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Abstract

Liver cancer is a serious disease. It is ranked as the cancer with the second highest number of cancer-related deaths
worldwide. Hepatocellular carcinoma (HCC), which arises from transformed hepatocytes, is the major subtype of liver
cancer. It accounts for 85% of total liver-cancer cases. An important aspect of HCC that has been actively studied is its
metabolism. With the liver as the primary site of numerous metabolic processes in the body, it has been shown that the
metabolism of HCC cells is highly dysregulated compared to that of normal hepatocytes. It is therefore crucial to understand
the metabolic alterations caused by HCC and the underlying mechanisms for these alterations. This deeper understanding
will allow diagnostic and therapeutic advancements in the treatment of HCC. In this review, we will summarize the current
literature in HCC metabolic alterations, induced vulnerabilities, and potential therapeutic interventions.
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Introduction

The liver is the site of major metabolic processes in the body, in-
cluding detoxification of blood, production of bile for the break-
down of fats in the digestive track, the storage of glucose in the
form of glycogen, and the synthesis of amino-acid precursors
that make up proteins. Hepatocytes, which make up �85% of
the total mass of the liver [1], are responsible for the majority of
these metabolic processes. It is perhaps unsurprising that hepa-
tocellular carcinoma (HCC)—the liver-cancer subtype that origi-
nates from the hepatocytes—results in the dysregulation of a
large number of metabolic processes to fuel tumorigenesis [2–4].

Liver cancer is the second leading cause of cancer deaths world-
wide [5]. HCC accounts for 85% of total liver-cancer cases and
risk factors include chronic hepatitis B virus (HBV) and hepatitis
C virus (HCV) infection [6], alcohol intake, diabetes, obesity [7,
8], and non-alcoholic fatty liver disease (NAFLD) [9]. While met-
abolic dysregulation has also been characterized in other pri-
mary liver-cancer subtypes such as cholangiocarcinoma and
angiosarcoma [10], this review will primarily focus on metabolic
alterations and induced vulnerabilities caused by these altera-
tions in HCC.

In HCC, metabolic processes ranging from glucose metabo-
lism and energy generation in the form of adenosine
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triphosphate (ATP) to amino-acid and fatty-acid metabolism are
significantly altered in the disease. These alterations serve to
augment the ability of the tumor to thrive, proliferate, and me-
tastasis. However, the increased dependency of the tumor on
some of these pathways can lead to metabolic vulnerabilities,
which can be exploited by inhibitors of these pathways to thera-
peutically target HCC. Thus far, a significant number of meta-
bolic pathways have been examined in detail in HCC to better
understand their roles in tumorigenesis. However, there remain
some processes, such as nucleotide metabolism, for which
some preliminary evidence suggests a role in HCC, but detailed
tumorigenic mechanisms have yet to be elucidated.

Glycolysis and glycogen metabolism

The liver plays a major role in glucose metabolism. It metabo-
lizes glucose through glycolysis for energy but can also store ex-
cess glucose in the form of glycogen. The liver releases glucose
to the rest of the body through the breakdown of glycogen
stores (glycogenolysis) and generation of glucose from other
proteins and lipids (gluconeogenesis) [11]. The dysregulation of
and dependency on glucose metabolism is one of the earliest
metabolic alterations described in cancer. Otto Warburg initially
proposed that cancer cells favor glycolysis as a quick source of
energy, in the form of ATP, for rapid growth and proliferation
over the more energy-efficient oxidative phosphorylation path-
way [12]. Glycolysis enzymes are primarily upregulated in HCC,
while the glycogen metabolism enzyme phosphoglucomutase 1
(PGM1) is downregulated, suggesting a preference for glucose to
undergo glycolysis instead of being stored as glycogen [2–4]
(Figure 1).

Before glucose can be metabolized, it has to enter cells.
Glucose transporters GLUT1 [13, 14] and GLUT2 [15, 16],
which are critical for glucose uptake into cells, show increased
levels in HCC (Figure 1). This upregulation might be related to
oncogene MYC expression, since GLUT1 is transcriptionally
upregulated in mouse models where Myc is overexpressed in
the liver [17].

Once glucose is transported into the cytosol, hexokinase
(HK) enzymes convert it into glucose-6-phosphate (G6P) as the
first step in glycolysis (Figure 1). G6P levels are elevated in HCC
compared to those in normal liver [18]. This might be due
to hexokinase HK2 isoform upregulation in HCC, which
contributes to an increased rate of G6P conversion from glucose
[19–21]. Silencing HK2 in HCC cells suppresses their cell growth
and proliferation in culture and in vivo [21]. The lack of HK2 ac-
tivity upregulates oxidative phosphorylation, sensitizing HCC
cells to the oxidative phosphorylation inhibitor metformin [21].
The synergistic effects of HK2 ablation and metformin in
HCC cells suggest that the development of clinical hexokinase
inhibitors in combination with oxidative phosphorylation inhib-
itors could potentially target these metabolic vulnerabilities
successfully.

The next significantly altered glycolytic step in HCC is
the conversion of phosphoenolpyruvate to pyruvate by the
pyruvate kinase (PK) enzyme (Figure 1). The PKLR and PKM
genes code for four PK splice isoforms: PKL, PKR, PKM1, and
PKM2 [22–24]. PKL is expressed in normal liver [23]. PKM2, how-
ever, is upregulated in HCC, while PKM1 and PKL levels remain
unchanged, and PKR is undetectable [25]. In mouse models, Myc
induction lowers PKL levels [26]. High PKM2 expression corre-
lates with poor prognosis in HCC patients [27, 28]. PKM2 also
shows higher enzymatic activity in HCC cells compared to that
in adjacent normal tissue [28]. On the contrary, murine PKM2

knockouts promote HCC [29], suggesting a more complicated
mechanism for how PKM2 influences HCC tumorigenesis. Myc
mouse tumors reflect an increase in PKM1/2 levels [26]. The in-
terplay among PK isoforms in HCC remains unclear and should
be further investigated.

