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In a conventional view of the prokaryotic genome organization, promoters precede operons and ribosome binding sites

(RBSs) with Shine-Dalgarno consensus precede genes. However, recent experimental research suggesting a more diverse

view motivated us to develop an algorithm with improved gene-finding accuracy. We describe GeneMarkS-2, an ab initio

algorithm that uses a model derived by self-training for finding species-specific (native) genes, along with an array of pre-

computed “heuristic”models designed to identify harder-to-detect genes (likely horizontally transferred). Importantly, we

designed GeneMarkS-2 to identify several types of distinct sequence patterns (signals) involved in gene expression control,

among them the patterns characteristic for leaderless transcription as well as noncanonical RBS patterns. To assess the ac-

curacy of GeneMarkS-2, we used genes validated by COG (Clusters of Orthologous Groups) annotation, proteomics ex-

periments, and N-terminal protein sequencing. We observed that GeneMarkS-2 performed better on average in all

accuracy measures when compared with the current state-of-the-art gene prediction tools. Furthermore, the screening of

∼5000 representative prokaryotic genomes made by GeneMarkS-2 predicted frequent leaderless transcription in both ar-

chaea and bacteria. We also observed that the RBS sites in some species with leadered transcription did not necessarily ex-

hibit the Shine-Dalgarno consensus. The modeling of different types of sequence motifs regulating gene expression

prompted a division of prokaryotic genomes into five categories with distinct sequence patterns around the gene starts.

[Supplemental material is available for this article.]

Since the number of microbial species on Earth is estimated to be
larger than1012 (Locey andLennon2016), the exponential growth
of the number of sequenced prokaryotic genomes, currently ∼105,
is likely to continue for quite a while. Along this path, wewill con-
tinue to see genomes with large numbers of genes not detectable
by mapping protein orthologs. Thus, improving the accuracy of
ab initio gene prediction remains an important task.

The proliferation of RNA-seq presented an opportunity for
more accurate inference of exon-intron structures of eukaryotic
genes. Transcriptomes of prokaryotes, however, were thought to
be less important for gene finding since the accuracy of ab initio
prediction of a whole gene (being uninterrupted ORF) is signifi-
cantly higher. Nevertheless, recent innovations in the NGS tech-
niques led to generating new kinds of data whose impact has yet
to be fully appreciated.

For example, dRNA-seq, the differential RNA sequencing
technique (Sharma et al. 2010; Sharma and Vogel 2014) aimed
to accurately identify transcription start sites (TSSs). The experi-
mental evidence for the TSS locations is crucial for reliable operon
annotation, as well as for the detection of promoters and transla-
tion initiation sites (TISs) (Creecy and Conway 2015).

The sequence downstream from TIS is supposed to code for
interactions between mRNA and the translation machinery. In
prokaryotes, translation initiation is assumed to be facilitated by
the base-pairing between the 3′ tail of the 16S rRNA of the 30S ri-
bosomal subunit and the ribosome binding site (RBS) located in
the 5′ UTR of the mRNA. The pioneer work of Shine and Dalgarno
on Escherichia coli described a specific RBS consensus observed later
in many prokaryotic genomes (Shine and Dalgarno 1974; Barrick
et al. 1994). Still, with the accumulation of genomic data, excep-
tions started to multiply. For instance, the 5′ UTR may be
completely absent in the case of leaderless transcription, first discov-
ered in the archaea Pyrobaculum aerophilum (Slupska et al. 2001).

Recent studies of prokaryotic transcriptomes, including
dRNA-seq applications, detected instances of leaderless transcrip-
tion not only in archaea but in bacteria as well (Cortes et al.
2013). Importantly, the fraction of genes with leaderless transcrip-
tion was observed to vary significantly among species. It was low
(<8% among all operons) in some bacteria, such as Helicobacter py-
lori (Sharma et al. 2010), Bacillus subtilis (Nicolas et al. 2012),
Salmonella enterica (Kroger et al. 2013), Bacillus licheniformis
(Wiegand et al. 2013), Campylobacter jejuni (Dugar et al. 2013),
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Propionibacterium acnes (Pfeifer-Sancar
et al. 2013), Shewanella oneidensis (Shao
et al. 2014), and Escherichia coli (Thoma-
son et al. 2015). It was also low (<15%) in
some archaea, e.g., in Methanosarcina
mazei (Jager et al. 2009), Pyrococcus abyssi
(Toffano-Nioche et al. 2013), Thermococ-
cus kodakarensis (Jager et al. 2014), Meth-
anolobus psychrophilus (Li et al. 2015),
and Thermococcus onnurineus (Cho et al.
2017). However, a higher frequency
(>25%) of leaderless transcription was
observed in other bacteria, e.g.,Mycobac-
terium tuberculosis (Cortes et al. 2013),Co-
rynebacterium glutamicum (Pfeifer-Sancar
et al. 2013), Deinococcus deserti (de Groot
et al. 2014), Streptomyces coelicolor (Rome-
ro et al. 2014), Mycobacterium smegmatis
(Shell et al. 2015), and an even larger fre-
quency (>60%) was seen in various archaeal species, e.g., Halobac-
terium salinarum (Koide et al. 2009), Sulfolobus solfataricus (Wurtzel
et al. 2010), andHaloferax volcanii (Babski et al. 2016). Accordingly,
the diversity of regulatory sequence patterns that appear near gene
starts motivated the effort to build multiple models necessary for
more accurate gene-start prediction.

Current prokaryotic gene-finding tools, GeneMarkS, Glim-
mer3, and Prodigal are known for a sufficiently high accuracy in
predicting protein-coding ORFs. Indeed, on average these tools
are able to find more than 97% of genes in a verified test set in
terms of correct prediction of the gene 3′ ends (Besemer et al.
2001; Delcher et al. 2007; Hyatt et al. 2010). Furthermore, the ac-
curacy of pinpointing gene starts is, on average, ∼90% (Hyatt
et al. 2010).We observed thatmost of the genes that escaped detec-
tion altogether (false negatives) belonged primarily to the atypical
category, i.e., genes with sequence patterns not matching the spe-
cies-specificmodel trained on the bulk of the genome (Borodovsky
et al. 1995).

