009-1074-6</u> PMID: <u>19504257</u>
- Krieger U, Lippman ZB, Zamir D. The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat Genet. 2010; 42(5): 459–463. doi: <u>10.1038/ng.550</u> PMID: <u>20348958</u>
- 38. Xing YZ, Zhang QF. Genetic and molecular bases of rice yield. Plant Biology. 2010; 61: 421–442.
- Xiao J, Li J, Yuan L, Tanksley SD. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics. 1995; 140(2): 745–754. PMID: <u>7498751</u>
- Stuber CW, Lincoln SE, Wolff D, Helentjaris T, Lander E. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics. 1992; 132 (3): 823–83. PMID: <u>1468633</u>
- Hua JP, Xing YZ, Xu CG, Sun XL, Yu SB, Zhang QF. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics. 2002; 162(4): 1885– 1895. PMID: <u>12524357</u>
- 42. Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S, et al. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA. 2003; 100(5): 2574–2579. PMID: 12604771
- 43. Yu S, Li J, Xu C, Tan Y, Gao Y, Li X, et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA. 1997; 94(17): 9226–9231. PMID: 11038567
- Zhou G, Chen Y, Yao W, Zhang C, Xie W, Hua J, et al. Genetic composition of yield heterosis in an elite rice hybrid. Proc Natl Acad Sci USA. 2012; 109(39): 15847–15852. PMID: 23019369

- Radoev M, Becker HC, Ecke W. Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics. 2008; 179(3): 1547–1558. doi: 10.1534/genetics.108.089680 PMID: 18562665
- 46. Guo TT, Yang N, Tong H, Pan QC, Yang XH, Tang JH, et al. Genetic basis of grain yield heterosis in an "immortalized F2" maize population. Theor Appl Genet. 2014; 127(10): 2149–2158. doi: <u>10.1007/</u> s00122-014-2368-x PMID: 25104328
- Carr DE, Dudash MR. Recent approaches into the genetic basis of inbreeding depression in plants. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. 2003; 358 (1434): 1071–1084. PMID: <u>12831473</u>
- Li ZK, Luo LJ, Mei HW, Wang DL, Shu QY, Tabien R, et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics. 2001; 158(4): 1737–1753. PMID: <u>11514459</u>
- Luo LJ, Li ZK, Mei HW, Shu QY, Tabien R, Zhong DB, et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components. Genetics. 2001; 158(4): 1755–1771. PMID: <u>11514460</u>
- Rousselle Y, Thomas M, Galic N, Bonnin I, Goldringer I. Inbreeding depression and low between-population heterosis in recently diverged experimental populations of a selfing species. Heredity. 2010; 106 (2): 289–299. doi: <u>10.1038/hdy.2010.72</u> PMID: <u>20531445</u>
- Wright S. Evolution and the genetics of populations, Volume 3: experimental results and evolutionary deductions. University of Chicago Press. 1984.
- Zhou SH, Pannell JR. Inbreeding depression and genetic load at partially linked loci in a mentapopulation. Genet Res. 2010; 92(02): 127–140.
- Burton JW, Browine C. Heterosis and inbreeding depression in two soybean single crosses. Crop Sci. 2006; 46(6): 2643–2648.
- Li ZK, Pinson SRM, Paterson AH, Park WD, Stansel JW. Genetics of hybrid sterility and hybrid breakdown in an inter-subspecific rice (Oryza sativa L.) population. Genetics. 1997; 145(4): 1139–1148. PMID: 9093864
- Shang LG, Cai SH, Ma LL, Wang YM, Abduweli A, Wang MY, et al. Seedling root QTLs analysis on dynamic development and upon nitrogen deficiency stress in Upland cotton. Euphytica. 2015; doi: <u>10.</u> 1007/s10681-015-1564-3
- 56. Shang LG, Liu F, Wang YM, Abduweli A, Cai SH, Wang KB, et al. Dynamic QTL mapping for plant height in Upland cotton (Gossypium hirsutum). Plant Breeding. 2015;
- Hoagland DR, Arnon DI. The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular Number 347. College of Agriculture, University of California, Berkeley, Calif. 1950.
- Paterson AH, Brubaker CL, Wendel JF. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep. 1993; 11(2): 122–127.
- Blenda A, Fang DD, Rami JF, Garsmeur O, Luo F, Lacape JM. A high density consensus genetic map of tetraploid cotton that integrates multiple component maps through molecular marker redundancy check. PLoS ONE. 2012; 7: e4573.