In anaerobic respiration, pyruvate is converted into lactate
instead of acetyl-coenzyme A (acetyl-CoA) that enters the tri-
carboxylic acid (TCA) cycle (Figure 1). This conversion is cata-
lysed by lactate dehydrogenase (LDH). High levels of LDH
observed in HCC patients simultaneously raises lactate levels
[30] and is a risk factor for HCC recurrence [31]. Sorafenib-
treated patients with high serum levels of LDH showed de-
creased progression-free survival [32]. Since the LDH A subunit
(LDHA) is upregulated in a range of different cancers and LDHA-
targeting therapeutics are available [33], it is important to study
this gene’s impact on HCC in greater detail.

A number of factors have been shown to influence glycolysis
and gluconeogenesis through the upstream gene regulation of
metabolic enzymes. Transmembrane glycoprotein CD147 has
been shown to upregulate glycolysis through p53-dependent
upregulation of GLUT1 and PFKL, the liver-specific isoform of
phosphofructokinase [34]. CD147 also downregulates mitochon-
drial biogenesis genes such as peroxisome proliferator-
activated receptor gamma co-activator 1-alpha (PGC1a) and
transcription factor A, mitochondrial, suggesting a reverse ef-
fect on mitochondrial energetic processes such as the TCA cycle
and oxidative phosphorylation [34]. HCV infection in primary
human hepatocytes upregulates glycolysis through the activa-
tion of transcription factor hepatocyte nuclear factor 4-alpha
(HNF4a), which in turn transcriptionally upregulates glycolytic
genes such as PKLR [35]. Interestingly, HCV infection in a HCC
cell line has been shown to upregulate gluconeogenesis through
the regulation of gluconeogenic transcription factors such as
FoxO1 by histone deacetylase 9 (HDAC9) [36]. The upstream reg-
ulatory mechanisms of glucose metabolism gene regulation in
HCC are not as well characterized and require greater
understanding.

In terms of studies on drugging glucose metabolism to treat
HCC, there have been some encouraging results. The adminis-
tration of the diabetic drug metformin, which lowers the
amount of sugar produced in the liver and sensitizes muscle
cells to insulin, has been shown to decrease HCC risk [37] and is
associated with reduced recurrence in increased overall HCC
patient survival post hepatic resection [38]. In addition, a novel
compound combining metformin and rosiglitazone, the latter a
compound that blocks peroxisome proliferator-activated recep-
tors in fat cells to make them more responsive to insulin, has
been shown to suppress HCC [39]. With further research efforts,
there is potential for the development of drugs targeting glucose
metabolism in HCC.

TCA cycle

The TCA cycle utilizes pyruvate from glycolysis to generate
reduced nicotinamide adenine dinucleotide (NADH) and
reduced flavin adenine dinucleotide (FADH2)—cofactors
that channel electrons to oxidative phosphorylation for
downstream energy generation (Figure 1). TCA metabolic
intermediates such as succinate, fumarate, and malate are
reduced in HCC [18].

In addition, TCA enzyme expression levels are also altered
in HCC [2–4]. Pyruvate dehydrogenase (PDH) converts pyruvate
from glycolysis into acetyl-CoA, which enters the TCA cycle
(Figure 1). Downregulation of pyruvate dehydrogenase kinase 4
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(PDK4), which inhibits PDH by phosphorylation, is associated
with poor prognosis in HCC [40]. Interestingly, the knockout of
PDK4 did not affect oxidative phosphorylation and glycolysis,
but instead upregulated lipogenesis [40]. Succinate dehydroge-
nase (SDH), which converts succinate into fumarate, and fuma-
rate hydratase (FH), which converts fumarate into malate
(Figure 1), potentially function as tumor suppressors, since they
tend to gain loss-of-function mutations [41, 42]. As a result, the
build-up of succinate and fumarate stabilizes transcription

factor hypoxia-inducible factor 1-alpha (HIF-1a), transcription-
ally activating glycolysis and angiogenesis [42]. The SDH B iso-
form is decreased in HCC and this change is associated with
tumorigenic phenotypes [43]. Mutations in isocitrate dehydro-
genase (IDH), the enzyme that converts isocitrate into a-keto-
glutarate (Figure 1), are rampant in multiple cancer types but
are rarely observed (�2%) in HCC [10]. The upstream regulatory
mechanisms that alter TCA cycle enzyme expression and activ-
ity in HCC have yet to be thoroughly explored.

Figure 1. Schematic of glycolysis, gluconeogenesis, glycogen metabolism, the hexosamine pathway, oxidative phosphorylation, and the TCA cycle. Glycolysis and its

opposing pathway, gluconeogenesis, serve as a central hub for the utilization of glucose in multiple pathways such as glycogen metabolism, the hexosamine pathway,

the TCA cycle, and downstream oxidative phosphorylation. Tumors require energy to grow and proliferate, and the glycolysis–TCA cycle–oxidative phosphorylation

axis provides significant amounts of cellular energy in the form of ATP. These pathways feature significantly in HCC and their dysregulation provides insight into tu-

morigenic mechanisms that can be potentially targeted with precision therapeutics. Metabolite nomenclature: ADP, adenosine diphosphate; ATP, adenosine triphos-

phate; CoA, coenzyme A; FAD, flavin adenine dinucleotide; FADH2, reduced flavin adenine dinucleotide; NAD, nicotinamide adenine dinucleotide. Enzyme

nomenclature: I-IV, mitochondrial complexes I-IV; ACO1/2, aconitase 1/2; AGC1/2, aspartate/glutamate carrier 1/2; ALDOA: aldolase A, fructose bisphosphate; CS, cit-

rate synthase; Cyt c, cytochrome c; ENO, enolase; F0, F0 subunit of ATP synthase (mitochondrial complex V); F1, F1 subunit of ATP synthase (mitochondrial complex V);