Given the high accuracy of the current tools, the task to im-
prove prokaryotic gene finding is challenging. That said, we
describe below a method that not only improves the accuracy of
gene prediction across the wide range of prokaryotic genomes
but also identifies genome-wide features of transcription and
translation mechanisms.

Methods

Gene and genome modeling

Model of a protein-coding sequence

GeneMarkS-2 uses a rather complex model of a gene, a building
block of the model of a prokaryotic genome (Fig. 1). The majority
of protein-coding regions in prokaryotic genomes are known to
carry species-specific oligonucleotide (e.g., codon) usage patterns
(Fickett and Tung 1992). To that effect, GeneMarkS-2 learns this
pattern and estimates the parameters of the typical model of pro-
tein-coding regions, a three-periodic Markov chain (Borodovsky
et al. 1986a,b), by iterative self-training on the whole genome, a
procedure similar in general to the one introduced in
GeneMarkS (Besemer et al. 2001).

Still, the oligonucleotide composition of some genes may
deviate from the genome-wide mainstream. For that reason,
GeneMarkS introduced an additional atypical gene model along-

side the typical model (Besemer et al. 2001). Instead of a single
atypical model, GeneMarkS-2 uses two large sets of atypical mod-
els: 41 bacterial and 41 archaeal. The precomputed parameters of
the atypical models, covering the GC content range from 30% to
70%, were estimated by a method utilized earlier in the metage-
nome gene finder (Zhu et al. 2010); these parameters are not re-es-
timated in GeneMarkS-2 iterations. Each atypical model has a GC
content index indicating a narrow (1%) GC bin that it represents.
The GC of the candidate ORF is used to identify which of the atyp-
icalmodels should be deployed for thatORF analysis. As such, only
a subset of the atypical models is used in a GeneMarkS-2 run on
any given genome.

Thismultimodel approach could be interpreted in the follow-
ing way. Disregarding for a moment the linear connectivity of
genes in a given genome, we can think of this set of ‘disjoint’ genes
as an instance of a small ‘metagenome.’ The approach developed
earlier for metagenome analysis (Zhu et al. 2010) employed a vari-
ety of models for the analysis of sequence fragments with varying
GC contents; we use this library as the set of atypical models for
GeneMarkS-2. Furthermore, the typical genes, making the major-
ity of this disjoint gene set, could be effectively clustered and pro-
cessed together to determine parameters for the typical model.
With this set of models at hand, a given ORF is predicted as a
gene by the best fitting model, i.e., the model (the typical or the
GC-matching atypical) that yields the highest score.

Model of a sequence around the gene start

Sequence patterns near gene starts are species-specific; neverthe-
less, we identified groups of genomes with similar patterns that ar-
guably were selected in evolution due to the common features of
translation and transcription mechanisms. We have introduced
four distinct categories/groups of the pattern models (A through
D). We also observed that some genomes did not fall into one of
these four groups; as such, we created the fifth category/group X
to which all such genomes were assigned. In general, category X
either indicates very weak regulatory signals (hard to detect and
classify) or possibly signals related to a new and yet poorly charac-
terized translation initiation mechanism.

The first, group A, represents genomes with an observed dom-
inance of RBS sites having the Shine-Dalgarno (SD) consensus; the
usage of leaderless transcription was negligible or nonexistent in
such genomes. Genomes of the second category, group B, carry
RBS sites with a “non-Shine-Dalgarno” (non-SD) consensus.
Next, there are group C and group D which represent bacterial

Figure 1. Principal state diagram of the generalized hidden Markov model (GHHM) of prokaryotic ge-
nomic sequence. States shown in the top panel were used to model a gene in the direct strand. Genes in
the reverse strand weremodeled by the identical set of states (with directions of transition reversed). The
states modeling genes in direct and reverse strands were connected through the intergenic region state
as well as the states of genes overlapping in opposite strands.
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and archaeal genomes, respectively, characterized by a significant
presence of leaderless transcription. Importantly, in group C ge-
nomes, the bacterial promoter signal (Pribnow box) is located at
∼10 nt distance from the start of the first gene in operon (tran-
scribed in the leaderless fashion). In groupD, the archaeal promot-
er box is situated at ∼26 nt distance from the starts of genes with
leaderless transcription. Furthermore, other genes (i.e., internal
genes in operons or first-genes-in-operons with leadered transcrip-
tion) in genomes of groups C and D are likely to use RBS sites; we
therefore use dual gene start models in these types of genomes. In
group X, we saw weak, hard-to-classify regulatory signal patterns;
still, some genes in genomes of group X could have an RBS signal
with SD consensus.

The sites of promoter boxes as well as the non-Shine-
Dalgarno and the Shine-Dalgarno RBS sites are separated from
TISs by sequences with variable length (spacers). Therefore, the
model of a regulatory signal should include the model of the site
as well as the length distribution of the spacer (Fig. 1). We also
explicitly modeled the triplet upstream of the start codon as a 3-
nt-long upstream signature. In addition, we also used a downstream
signature model (Fig. 1) that captured the patterns within the short
sequence (with length up to 12 nt) located immediately down-
stream from the start codon (Shmatkov et al. 1999).

For genomes in group X, we used a combination of the site
model for RBSs (if a very weak but nevertheless statistically signifi-
cant RBS model can be found) and a 20-nt-long extended upstream
signature (Fig. 1) in an attempt to capture some patterns not repre-
sented by the models developed for groups A through D. A brief
outline of groups A–D and X is given in Table 1.

Unsupervised training

The unsupervised training algorithmmakes several two-step itera-
tions (Fig. 2). Each iteration results in (1) genome segmentation
into protein-coding (CDS) and noncoding regions (gene predic-
tion), and (2) model parameters re-estimation (Besemer et al.
2001).