- Xiao J, Wu K, Fang DD, Stelly DM, Yu J. New SSR markers for use in cotton (Gossypium spp.) improvement. J Cotton Sci. 2009; 13: 75–157.
- Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, et al. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987; 1(2): 174–181. PMID: <u>3692487</u>
- Tan ZY, Fang XM, Tang SY, Zhang J, Liu DJ, Teng ZH, et al. Genetic map and QTL controlling fiber quality traits in upland cotton (Gossypium hirsutum L.). Euphytica. 2014; 203(3): 615–628.
- 63. Zeng ZB. Precision mapping of quantitative trait loci. Genetics. 1994; 136(4): 1457–1468. PMID: 8013918
- Wang SC, Basten CJ, Zeng ZB. Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. 2005.
- Lander LE, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet. 1995; 11(3): 241–247. PMID: <u>7581446</u>
- Shen XL, Guo WZ, Zhu XF, Yuan YL, Yu JZ, Kohel R. Molecular mapping of QTLs for fiber qualities in three diverse lines in Upland cotton using SSR markers. Mol Breeding. 2005; 15(2): 169–181.
- Voorrips R. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered. 2002; 93(1): 77–78. PMID: <u>12011185</u>
- 68. Soft. STATISTICA for Windows. StatSoft Inc, Tulsa, Oklahoma, USA. 1997.

- Zeng LH, Meredith WR. Relationship between SSR-based genetic distance and cotton F₂ hybrid performance for lint yield and fiber properties. Crop Sci. 2011; 51(6): 2362–2370.
- **70.** Wu YT, Yin JM, Guo WZ, Zhu XF, Zhang TZ. Heterosis performance of yield and fibre quality in F1 and F2 hybrids in upland cotton. Plant Breeding. 2004; 123(3): 285–289.
- McCarty JC, Jenkin JN, Wu JX. Genetic association of cotton yield with its component traits in derived primitive accessions crossed by elite upland cultivars using the conditional ADAA genetic model. Euphytica. 2008; 161(3): 337–352.
- Mei M, Syed NH, Gao W, Thaxton PM, Smith CW, Stelly DM, et al. Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theor Appl Genet. 2004; 108(2): 280–291. PMID: 14513220
- Bowman T, May O, Calhoun D. Genetic base of upland cotton cultivars released between 1970 and 1990. Crop Sci. 1996; 36(3): 577–581.
- 74. Li JX, Yu SB, Xu CG, Tan YF, Gao YJ, Li XH, et al. Analyzing quantitative trait loci for yield using a vegetatively replicated F₂ population from a cross between the parents of an elite rice hybrid. Theor Appl Genet. 2000; 101(1–2): 248–254.
- Shen XZ, Guo T, Zhu W, Zhang XF. Mapping fiber and yield QTLs with main epistatic and QTL × environment interaction effects in recombinant inbred lines of upland cotton. Crop Sci. 2006; 46(1): 61–66.
- 76. Qin H, Guo W, Zhang YM, Zhang TZ. QTL mapping of yield and fiber traits based on a four-way cross population in *Gossypium hirsutum* L. Theor Appl Genet. 2008; 117(6): 883–894. doi: <u>10.1007/s00122-008-0828-x</u> PMID: <u>18604518</u>
- 77. He DH, Lin ZX, Zhang XL, Nie YC, Guo XP, Fang CD, et al. Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton. Euphytica. 2005; 144(1–2): 141–149.
- Li CQ, Guo WZ, Ma XL, Zhang TZ. Tagging and mapping of QTL for yield and its components in upland cotton (Gossypium hirsutum L.) population with varied lint percentage. Cotton Sci. 2008; 20: 163–169.
- Wu J, Gutierrez OA, Jenkins JN, McCarty JC, Zhu J. Quantitative analysis and QTL mapping for agronomic and fiber traits in an RI population of upland cotton. Euphytica. 2009; 165(2): 231–245.
- Wang BH, Guo WZ, Zhu XF, Wu YT, Huang NT, Zhang TT. QTL mapping of yield and yield components for elite hybrid derived-RILs in upland cotton. J Genet Genomics. 2007; 34(1): 35–45. PMID: <u>17469776</u>
- Bernado R. Relationship between single-cross performance and molecular marker heterozygosity. Theor Appl Genet. 1992; 83(5): 628–634. doi: <u>10.1007/BF00226908</u> PMID: <u>24202681</u>
- Hochholdinger F, Hoecker N. Towards the molecular basis of heterosis. Trends Plant Sci. 2007; 12(9): 427–432. PMID: <u>17720610</u>