FBP1, fructose bisphosphatase 1; FH, fumarate hydratase; G6PC, glucose-6-phosphatase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GFAT1, glutamine: fruc-

tose-6-phosphate transaminase 1; GLUT1/2, glucose transporter type 1/2; GPI, glucose-6-phosphate isomerase; HK, hexokinase; IDH, isocitrate dehydrogenase; LDH,

lactate dehydrogenase; MDH, malate dehydrogenase; MPC1/2, mitochondrial pyruvate carrier 1/2; OGDH, oxoglutarate dehydrogenase; OGT, O-linked N-acetylglucos-

amine (O-GlcNAc) transferase; PC, pyruvate carboxylase; PCK1, phosphoenolpyruvate carboxykinase 1; PDH, pyruvate dehydrogenase; PDK4, pyruvate dehydrogenase

kinase 4; PFKL, phosphofructokinase liver type; PGAM1, phosphoglycerate mutase 1; PGM1, phosphoglucomutase 1; PGK1, phosphoglycerate kinase 1; Pi, inorganic

phosphate; PK, pyruvate kinase; Q, coenzyme Q; SCS, succinyl coenzyme A synthetase; SDH, succinate dehydrogenase; TPI1, triosephosphate isomerase.
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Oxidative phosphorylation

Oxidative phosphorylation is the major energy-producing meta-
bolic process in the cell, generating large amounts of ATP from
NADH and FADH2 produced in the TCA cycle (Figure 1).
Electrons from the oxidation of NADH and FADH2 are trans-
ferred through membrane-bound complexes in the mitochon-
drial inner membrane, with the energy derived utilized to
activate proton pumps. These pumps create a potential gradient
across the mitochondrial inner membrane by transporting posi-
tively charged hydrogen ions from the mitochondrial matrix
into the intermembrane space. Oxidative phosphorylation is
therefore also known as the electron-transport chain.

Impaired oxidative phosphorylation is associated with
increased tumorigenicity in HCC [44, 45]. HCV infection
downregulates oxidative phosphorylation-associated protein
subunit expression, reminiscent of the Warburg effect [46].
Mitochondrial microRNAs have also been shown to downregu-
late oxidative phosphorylation gene expression in HCC, thereby
promoting glucose metabolism [47]. Rab3A, a Ras-like GTPase
important in membrane trafficking, can also dysregulate oxida-
tive phosphorylation in HCC [48]. Rab3A is upregulated at both
the transcript and protein levels in HCC tumor tissue [48].
Unlike in other cancers, where it acts as an oncogene, Rab3A
inhibits HCC metastasis by enhancing oxidative phosphoryla-
tion, resulting in migration and invasion [48]. However, modifi-
cation of Rab3a with N-acetylglucosamine (O-GlcNAc)
attenuates these effects [48]. Since HCC tumors are commonly
hyper O-GlcNAcylated, the tumor-suppressive function of
Rab3A is likely diminished in HCC [48].

Upstream signaling and transcription factors have also been
linked to modulating oxidative phosphorylation in HCC.
Cytokine transforming growth factor beta (TGFb), which induces
migration and invasion in HCC, reduces oxidative phosphoryla-
tion with no alteration in glycolysis [45]. The stem-cell homeo-
box transcription factor NANOG is upregulated in alcohol and
obesity-HCV-induced mouse models of HCC and in human
tumor-initiating cells [49, 50]. NANOG in HCC tumor-initiating
cells suppresses oxidative phosphorylation to support self-
renewal and drug resistance [50]. Interestingly, as opposed to
NANOG, stem-cell transcription factor spalt like transcription
factor 4 (SALL4), which is upregulated in a subset of HCC,
promotes oxidative phosphorylation through an increase in mi-
tochondrial gene expression [51]. Mitochondrial oxidative phos-
phorylation inhibitors were shown to be particularly effective in
suppressing SALL4-expressing HCC tumorigenesis in culture
and in vivo [51]. The effectiveness of these mitochondrial inhibi-
tors and aforementioned metformin, which both modulates
glucose metabolism and inhibits oxidative phosphorylation,
suggests the therapeutic potential of targeting oxidative phos-
phorylation in HCC patients.

Hexosamine pathway

The hexosamine biosynthetic pathway (HBP) is required for the
synthesis of uridine diphosphate N-acetylglucosamine (UDP-
GlcNAc) for post-translational modification of proteins on their
serine or threonine residues [52, 53] (Figure 1). This O-GlcNAc
modification of proteins, catalysed by the O-GlcNAc transferase
(OGT) enzyme, is a response to nutrient sensing and aberrant O-
GlcNAcylation has been implicated in a number of diseases
such as diabetes and cancer [54]. A high expression of gluta-
mine: fructose-6-phosphate amidotransferase (GFAT1), the
rate-limiting enzyme that converts fructose-6-phosphate into

glucosamine-6-phosphate (Figure 1), correlates with poor HCC
patient prognosis [55]. GFAT1 overexpression in HCC cell lines
increases the tumorigenic phenotypes of proliferation and mi-
gration in culture [55]. Expression levels of the OGT enzyme
are also increased in tumor tissue compared to those in non-
cancerous controls [56]. Global O-GlcNAcylation levels are
significantly increased in HCC tumors compared to those in
healthy liver tissues, as well as in tumor tissues of HCC patients
with recurring disease post liver transplantation [57].