The first iteration

Prediction step

The log-odds space Viterbi algorithm (see Supplemental Materials)
computes the maximum likely sequence of hidden states (Fig. 1)
along the genome, the sequence delivering the largest log-odds
score. At the first step, the algorithm only uses heuristic (atypical)
models. When the algorithm runs on a particular segment of the
genomic sequence, it utilizes only two of the 82 possible atypical
models: specifically, the two, bacterial and archaeal, whose GC in-
dexmatches the local sequence’s GC composition. In the first iter-
ation, the algorithm does not account for sequence patterns near
gene starts since no gene-start model has been derived yet.

Estimation step

After the first run of the Viterbi algorithm, all genomic segments
predicted and labeled as ‘protein-coding’ are collected into a train-
ing set to estimate the parameters of the ‘typical’model. To reduce
the chance of including noncodingORFs into the training set, pre-
dicted genes shorter than 300 nt and those predicted as incom-
plete CDS are not used in training. From a thus complied
sequence set, the typical model, a fifth order three-periodic Mar-
kovmodel, is derived (Borodovsky andMcIninch 1993). Similarly,
the genomic segments labeled as ‘noncoding’ are used to estimate
parameters for the noncoding model, structured as a second order
uniform Markov chain.

The second iteration

Prediction step

The Viterbi algorithm is executed to produce the updated genome
segmentation. Note that at this iteration we use the newly derived
typical model along with all the atypical models. In the estima-
tion step, the repredicted genome segmentation is used to re-esti-
mate parameters of the typical model. At this time, having
information on initially predicted gene starts, the algorithm se-
lects sequences situated around the gene starts and derives models
of the patterns encoding transcription and/or translation regula-
tion (Supplemental Fig. S1).

Building the models of sequences around gene starts

In general, the sites near the first genes in operons (FGIOs) regu-
late transcription and translation (promoters and RBS sites), while
the sites located near the interior genes in operons (IGIOs) regu-
late translation (RBS sites only). Given a predicted genome seg-
mentation into protein-coding and noncoding regions, we
identify FGIOs by the following rule. A gene is an FGIO if its up-
stream gene neighbor is located in the same strand at a distance
larger than 25 nt or in the complementary strand (at any dis-
tance). The set of FGIOs is updated at each iteration. The rationale
for choosing the 25-nt threshold was as follows. Intuitively, larger
values offer a more conservative selection of operons and FGIOs,
since distances between operons tend to be larger than distances
between genes in operons. The operons annotated in the E. coli
genome (Gama-Castro et al. 2016) were used to assess the effect
of the threshold value on the accuracy of operon delinea-
tion. The 25-nt cut-off identified 98% of the annotated FGIOs
correctly, while making ∼8% false positive predictions. Further,
although a 40-nt threshold could offer a slightly better balance
between true and false operon predictions (Supplemental Fig.
S2), the experiments showed that the 40-nt threshold produced
an equal (or even slightly worse) gene and gene-start prediction
accuracy.

Table 1. Features of the regulatory site models used for genomes of Groups A–D and X

Groups Transcription features & domain Representative species RBS consensus
Promoter box
localization

Extended upstream
signature

A Leadered with predominantly SD RBS Escherichia coli SD – –

B Leadered with predominantly non-SD RBS Bacteroides ovatus non-SD – –

C Leaderless & bacteria Mycobacterium tuberculosis SD 10 –

D Leaderless & archaea Holobacterium salinarum SD 26 –

X Unclassified Synechocystis SD – 20 nt

A dash indicates that a particular model was not used; 26 and 10 indicate average nt distance between the promoter Pribnow box and the position of
translation start.

More accurate gene prediction in prokaryotes
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The two generic components of a regulatory site model, the
nucleotide frequency matrix and the spacer length distribution,
are then derived by running themodifiedGibbs sampler algorithm
GibbsL (described below). In some situations, it is useful to assess
the “validity” of the motif by examining the preferred localiza-
tions of the motif instances. To do this, we define the localization
distance as the mode of the spacer length distribution, i.e., the
most frequent distance between the motif and the gene start. If
the frequency at the mode is larger than a threshold value Q%,
then the motif is considered to be localized.

The full details of the derivations of the models (for groups
A–D and X) illustrated by the ‘logos’ of positional frequency
patterns of the motifs and the associated spacer length distribu-
tions (Supplemental Figs. S3–S7) are given in the Supplemental
Materials.

The third iteration and on

From now on, the type of the model of the gene start (and, there-
fore, the group to which the genome is supposed to “belong”)
does not change. However, the model parameters are updated in
iterations with respect to the type-specific rules. At each prediction
step, the dual motif models of the RBS and promoter box models
(defined for both groups C and D) compete in the Viterbi algo-
rithm computations. Similarly, the RBS and extended upstream
signaturemodels compete when the group X genome is processed.
The typical gene model is updated at each iteration (Fig. 2) using
the latest version of the genome segmentation. GeneMarkS-2 con-
tinues the prediction/estimation iterations until the convergence
condition is fulfilled (a 99% identity in gene starts between consec-
utive iterations). Alternatively, the algorithm stops if the maxi-
mum number of iterations is reached (10 by default). All the
sequence segments labeled as coding regions in the final iteration
are reported as predicted genes.

A motif finder that accounts for the signal localization pattern

The MCMC motif finder Gibbs3 (Thompson et al. 2003) was de-
signed to learn a probabilistic model of an a priori unknownmotif
present in a set of sequences. Gibbs3 was used for the RBS model

delineation in GeneMarkS with reasonable accuracy (Besemer
et al. 2001).

It was observed that sequences separating regulatory motifs
from gene starts (spacers) have some preferred (more frequent)
lengths, presumably facilitating molecular interactions involved
in translation initiation.However, theGibbs3 algorithm treatsmo-
tif instances with spacer lengths that are too long or too short in
the same way as the motif instances having a more optimal spacer
length.

Therefore, we implemented amodifiedGibbs sampler type al-
gorithm, calledGibbsL (see SupplementalMaterials).We explicitly
included the spacer length into the objective function in order to
penalize motifs that appear at distances that vary significantly
from the optimal locations. At a given iteration of GeneMarkS-2,
GibbsL runs a fixed number, N, of its own iterations to derive a
full model for a regulatory site (default N = 60). Furthermore, the
instances of GibbsL runs are repeatedM times tomitigate the effect
of random initializations (defaultM = 30); then, the result with the
highest objective function value is selected.