In terms of mechanism, both OGT and the O-GlcNAc modifi-
cation have been shown to influence the functionalities of vari-
ous oncogenic proteins and processes. OGT upregulation has
also been shown to regulate lipid metabolism and activate on-
cogenic pathways through increased oncogenic protein levels in
HCC [58]. Increased O-GlcNAcylation leads to HCC tumorigene-
sis and metastasis through modification of oncogenic transcrip-
tion factors such as c-Jun [59, 60]. O-GlcNAcylation of the
receptor for activated C kinase 1 (RACK1) stabilizes it so that it
can interact with the protein kinase C bII isoform, activating the
kinase to phosphorylate eukaryotic translation initiation factor
4E (eIF4E) to translate oncogenes [61]. As mentioned in the oxi-
dative phosphorylation section, tumor suppressor Rab3A is
inactivated when modified with O-GlcNAc in HCC [48]. Both
RACK1 and Rab3A O-GlcNAcylation promote HCC progression
and metastasis [48, 61]. Interestingly, eIF4E itself can be
O-GlcNAcylated, protecting it from proteasomal degradation,
and subsequently promoting HCC cell-line proliferation and
tumor-sphere formation [56]. More detailed studies of the effect
of the HBP on the proteome in HCC could yield greater mecha-
nistic and therapeutic insight into the disease.

Pentose-phosphate pathway

The pentose-phosphate pathway (PPP) generates the ribose-5-
phosphate backbone required for the synthesis of nucleotides,
the precursors of DNA and RNA (Figure 2). The PPP also gener-
ates the cofactor-reduced nicotinamide adenine dinucleotide
phosphate (NADPH) for lipid biosynthesis, maintaining
glutathione and thioredoxin in reduced states, and for its anti-
oxidant properties [62] (Figure 2). Nearly all PPP enzymes are
transcriptionally upregulated [2–4], while PPP metabolites
ribulose-5-phosphate (Ru5P) and ribose-5-phosphate (R5P) are
downregulated [10, 18] in HCC. This suggests that the PPP is
highly activated in HCC as metabolites are rapidly used up by
the larger number of enzyme active sites available, possibly to
feed precursor molecule phosphoribosyl pyrophosphate (PRPP)
into nucleotide biosynthesis (Figure 2).

The conversion of G6P to 6-phosphogluconolactone (6PGL),
catalysed by glucose-6-phosphate dehydrogenase (G6PD), is
the first rate-limiting step of the PPP (Figure 2). Increased G6PD
expression is associated with migration and invasion [63, 64],
chemoresistance [65], metastasis, higher tumor grade, and de-
creased survival [66] in HCC. O-GlcNAcylation of G6PD induces
tumorigenic activity, suggesting a synergistic interaction
between the HBP and PPP in HCC [67]. HBV protein X (HBx)
stimulates G6PD expression through oxidative stress transcrip-
tion factor nuclear factor erythroid 2-related factor 2 (Nrf2) acti-
vation, implying a role for the PPP in HBV-induced HCC [66, 68].

Interestingly, Nrf2 overexpression itself has been shown to
drive HCC [69]. Nrf2 also activates PPP enzyme transketolase
(TKT), which converts glyceraldehyde-3-phosphate (G3P) and
sedoheptulose-7-phosphate (S7P) into xylulose-5-phosphate
(Xu5P) and R5P, in non-oxidative PPP to promote HCC by
increasing antioxidants and purine biosynthesis, protecting
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Figure 2. Schematic of glutamine synthesis, nucleotide biosynthesis, and the pentose-phosphate pathway. Nucleotide metabolism and its supporting processes such

as the pentose-phosphate pathways and glutamine synthesis are significantly altered in HCC. Nucleotides are important precursors for DNA and RNA, as well as the

energy currency ATP, which are needed for cell growth and proliferation. The exact mechanisms by which these pathways promote HCC tumorigenesis remain unclear

however. Metabolite nomenclature: 6PG, 6-phosphogluconate; 6PGL, 6-phosphogluconolactone; ADP, adenosine diphosphate; AICAR, 5-aminoimidazole-4-carboxa-

mide ribonucleotide; dADP, deoxyadenosine diphosphate; dGDP, deoxyguanosine diphosphate; dTMP, deoxythymidine monophosphate; dUMP, deoxyuridine mono-

phosphate; E4P, erythrose-4-phosphate; F6P, fructose-6-phosphate; FAICAR, 5-formamidoimidazole-4-carboxamide ribonucleotide; G3P, glyceraldehyde-3-phosphate;

G6P, glucose-6-phosphate; GDP, guanosine diphosphate; NADPH, reduced nicotinamide adenine dinucleotide phosphate; R5P, ribose-5-phosphate; Ru5P, ribulose-5-

phospahte; S7P, sedoheptulose-7-phosphate; SAICAR, succinyl 5-aminoimidazole-4-carboxamide ribonucleotide; Xu5P, xylulose-5-phospahte. Enzyme nomenclature:

5NT, 5’-nucleotidase; 6PGD, 6-phosphogluconate dehydrogenase; 6PGL, 6-phosphogluconolactonase; ADSL, adenylosuccinate lyase; ADSS, adenylosuccinate synthe-

tase; AK2, adenylate kinase 2; ATIC, 5-aminoimidazole-4-carboxamiade ribonucleotide formyltransferase/IMP cyclohydrolase; CAD, carbamoyl phosphate synthetase 2

aspartate transcarbamylase, and dihydroorotase; CMPK1, cytidine/uridine monophosphate kinase 1; CTPS1/2, cytidine triphosphate synthase 1/2; DHODH, dihydrooro-

tate dehydrogenase; DTYML, deoxythymidylate kinase; G6PD, glucose-6-phosphate dehydrogenase; GART, glycinamide ribonucleotide synthetase, aminoimidazole ri-

bonucleotide synthetase, and glycinamide ribonucleotide transformylase; GLS1, glutaminase 1; GMPS, guanine monophosphate synthase; GS, glutamine synthetase;

GUK1, guanylate kinase 1; IMPDH, inosine monophosphate dehydrogenase; NDPK, nucleoside diphosphate kinase; PAICS, phosphoribosylaminoimidazole carboxylase

and phosphoribosylaminoimidazole succinocarboxamide synthase; PFAS, phosphoribosylformylglycinamide synthase; PNP, purine nucleoside phosphorylase; PPAT,

phosphoribosyl pyrophosphate amidotransferase; PRPS1, phosphoribosyl pyrophosphate synthetase 1; RPE, ribulose-5-phosphate-3-epimerase; RPI, ribose-5-phos-

phate isomerase; RRM1/2, ribonucleoside diphosphate reductase 1/2; TALDO1, transaldolase 1; TK1, thymidine kinase 1; TKT, transketolase; TYMP, thymidine phos-

phorylase; TYMS, thymidylate synthase; UCK1/2, uridine-cytidine kinase 1/2; UMPS, uridine monophosphate synthetase; UPP1, uridine phosphorylase 1.
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cancer cells from reactive oxygen species toxicity [70]. In HCV-
positive HCC, cell death and survival protein p62 phosphoryla-
tion prevents adaptor protein Kelch-like ECH-associated protein
1 (KEAP1) from recruiting the E3 ubiquitin ligase complex to
ubiquitinate Nrf2, allowing active Nrf2 to activate the PPP [71]. A
chemical inhibitor of KEAP1 that blocks its interaction with
phosphorylated p62 facilitates Nrf2 degradation to suppress
tumor-cell proliferation and increase sorafenib sensitivity in
HCC cell lines [71]. The mechanisms by which the PPP promotes
HCC have not been fully characterized and the fact that the PPP
is crucial for NADPH generation and nucleotide biosynthesis
suggests critical effects on downstream processes in tumorigen-
esis that should be examined in more detail.

Nucleotide metabolism

Nucleotides form the building blocks of DNA and RNA mole-
cules, as well as being used as the major energy currency in the
cell in terms of ATP. Nucleotide biosynthesis requires R5P gen-
erated by the PPP and amino acids (Figure 2). Nucleotide metab-
olism genes involved in both purine and pyrimidine
metabolism are transcriptionally upregulated in HCC [2–4, 72].
The levels of a number of nucleotides and nitrogenous bases
are also altered [10, 18]. As mentioned previously, the PPP is also
upregulated to supply metabolite PRPP that makes up the back-
bone of nucleotides. This suggests a greater demand for nucleo-
tides by HCC, although the reasons for this are not well
understood.

The carbamoyl phosphate synthetase 2, aspartate transcar-
bamylase, and dihydroorotase (CAD) gene, which codes for a
multi-domain trifunctional enzyme that catalyses the first
three steps of pyrimidine biosynthesis, is upregulated in HCC
[72, 73]. The upregulation of a number of rate-limiting enzymes
in pyrimidine biosynthesis such as deoxythymidylate kinase
(DTYMK), thymidylate synthase (TYMS), and thymidine kinase
1 (TK1) in HCC is associated with cancer stemness and poor
prognosis [3, 4, 74]. These three enzymes form a continuous cas-
cade of reactions, in which DTYMK converts deoxyuridine di-
phosphate (dUDP) into deoxyuridine monophosphate (dUMP),
TYMS converts dUMP into deoxythymidine monophosphate
(dTMP), and TK1 converts dTMP into thymidine (Figure 2).
Nearly all purine biosynthesis enzymes are upregulated in HCC
[2–4]. Limited mechanistic insight is currently available on how
nucleotide biosynthesis contributes to HCC. However, inhibiting
nucleotide biosynthesis has shown therapeutic potential in
acute myeloid leukemia and melanoma, suggesting that it is
prudent to study this process in greater detail in HCC [75–77].

Amino-acid metabolism

Amino acids are the building blocks of proteins and other im-
portant molecules such as heme, nucleotides, and neurotrans-
mitters. A number of genes involved in amino-acid metabolism
are significantly altered in HCC [2–4]. The amino acids gluta-
mine and aspartate are upregulated while glycine is downregu-
lated in HCC [10, 18].

Glutamine is a precursor for nucleotide biosynthesis. It is
also used to replenish a-ketoglutarate, a key source of gluta-
mate and glutamine for protein synthesis [78]. Lower plasma
levels of glutamine have been observed in HCC patients due to
increased uptake by tumors [18, 79]. The increased uptake can
be explained by the upregulation of glutamine transporter
ASCT2 in HCC cells [14]. Glutamine synthetase (GS) is the bio-
synthetic enzyme that converts glutamate into glutamine

(Figure 2). GS is overexpressed and is a diagnostic marker for
HCC [80]. HCC tumors in which Wnt signaling transducer b-cat-
enin (CTNNB1) is mutated demonstrate higher GS expression,
resulting in higher intracellular glutamine levels that activate
the mammalian target of rapamycin complex 1 (mTORC1), a
complex that activates protein translation for cell growth and
proliferation [81]. This activation induces a vulnerability that
can be exploited by mTORC1 inhibitors to target HCC [81]. In ad-
dition, a combination of asparaginase and GS inhibitor is able to
hinder the growth of CTNNB1-mutated HCC cell-line xenografts
[82]. TGFb expression in HCC increases the levels of glutaminase
1 (GLS1), the enzyme that converts glutamine into glutamate
(Figure 2), and upregulates the SLC7A5 glutamine transporter, in
addition to its aforementioned effects on oxidative phosphory-
lation [45]. A possible reason for increased glutamate generation
is for the anaplerotic conversion of glutamate to a-ketoglutarate
to fuel the TCA cycle [45], although the significance of this is not
well understood.