Test set—genes supported by proteomic studies

Mass-spectrometry–determined peptides were obtained in studies
of a number of prokaryotic species at the Pacific Northwest
National Laboratory (Venter et al. 2011). From all the available ge-
nomes, we selected 54, each with more than 250 proteomics-vali-
dated ORFs (supported by at least two matching peptides). The
peptide-supported ORFs (psORFs) annotated in the 54 genomes
(Supplemental Table S1) were used in the assessment of false neg-
ative and false positive rates of gene prediction.

Test set—COG annotated genes

We used 145 genomes (115 bacteria and 30 archaea covering 22
bacterial and archaeal phyla, listed in Supplemental Table S2)
that varied in size, type of genetic code, and GC content. Among
the genes annotated in these genomes, we selected genes with
the COG characterization; therefore, the orthologous relation-
ships of their protein products with proteins from other species
were earlier establishedwithin the Clusters of Orthologous Groups
(Tatusov et al. 1997, 2003; Galperin et al. 2015). The COG annota-
tion serves as robust evidence of the functional role of a gene, thus
this gene set is unlikely to include random ORFs. Since 36 out of
145 genomes belonged to the set of 54 genomes with ‘proteo-
mics’-confirmed genes, we removed the redundancy in the actual
tests (see below).

Test sets with simulated genome-specific noncoding regions

We used annotated intergenic regions of each of 145 genomes
(Supplemental Table S2) to build models of noncoding sequence
(zero-order Markov chains). Notably, such a simple type of model
of the noncoding region was not used in any of the four gene find-
ers. We employed these models to generate species-specific ran-
dom noncoding sequences and used them as follows. Firstly, in
each genome out of the 145 mentioned above (excluding
Mycobacterium leprae, known for large numbers of pseudogenes),
we replaced intergenic regions by simulated noncoding sequences
of the same length as in the original genome (Set 1). Secondly, we
employed themodels to generate 145 sequences of length 100,000
nt (Set 2). Thirdly, we added 100,000 nt of simulated noncoding
sequence to the 3′ end of each genome (Set 3).

Test sets of genes with experimentally verified starts

N-terminal protein sequencing is a standard technique to validate
sites of translation initiation (protein N-terminals and gene starts).

Figure 2. Principal workflow of the unsupervised training.
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Relatively large sets of genes with validated starts were known for
the bacteria Synechocystis sp. (Sazuka et al. 1999), E. coli (Rudd
2000; Zhou and Rudd 2013), M. tuberculosis (Lew et al. 2011),
andD. deserti (de Groot et al. 2014) and the archaea Aeropyrum per-
nix (Yamazaki et al. 2006),H. salinarum, andNatronomonas pharao-
nis (Aivaliotis et al. 2007).

Set of representative prokaryotic genomes

The prokaryotic genome collection of NCBI includes a description
of 5007 species as ‘representatives’ of the whole database of more
than 100,000 genomes (Tatusova et al. 2014). These include 238
archaeal and 4769 bacterial species to cover all the genera, while
leaving out the majority of species of the respective genera along
with most of their strains.

Results

Error rates in prediction of protein-coding genes

(all but the 5′ end)

Gene predictions made by GeneMarkS, Glimmer3, Prodigal, and
GeneMarkS-2, runwithdefault settings,werecomparedwith(1)an-
notation of the MS or ‘proteomics’ validated genes, and (2) the
COGs-validated genes. In the 54 genomes (Supplemental Table
S2), there were ∼89,500 proteomics-supported genes (psORFs)
(Table 2); in the 145 genomes (Supplemental Table S3), there
were ∼341,486 genes in total, 287,237 of which did not overlap
with the proteomics-validated genes (Tables 2, 3).

In the set of 54 genomes, we observed that GeneMarkS-2
missed 181 psORFs out of 89,466, the least number of false nega-
tive errors made by the tested tools (Table 2). At the same time,
GeneMarkS-2 made the least number of false positive predictions,
114. A predicted gene was judged as false if more than 30% of its
length overlapped with a psORF located in one of five other
frames.

The comparison of the predictions with the COG-validated
genes demonstrated higher accuracy of GeneMarkS-2 as well.
The new tool missed the lowest number of COG genes, 1147, fol-

lowed by Prodigal with 1389. Notably, the rate of missed COG
genes by any single gene finder was <1% (Table 2). Counting false
positives (identified also as ones with prohibitively long overlaps
with verified genes) has shown that GeneMarkS-2 made 932 false
predictions, a significantly smaller number than the onesmade by
the other gene finders (Table 2). Note that the COG-validated
genes identical to the ‘proteomics’ supported genes were excluded
from the second test.

We specifically looked into the distributon of the two types of
errors with respect to the gene length (Table 3). Among all COG-
annotated genes, Glimmer3 missed the least number of short
genes (in the 90- to 150-nt range) in comparison with the other
tools (Table 3A). In the next bin, 150–300 nt, GeneMarkS did
show the best result. We observed that GeneMarkS-2 missed the
least numbers of COG genes with length >300 nt and made the
least total count (Table 3A). Its performance was the least depen-
dent on genome GC content (Supplemental Fig. S8).

Since it turned out that the false positives identified by
their too long overlaps with validated genes (confirmed by prote-
omics or by COG annotation) occurred in rather small numbers
(Table 2), we attempted to offer more substantial statistics by add-
ing tests on sets of synthetic sequences.