The amino acid asparagine is essential for the formation of
glycoproteins, as it serves as a site for sugar-group linkage.
Asparagine synthetase (ASNS), which converts aspartate into
asparagine (Figure 3), is expressed to a low extent in more ma-
lignant HCC [83]. ASNS re-expression can suppress tumorigenic
phenotypes [83]. Low ASNS levels result in increased sensitivity
to L-asparaginase treatment, which depletes asparagine in the
cancer cells [83]. Asparaginase, as well as glutamine biosyn-
thetic enzyme GS inhibitors, has been shown to arrest prolifera-
tion and induce apoptosis in HCC [84].

Methionine is the amino acid coded for by the initiation co-
don during translation and is therefore the first amino acid of
polypeptides. Methionine metabolism occurs mainly in the
liver. It has been shown that the knockout of S-adenosylmethio-
nine synthase isoform type-1 (MAT1A), the enzyme that gener-
ates S-adenosylmethionine for the transfer of methyl groups in
the cell, in mice causes HCC to develop [85]. The role of a small
number of amino acids in HCC has been examined, with the
functions of the majority of human amino acids in HCC having
yet to be uncovered.

Urea cycle

The liver is the major organ in which the urea cycle takes place.
This process enables the body to excrete ammonia, generated
from the breakdown of proteins, in the form of urea (Figure 3).
Urea-cycle genes are predominantly decreased in HCC [2, 86]. In
addition, lower levels of urea-cycle metabolites citrulline, argi-
nine, and ornithine were observed in HCC patients compared to
healthy individuals, and a decrease in levels is correlated with a
later tumor stage [87]. Interestingly, urea-cycle metabolites are
upregulated in the SALL4-expressing subset of HCC, but the rea-
son for this remains unknown [51].

Urea-cycle rate-limiting enzyme carbamoyl phosphate syn-
thetase 1 (CPS1) [73] and argininosuccinate synthase 1 (ASS1)
[88] are hypermethylated in HCC, suggesting that they are epi-
genetically silenced. ASS1 downregulation is associated with
cisplatin resistance [88]. CPS1 converts ammonia into carba-
moyl phosphate, which enters the urea cycle, while ASS1 con-
verts citrulline into argininosuccinate (Figure 3). Interestingly,
arginine auxotrophy has been demonstrated in HCC as a result
of ASS1 downregulation. This vulnerability can be exploited
with PEGylated arginine deiminase treatment that depletes ar-
ginine levels by converting it into citrulline, starving HCC
tumors [89, 90]. PEGylated arginase I, a second arginine-
depleting recombinant enzyme, is also effective in targeting
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HCC [91]. However, Phase III clinical trials for arginine deimi-
nase showed that, although it is well tolerated, it did not signifi-
cantly increase overall survival [92]. More detailed mechanistic
studies can shed light on how this downregulation of the urea
cycle favors HCC tumorigenesis.

Lipid metabolism

The liver synthesizes, stores, and breaks down lipids. It is there-
fore unsurprising that lipid metabolism is dysregulated in HCC
to provide a steady source of lipids for membrane formation,
energy generation, and post-translational modification to sup-
port tumorigenesis [93]. In HCC, fatty-acid biosynthesis genes
such as fatty-acid synthase (FASN) and ATP citrate lyase (ACLY),
cholesterol biosynthesis gene 3-hydroxy-3-methylglutaryl-CoA
reductase (HMGCR), and adipogenesis transcriptional regulators
such as sterol regulatory element-binding protein 1 (SREBP1) are
upregulated [94]. FASN converts acetyl-CoA and malonyl-CoA
into palmitate, ACLY converts citrate into acetyl-CoA (Figure 3),
and HMGCR is a rate-limiting enzyme of the mevalonate path-
way that converts 3-hydroxy-3-methylglutaryl-CoA into meval-
onate for the generation of cholesterol and other isoprenoids.
AKT/mTORC growth and proliferation signaling have been dem-
onstrated to be responsible for these gene-expression changes
as well as post-transcriptional modifications that increase
lipogenesis to promote HCC [94]. Sphingolipids are also
upregulated in the serum of HCC patients [95]. Alterations in
the carnitine metabolism, which is essential for the transport of
fatty acids into the mitochondria for energy generation through
b-oxidation, are observed in chronic liver disease and HCC [96].
A high-fat and high-fructose diet in sedentary mice results in
HCC [97, 98].

Lipid-metabolism enzymes have been shown to play a role
in HCC. The acetyl-CoA carboxylase 1 (ACC1) and acetyl-CoA
carboxylase 2 (ACC2) enzymes convert acetyl-CoA into malonyl-
CoA, the major substrate for fatty-acid biosynthesis [99]
(Figure 3). The knockout of ACC in mice enhances tumorigenesis
in a diethylnitrosamine-induced-HCC model [100]. In addition,
phospho-mutants of ACC1 and ACC2 result in NAFLD and HCC
phenotypes in mice [101, 102]. Phosphorylation of ACC1 and
ACC2 by adenosine monophosphate-activated protein kinase
(AMPK) inhibits their enzyme activity [101]. FASN is upregulated
in chemically and hormonally induced-HCC rat models [103].
However, overexpressing FASN in mouse models is not suffi-
cient to induce tumorigenesis [104]. Mice with a knockout of
acyl-CoA oxidase (AOX), which catalyses the first rate-
determining step in peroxisomal fatty-acid b-oxidation, develop
HCC [105]. This is due to prolonged activation of the transcrip-
tion factor peroxisome proliferator-activated receptor alpha
(PPARa) [105].

Upstream gene-regulatory factors also play a role in altering
lipid metabolism in HCC. HBV transgenic mice show altered
liver lipid metabolism [106]. Overexpression of HBV protein HBx
induces lipid accumulation in cell lines and mouse liver [107].
This is explained by the concomitant increase in the expression
levels of SREBP1 and peroxisome proliferator-activated receptor
gamma (PPARc), subsequently upregulating lipogenic and adi-
pogenic enzymes [107]. HCV infection in primary human hepa-
tocytes upregulates ketogenesis, the breakdown of fatty acids
and ketogenic amino acids into ketone bodies, by activating
transcription factors PPARa and retinoid X receptor (RXR) [35].
Mouse knockouts of Farnesoid X receptor (FXR), a nuclear recep-
tor with essential roles in fatty-acid homeostasis, develop HCC
[108]. In human HCC, pro-inflammatory cytokines are upregu-
lated to inhibit transcription factor hepatocyte nuclear factor 1

Figure 3. Schematic of asparagine biosynthesis, de novo lipogenesis, and the urea cycle. The urea cycle and fatty-acid biogenesis pathways, which are linked to impor-

tant detoxification and lipid-metabolism functions in the liver, are significantly altered in HCC. However, the reasons why alterations in these pathways support tu-

morigenesis are not well defined. Enzyme nomenclature: ACC, acetyl-CoA carboxylase; ACLY, ATP citrate lyase; ARG1, arginase 1; ASL, argininosuccinate lyase; ASNS,

asparagine synthetase; ASS1, argininosuccinate synthase 1; CPS1, carbamoyl phosphate synthetase 1; CTP, citrate transport protein; FASN, fatty-acid synthase; ORNT1,

ornithine transporter 1; OTC, ornithine carbamoyltransferase.
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alpha (HNF1a) activation of FXR, resulting in FXR inactivation
reminiscence of the FXR knockout mouse model [109]. Stem-cell
transcription factor NANOG activates fatty-acid oxidation in
HCC-tumor-initiating cells to support self-renewal and drug re-
sistance [50].

In terms of the role of cholesterol metabolism in HCC, the ef-
fect of HMGCR inhibitors, statins, has been examined in HCC.
Statin use reduces the risk of HCC in the overall population
[110], in chronic HBV-infected patients [111], decreases recur-
rence in HCC patients post tumor resection [112] and liver trans-
plantation [113], and is associated with reduced mortality when
administered post HCC diagnosis [114]. Future studies of the
role of lipid metabolism in HCC could therefore yield additional
therapeutic insight into the disease.

Metabolic alterations induced by HCC risk
factors

Besides understanding the metabolic alternations that occur in
HCC, it is also important to consider the metabolic changes, if
any, caused by the risk factors for HCC, such as chronic HBV
and HCV infections, alcohol intake, diabetes, and NAFLD. This
will give insight into whether the metabolic changes that occur
during upstream HCC-initiation events are conserved when
HCC develops and whether early intervention in suppressing
these changes could slow down or prevent the development of
HCC.

HBV induces metabolic alterations that are, for the most
part, similar to alterations observed in HCC. HBV infection in
host cells upregulates hexosamine and membrane phospho-
lipid phosphatidylcholine biosynthesis through upregulating
GFAT1 and choline kinase a (CHKA) [115]. Viral replication was
shown to be dependent on the presence of these two metabo-
lites, as inhibition of HBP and phosphatidylcholine biosynthesis
significantly reduced HBV DNA levels [115]. This is in line with
the previously highlighted observation that GFAT1 is upregu-
lated in HCC patients with poor prognosis and that GFAT1 over-
expression in cell-line models enhances tumorigenic
phenotypes [55]. Similarly to those in HBV-infected cells, phos-
phatidylcholine levels are significantly upregulated in HCC
patients as compared to liver cirrhotic patient controls [116].

HBV also alters lipid metabolism, which is also dysregulated
in HCC, as discussed above (Figure 3). The expression of HBV vi-
ral proteins in mice alters liver lipid metabolism [106]. HBx over-
expression induces lipid accumulation in cell culture and
mouse models [107]. SREBP1 and PPARc, as well as lipogenic and
adipogenic enzymes, are upregulated [107]. This increase in
lipid-metabolism gene expression is also observed in HCC [94].

Metabolomics performed on serum from HBV patients reveal
viral hijacking of the glycerol-phosphate shuttle—the pathway
that allows the reducing power of NADH generated by glycolysis
to contribute to oxidative phosphorylation [117]. Glycolytic
NADH is utilized by cytoplasmic glycerol-3-phosphate dehydro-
genase to convert dihydroxyacetone phosphate (DHAP) into
glycerol-3-phosphate. Glycerol-3-phosphate is subsequently
reconverted into DHAP at the mitochondrial inner membrane
via mitochondrial glycerol-3-phosphate dehydrogenase to gen-
erate FADH2 from FAD. FADH2 can then be utilized in oxidative
phosphorylation (Figure 1). It is currently unknown whether the
glycerol-phosphate shuttle is altered in HCC.