False positive predictions in synthetic sequences

We estimated the false positive rates on the three sets described
above. First, we ran the four gene finders on Set 1, the 144 con-
structs where the intergenic sequences were replaced by the
same length synthetic noncoding sequences, while the annotated
genes remained in place. The predicted genes with the 3′ end not
matching annotation were considered as false positives (Table 3B).
Notably, the number of false negatives in these experiments was
observed to be of the same order as in the runs of the gene finders
on the original genomes, i.e., ∼1% of the number of annotated
genes. Second, we ran the four gene-finding tools trained on
145 complete genomes on Set 2, the 145 sequences of length
100,000 nt, with the experiment repeated 10 times (Supplemental
Table S5). The first and the second types of experiments had the
advantage of keeping the trained parameters consistent with the
nonperturbed features of the genome. However, the gene finders
were not adapted to the simulated noncoding sequences. There-
fore, we ran the gene finders in full cycle, training and prediction,
on Set 3 where predictions made in the 100,000-nt extended arti-
ficial portion of each genome were counted as false positives (Sup-
plemental Table S6).

The results of all the three types of tests described above were
favorable for GeneMarkS-2. Further analysis demonstrated that re-
duction of false positives in GeneMarkS-2 in comparison with
GeneMarkS wasmainly due to the improvement of the parameter-
ization of the atypical models. Glimmer3 has made frequent false
positives predictions of the short length (<150 nt). This outcome
is, arguably, the cost of its higher sensitivity in this length range
than other gene finders (Table 2A).

Prodigal generated false positive predictions of rather long
length, as the algorithm settings give high weights to longer
ORFs. Subsequently, it leads to an increase of false positives in ge-
nomic sequences with high GC content (Supplemental Fig. S8A),
where longer ORFs appear more frequently than in low GC
genomes.

In all the five approaches to the assessment of false positive
rates (two in natural sequences and three in artificial ones), we
saw that GeneMarkS-2 demonstrated the best performance.

Table 2. Statistics of false negative (panel A) and false positive gene
predictions (panel B) observed in tests on 54 genomes containing pro-
teomic-validated genes and on 145 genomes with genes validated by
orthologs in COGs

A

Algorithm

Missed MS
confirmed genes
(from 89,466)

Missed COG genes
(not MS)

(from 287,237)

GeneMarkS 376 1467
Glimmer3 496 1990
Prodigal 217 1389
GeneMarkS-2 181 1147

B

Algorithm

False predictions
overlapping

MS-confirmed genes

False predictions
overlapping

COG genes (not MS)

GeneMarkS 352 2046
Glimmer3 921 6435
Prodigal 211 1339
GeneMarkS-2 114 932
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Notably, it yielded the lowest numbers of false positives in all the
length intervals.

Accuracy of gene start prediction

Aswas stated above,we collected data on geneswith experimental-
ly validated translation initiation starts. Currently available collec-
tions were limited to the species of A. pernix, D. deserti, E. coli,
H. salinarum, M. tuberculosis, N. pharaonis, and Synechocystis sp.
To assess the accuracy of gene start prediction, we compared posi-
tions of predicted and annotated starts of these verified genes.

The observed error rate of GeneMarkS-2 was 4.4%, followed
by Prodigal at 6.1%, GeneMarkS at 10.2% and finally, Glimmer3
at 13.2%. Therefore, GeneMarkS-2made the largest number of cor-
rect predictions among the four gene finders (Table 4).

In comparison with GeneMarkS, the improved start predic-
tion accuracy of GeneMarkS-2 was due to a more flexible model-
ing of the regulatory signals near gene starts. For instance, in the
group C genome of M. tuberculosis, GeneMarkS did not find a suf-
ficiently strong RBS motif (Fig. 3A). GeneMarkS-2, on the other
hand, predicted that 40% of operons are likely to be transcribed
in the leaderless fashion, with the promoter Pribnow box located
at a 6- to 8-nt distance from the gene starts (Fig. 3B). In the remain-
ing ∼60% of operons, predicted RBS sites were separated from

the gene starts by the same 6- to 8-nt distance (Fig. 3C). Therefore,
the mixture of patterns, promoters, and RBS sites, localized on the
same distance from the gene start, was the reason for GeneMarkS
to fail to converge to an informative motif model.

In another example, for the majority of the first genes in op-
erons in the groupD archaeaH. salinarum, GeneMarkS-2 identified
the promoter Pribnow box located at 22–24 nt from the gene starts
(Fig. 3E), at the distance characteristic for leaderless transcription
in archaeal genomes. For the remaining FGIOs as well as for
IGIOs, GeneMarkS-2 identified the RBS sites at a 6- to 8-nt distance
upstream of gene starts (Fig. 3F). GeneMarkS, which assumes a sin-
gle type of motif for all FGIOs, could only derive a Pribnow box-
like site motif with a weaker localization (Fig. 3D).

On a general note, the performance of GibbsL in detecting
RBS motifs with the Shine-Dalgarno consensus in genomes
with low and mid GC content was observed to be similar to the
performance of Gibbs3 (thoughGibbsL tends to have higher local-
ization peaks). However, in genomes with high GC content,
GibbsL derived motifs with a higher information content and a
more compact localization (Supplemental Figs. S9–S11). We also
observed that GibbsL was more robust than Gibbs3 upon increas-
ing the length of sequences (i.e., the selected gene upstream re-
gions) supposed to contain common motifs (Supplemental Figs.
S9, S10).

Table 3. Statistics of false negative (panel A) and false positive (panel B) gene predictions

A Bins (nt) <150 150–300 300–600 600–900 >900 Total

Algorithm COG genes 362 13,985 65,948 83,745 177,446 341,486

Missed annotated genes (FN)

GeneMarkS 136 494 434 192 296 1552
Glimmer3 66 678 1170 341 323 2578
Prodigal 161 639 417 92 78 1387
GeneMarkS-2 132 596 370 76 69 1243

B Bins (nt) <150 150–300 300–600 600–900 >900 Total

Algorithm False positives (FP) in simulated sequence

GeneMarkS 3366 5113 1230 177 94 9980
Glimmer3 17,446 5044 1299 228 136 24,153
Prodigal 4525 5321 1453 419 135 11,853
GeneMarkS-2 792 1541 601 137 77 3148

Panel A: Counts of genes missed by a particular tool ( false negatives) among 341,486 COG genes annotated in 145 genomes. The counts are given in
five length bins. Panel B: Counts of false positive predictions made in 144 simulated genomic sequences made from 144 original genomes where anno-
tated intergenic regions were replaced by artificial noncoding sequence (see text). The numbers of false predictions were sorted by length in the same
way as in Panel A. Bold font designates the minimal number of observed errors in each column (for each panel separately).

Table 4. Numbers of correctly predicted gene starts verified by N-terminal protein sequencing

Species Gene-start model type # of verified gene starts GeneMarkS Glimmer3 Prodigal GeneMarkS-2

A. pernixa A 130 125 119 127 126
D. deserti C 384 315 314 334 369
E. coli A 769 725 714 751 740
H. salinaruma D 530 502 454 514 523
M. tuberculosis C 701 572 572 620 635
N. pharaonisa D 315 309 288 309 312
Synechocystis X 96 81 79 92 92

Total 2925 2629 2540 2747 2797

Bold font designates the maximum number of correct start predictions for each species as well as in total.
aArchaea.
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Finally, we have observed that the selection of the width of
themotif in GibbsL in the range from5 to 10 nt did not show a sig-
nificant influence on gene start prediction (Supplemental Table
S3). Indeed, themotifs with larger widths, i.e., 10 nt, show aminor
change in comparison with the motifs with short width, e.g., 5 nt,
as shown in Supplemental Figure S12.

Analysis of ∼5000 prokaryotic genomes with GeneMarkS-2

Upon generating gene predictions for ∼5000 representative NCBI
genomes (see above), GeneMarkS-2 made an assignment of each
genome into one of the five groups/categories, A–D andX.We pre-
sented the species assigned to each category in Supplemental Table
S4, A–X, with names listed along the branches of five trees that fol-
low the taxonomic order. Not surprisingly, the species from the
same clades tend to belong to the same category. The distribution
of the five categories at the top three tax-
onomical levels is shown in Figure 4.

The largest, group A, includes 2935
bacteria and 39 archaea (Supplemental
Table S4A). In the species of category A,
gene expression occurs predominantly
viamRNAs inwhich 5′ UTRs carry detect-
able RBS motifs with the Shine-Dalgarno
consensus. Among the category A bacte-
ria, 61% were Gram-negative and 39%
were Gram-positive. Still, these Gram-
positive species in group A comprised
more than half, 57%, of Gram-positive
bacteria in the set of ∼5000 species.
Furthermore, it is only Gram-positive
Actinobacteria that rarely belong to group
A (78outof 859, 9.1%) andmostly appear
in group C; 96% of all the other Gram-
positive bacteria belong to group A.

The group/category B assignments weremade for 495 bacteria
and no archaea (Supplemental Table S4B). The characteristic fea-
ture of this category is non-SD type RBS motif. In genomes of
groupB,weobserved the presence of the same typemotif in the up-
stream sequences of all the genes, both initial and internal genes in
operons; however, themotif did not have the Shine-Dalgarno con-
sensus. Since this motif is present at a short distance from the
translation start in the leadered mRNAs, it cannot be a promoter.
Species of group B are frequent in the FCB group of bacteria (409
out of 455, 89.9%), but rare in Terrabacteria (1.7%) and Proteobacte-
ria (2.0%).

Group C (1028 out of 4769 bacteria) consists of bacterial spe-
cies predicted to frequently have the presence of leaderless mRNAs
(Supplemental Table S4C). Species of group C are frequent in
Actinobacteria (773 from 859, 90.0%) and Deinococcus-Thermus
(37 out of 38, 97.4%), but rare in Proteobacteria (104 out of 1854,

A D

B E

C F

Figure 3. Motif logos and spacer length distributions for genomes ofM. tuberculosis (GroupC) andH. salinarum (GroupD). InM. tuberculosis, the ‘mixed’
motif found by GeneMarkS has no preferred localization (panel A) in the upstream regions of the first genes in operons. To the contrary, the motif found by
GeneMarkS-2 has a clear localization at −10 distance from gene starts, the distance typical for bacterial TATA box and leaderless transcription (B). In up-
stream regions of internal genes in operons, GeneMarkS-2 built the RBS model and the spacer length distribution (C ). For H. salinarum, comparison of
GeneMarkS-2 outcomes (E,F) with ones by GeneMarkS (D) shows similar improvements.

Figure 4. Color-coded scheme of the distribution of groups A–D and X among ∼5000 representative
genomes. The diagram shows the top three levels of the taxonomy trees of both archaea and bacteria.

More accurate gene prediction in prokaryotes

Genome Research 1085
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.230615.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.230615.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.230615.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.230615.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.230615.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.230615.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.230615.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.230615.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.230615.117/-/DC1


5.6%) and Firmicutes (36 out of 1064, 3.4%). A particularly high fre-
quency of category C species was observed in Streptomycetales (129
out of 129, 100%) and in Corynebacteriales (197 out of 202, 97.5%)
including Mycobacteriaceae (56 out of 57, 98.2%).

Next is group D that includes archaeal species with preva-
lence of leaderless mRNAs. A promoter box-like motif was derived
in genomes of this category for leaderless FGIO, while for the re-
maining genes an RBSmotif was determined. From the 238 archae-
al genomes in our data set, 199 were assigned to group D. In
particular, some taxa hadmost (or all) of their members belonging
to this group, such as Halobacteria (74 out of 74 species, 100%),
Methanomicrobia (40 out of 42, 95%), Thermococci (21 out of 21,
100%), Thermoplasmata (11 out of 11, 100%), Archeoglobi (7 out
of 7, 100%), Thaumarchaeota (11 out of 11, 100%), and Crenarch-
aeota (23 out of 35, 65%) (see Supplemental Table S4D). Leaderless
transcription is the characteristic feature of group D genomes. We
have inferred, however, that group A is home for a significant frac-
tion of the taxon Crenarchaea, where P. aerophilum belongs. Thus,
many members of Crenarchaea should have a low percentage of
leaderless transcripts.

Finally, 311 bacterial species did not fit any of the above four
groups (A throughD) andwere included into groupX (Supplemen-
tal Table S4X), characterized by the (seeming) absence of pro-
nounced regulatory signals upstream of most genes. Still, the
weakness of the regulatory signal has its own commonality. Spe-
cies of this group are relatively frequent in Cyanobacteria (90 out
of 127, 70.9%) and in Burkholderiales (63 out of 166, 37.9%).

The summary list of the distribution of the ∼5000 species
among groups A–D and X is given in Table 5.

Discussion

Gene finding accuracy evaluation

We demonstrated in several tests that, on average, GeneMarkS-2 is
a more accurate tool among the current frequently used gene find-
ers. Particularly, GeneMarkS-2 made fewer false negative and false
positive errors in predicting genes validated by mass spectrometry
and COG annotation (Table 2). Also, GeneMarkS-2 made the least
numbers of false positive predictions in simulated noncoding se-
quences (Table 3B).

The array of atypical models employed in GeneMarkS-2 im-
proved the prediction of horizontally transferred (atypical) genes.
In our observations, the deviation of GC composition of atypical
genes from the genome average could be as large as 16% (e.g., the
798-nt-long E. coli gene b0546 characterized as DLP12 prophage,
with GC content 36% compared to the 52% GC content of the
bulkofE. coli genes). TheGCcontent of atypical genes is frequently

lower than theGC content of typical ones (Supplemental Fig. S13).
The atypical genes with large GC content deviations are expected
to appear more frequently in high GC genomes given the larger
space for downward variation. The atypical genes may constitute
a significant fraction of the whole gene complement (e.g., about
15% of genes in the E. coli genome [Borodovsky et al. 1995]). In
our analysis of the ∼5000 genomes, we found the distributions of
the fraction of predicted atypical genes in archaea and bacteria
are rather similar, with an averages close to 8%–9% (Fig. 5).

A comparison of the sets of COG-annotated genes missed by
the three gene finders shows that genes predicted by atypical mod-
els of GeneMarkS-2 constituted 30% of 780 COG genes missed by
Prodigal and 42% from 1605 COG genes missed by Glimmer3
(Supplemental Fig. S14). Both Prodigal and Glimmer3 employ a
singlemodel of protein-coding regions.We argue that themore ac-
curate prediction of atypical genes requires the use of multiple
models.

GeneMarkS-2 is able to characterize atypical genes as bacterial
or archaeal given that the atypical models are divided into distinct
bacterial and archaeal types (Zhu et al. 2010). The insights into the
possible origin of likely horizontally transferred atypical genes
could be particularly useful for thermophilic bacteria and meso-
philic archaea.

GeneMarkS-2 made the least number of errors in gene-start
predictions, Prodigal being the second-best (Table 4). Notably,
Prodigal performed better on the E. coli set. However, this very
set was used in the supervised training of Prodigal’s gene-start pre-
dictionmodel (Hyatt et al. 2010). As expected, GeneMarkS-2made
more accurate predictions for genomes with noncanonical RBS
sites (groupC) and archaeal genomeswith frequent leaderless tran-
scription (group D). The experimental study ofD. deserti identified
384 genes with verified translation starts, 262 of which had tran-
scription starts annotated with dRNA-seq (de Groot et al. 2014).
It was experimentally shown that 167 out of the 262 genes had
leaderless transcription.

Characterization of the patterns around gene starts: prediction

of the extent of leaderless transcription

Besides the gene finding per se, GeneMarkS-2, by virtue of predict-
ing various types of regulatory motifs, provides prediction of the
type of a transcript, leadered or leaderless. Screening of a large
number of genomes led to conclusion that leaderless transcription
is an ubiquitous feature of prokaryotes (Fig. 6).

In many archaea, 60%–80% of the operons are transcribed in
leaderless fashion. Still, in a smaller fraction of archaeal species,
this percentage is much lower, 25%–35%, which is close to what
was observed in bacteria assigned to group C (with 25%–50%).

We have compared predicted frequencies of leaderless tran-
scription in several species with the frequencies determined exper-
imentally (by dRNA-seq). The dRNA-seq method identifies
positions of transcription starts with high accuracy. For Deinococ-
cus deserti (de Groot et al. 2014), Haloferax volcanii (Babski et al.
2016), Sulfolobus solfataricus (Wurtzel et al. 2010), and M. tubercu-
losis (Cortes et al. 2013), the dRNA-seq experiments were conduct-
ed, and the authors determined the lengths of 5′ UTRs, the
sequences between the transcription start and translation start
provided in the public genome annotation. We selected the sub-
sets of genes where the positions of annotated gene starts matched
positions predicted by GeneMarkS-2. In archaea, D. deserti out of
1707 such genes, ∼62% were predicted leaderless by GeneMarkS-
2 and 62% were observed leaderless, i.e., the UTR length was

Table 5. Distribution of archaeal and bacterial genomes among
groups A–D and X

Archaeal
genomes

Bacterial
genomes

Total numberNumber % Number %

Group A 39 16.4 2935 61.5 2974
Group B 0 0.0 495 10.4 495
Group C NA NA 1028 21.6 1028
Group D 199 83.6 NA NA 199
Group X 0 0.0 311 6.5 311
Total 238 100 4769 100 5007
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<6 nt. In H. volcanii, the numbers were 86% and 82% (out of 1406
genes); in S. solfataricus: 78% and 76% (out of 859 genes); in bac-
teria, M. tuberculosis: 42% and 34% (out of 1310 genes). Thus,
the predictions were in quite good agreement for archaea and rea-
sonably good for the single bacteria.

We observed that species where the dRNA-seq experiments
found small numbers of leaderless transcripts (Sharma et al. 2010;
Nicolas et al. 2012; Dugar et al. 2013; Kroger et al. 2013; Pfeifer-
Sancar et al. 2013;Wiegand et al. 2013; Shao et al. 2014; Thomason
et al. 2015)wereall classifiedas groupA. Specieswitha largepropor-
tion of leaderless transcripts were all classified as group B (Cortes
et al. 2013; Pfeifer-Sancar et al. 2013; de Groot et al. 2014; Shell
et al. 2015) or group D (Koide et al. 2009; Wurtzel et al. 2010; Tof-
fano-Nioche et al. 2013; Jager et al. 2014; Babski et al. 2016).

Experiments with Synechocystis sp. demonstrated the preva-
lence of leadered transcription (Mitschke et al. 2011). However,
GeneMarkS-2 detected the RBS motif (with the SD consensus)
only in <15.5% of Synechocystis genes. Experiments have shown
that mutating A-rich sequences situated 15–45 nt upstream of
the gene starts (still within the long 5′ UTR) led to changes in
gene expression (Mutsuda and Sugiura 2006). Nonetheless, the
mechanism of the translation initiation of the majority of
Synechocystis sp. genes is unknown.

In E. coli, translation initiation of the three types—SD RBS-
based, non-SD RBS-based, and leaderless—is present (Shean and
Gottesman 1992; Barrick et al. 1994; Resch et al. 1996). Similar ob-
servations were made for other species, and it was shown that the
distribution of the number of genes controlled by each of the
mechanisms could vary significantly (Gualerzi and Pon 2015).
For the types rarely present in a given species, the GeneMarkS-2
training procedure is not able to make models due to the insuffi-
cient size of the training set.

Regulatory motifs in the species of group B

GeneMarkS-2 currently assigns 495 out of 4769 bacteria (and none
out of 238 archaea) to group B (with non-SD RBSs). Here, we take
Bacteroides ovatus as an example. Its 16S rRNA features the standard
‘anti-SD’ pattern; however, for only ∼3% of genes, the SD-match-
ing sequences appear upstream of the gene starts. GeneMarkS-2
identified the A-rich non-SD-type motif with consistent localiza-
tion at ∼9 nt from the TIS (Fig. 7). The A-rich sequences appeared
in upstream regions of themajority of B. ovatus genes. Sincemutat-
ing the A-rich regions reduced gene expression levels, it was pro-
posed that the A-rich sequences were an important part of the
translation mechanism (Wegmann et al. 2013).

GeneMarkS-2 assigned 90% of Bacteroidetes/Chlorobi species
to group B (408 of 450). While not much is known about the
non-SD translation mechanisms in bacteria, the clustering of the
species assigned to group Bwithin particular clades lends addition-
al credibility to the results (Supplemental Table S4D).

Particularly, in Bacteroides (including B. ovatus), 21 out of the
23 species were assigned to group B. In their genomes, GeneMarkS-
2 found motifs similar in sequence and localization patterns to
those of B. ovatus.

Also, 30 out of the 30 Flavobacterium species (a genus from
Bacteroidetes/Chlorobi) were assigned to group B. They possessed
6-nt-long motifs, similar in sequence and localization patterns to
B. ovatus (Supplemental Fig. S15 for Flavobacterium frigidarium).

Genomes of the species from these genera are closely related;
nonetheless, there are differences in the derived motifs. In partic-
ular, Bacteroides tends to have a few strongly conserved A nucleo-
tides close to the translation start, hence the peak in the spacer
length distribution at ∼3 nt distance from the start (Supplemental
Fig. S16A). In Flavobacterium, the ‘core’ motif with consensus
TAAAAA is more pronounced than in Bacteroides. Flavobacterium
is missing strongly conserved A nucleotides near the gene start.
Therefore, its ‘core’motif is situated at the 3′ end of the 15-nt win-
dow (Supplemental Fig. S16B) rather than at the 5′ end as in Bacter-
oides. The shift in the position of the ‘core’ motif leads to the
change in the spacer length distribution which now has a peak
at ∼7 nt. The consistency of this observation was tested for all 21
Bacteroides and 30 Flavobacteria. The 6-nt ‘core’ motif was not
easy to detect in Prevotella (a close relative of Bacteroides) when
the motif width was set to 6 nt. However, setting the motif width
to 15 nt led to the similar motif. Notably, unlike B. ovatus, other
group B species may have 16S rRNA with a mutated or truncated
tail (Lim et al. 2012).

In a recent publication (Nakagawa et al. 2017), species with
leaderless transcription and non-SD translation initiation were in-
cluded in the same class. Here, we make a distinction between
these cases. The leaderless transcription excludes a possibility of
RBSs appearing upstream of the first genes in operons (groups C
andD). On the other hand, the RBSs with a different sequence pat-
tern (non-SD) do appear in leadered transcripts (group B).
GeneMarkS-2 is able to identify species with non-SD RBSs.

Potential for further improvement

Currently, just a small number of prokaryotic genes may escape
detection by the ab initio tools, e.g., genes in which oligonucleo-
tide composition is significantly biased, very short genes, genes

Figure 6. Distributions of the percentage of leaderless transcripts
among all transcripts in bacterial Group C and archaeal Group D.

Figure 5. Distributions of the percentage of predicted atypical genes in
archaeal and bacterial genomes.
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containing programmed frameshifts (such as the prfB gene encod-
ing a translation initiation factor [Craigen and Caskey 1986], or
genes regulating some mobile elements [Sharma et al. 2011]).
Furthermore, pseudogenes, especially expressed pseudogenes,
could mislead gene-finding tools into generating predictions that
are difficult to filter out as false positives.

An extension of GeneMarkS (known as GeneMarkS+) inte-
grates external evidence, such as similarity to cross-species protein
at a protein level or predicted RNA genes and CRISPR sequences,
into ab initio gene prediction. In the NCBI genome annotation
pipeline, GeneMarkS+ integrates several types of evidence into
prokaryotic genome annotation (Tatusova et al. 2016). Similar ex-
tension is planned for GeneMarkS-2.

Software and data availability

The following websites can be used (1) to access the GeneMarkS-2
software: http://topaz.gatech.edu/GeneMark/genemarks2.cgi, and
(2) to access data used in the course of this research project: http://
topaz.gatech.edu/GeneMark/GMS2/. Detailed descriptions of the
data sets used in this paper are available either in the Supplemen-
tal Materials or at http://topaz.gatech.edu/GeneMark/GMS2/.
Running time of the current version of GeneMarkS-2 is ∼3 min
on a genome of the size of E. coli.
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