The progression of chronic HBV is also linked to an increase
in long-chain triglycerides, citrulline, and ornithine from the
urea cycle [117]. The increase in triglycerides is analogous to

previous studies on the role of increased lipid metabolism in
HCC as described. However, the observed increase in urea-cycle
intermediates does not correlate with the decrease observed in
HCC patients [87] (Figure 3). It remains unclear how the urea cy-
cle factors into HCC pathogenesis and progression.

Similar to those of HBV, metabolic alterations induced by
HCV also mirror the alterations observed in HCC. Glycolysis is
significantly upregulated in HCC owing to the Warburg effect
(Figure 1) and this upregulation is similarly observed in HCV in-
fection in primary human hepatocytes, which upregulates gly-
colysis through the transcriptional upregulation of glycolytic
genes [35]. HCV infection in a HCC cell line also upregulates glu-
coneogenesis, possibly to fuel energy generation through glycol-
ysis in HCC [36]. HCV infection seems to support the Warburg
effect by downregulating oxidative phosphorylation [46, 49] and
this could explain the mechanism behind impaired oxidative
phosphorylation in HCC [44, 45]. HCV infection in primary hu-
man hepatocytes activates lipid-metabolism transcription fac-
tor PPARa [35] and this activation is also observed in mouse
knockouts of AOX, which develop HCC [105].

The effects of alcohol intake on liver metabolism have not
been well characterized, but there is some association with
metabolic alterations observed in HCC. CD36 is a gene that facil-
itates free-fatty-acid uptake and its expression is increased
with chronic alcohol consumption [118]. CD36 knockout mice
are resistant to liver steatosis when fed alcohol or a high-fat
diet [119], implying that CD36 could play a role in lipid metabo-
lism that increases the risk of HCC. Treatment of hepatoma
cells with fatty acids and ethanol upregulates SREBP1c and
PPARc, and downregulates SIRT1, leading to impaired fatty-acid
oxidation [120]. This is analogous to the upregulation of SREBP1
and PPARc observed in HCC and HBV infection [94, 107]. It has
also been observed that NADþ levels are reduced with high
blood-alcohol levels during binge drinking [121], although the
direct consequence of this on HCC induction is unknown.

NAFLD is a HCC risk factor that exhibits lipid-metabolism dys-
regulation as a key feature since excessive lipid accumulation in
the liver, in people with low or no alcohol consumption, is a hall-
mark of the disease [122, 123]. Fifty-nine percent of NAFLD
patients who had biopsies for evaluation demonstrated progres-
sion to non-alcoholic steatohepatitis (NASH), owing to the onset
of hepatocellular injury and inflammation [124–126]. As previ-
ously discussed, a mouse model for NASH fed with a high-fat
diet, which leads to the development of steatohepatitis and even-
tually HCC, showed increased expression of lipid metabolism and
insulin-signaling genes in the liver [97]. In HBP, O-GlcNAcylation
of Rab3a has been linked to NAFLD-associated HCC since it regu-
lates lipid metabolism [58]. This observation is complemented by
the demonstration that Rab3A O-GlcNAcylation promotes HCC
progression and metastasis [48].

Other than lipid metabolism, NAFLD also manifests altera-
tions in other metabolic pathways that are reminiscent of HCC
metabolism. NAFLD is prevalent among type 2 diabetes patients
[127] and is associated with insulin resistance [128, 129]. As dis-
cussed, metformin reduces HCC risk and progression so this
suggests a link between NAFLD and HCC. Branched-chain
amino acids (BCAAs), leucine, isoleucine, and valine are ele-
vated in NAFLD patient blood but the underlying mechanisms
remain unknown [130]. Since BCAAs are known to regulate
mTOR signaling, one postulation is that the observed elevation
of these amino acids alters glucose metabolism [131–133]. While
alterations in BCAA metabolism have not yet been reported in
HCC, there have been reports of utilizing these amino acids to
prevent and treat HCC [134]. Further studies could yield novel
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insight into how BCAAs play a role in the manifestation and
progression of HCC.

NAFLD could also mirror HCC metabolism in terms of mito-
chondrial metabolism. In NASH patients, mitochondrial abnor-
malities have been observed [135]. NAFLD patients given 2H and
13C tracers to measure metabolites showed higher rates of lipol-
ysis, gluconeogenesis, anaplerosis, and mitochondrial oxidative
metabolism [129]. Alterations in these processes are mostly
analogous to what has been observed in HCC. However, there is
a need to better understand the underlying mechanisms gov-
erning these metabolic changes.

Conclusion

Numerous metabolic processes feature heavily in promoting
and supporting HCC tumorigenesis and metastasis. The major-
ity of the major cellular metabolic pathways have been studied
and validated to various extents in terms of their roles in HCC.
From the current literature, HCC cells predominantly seem to
demonstrate the Warburg effect. These cells prefer quick energy
generation from glycolysis, through the conversion of glucose
to lactate, instead of allowing pyruvate to enter the TCA cycle
(Figure 1). As expected, the TCA cycle is downregulated in HCC,
promoting the conversion of pyruvate into lactate (Figure 1).
Interestingly, the downregulation in the TCA cycle also seems
to promote flux of glycolytic metabolites through the PPP to
supply precursors for nucleotide metabolism (Figure 2). The ob-
served increase in nucleotide metabolism could provide the
DNA and RNA precursors necessary for tumor-cell growth and
proliferation, but this hypothesis has yet to be validated. In the
case of oxidative phosphorylation, however, there exist genetic
subsets of HCC in which this process is either upregulated as an
energy source for tumorigenesis or downregulated in favor of
glycolysis. The urea cycle, which is the excretion pathway for
the byproducts of protein degradation, is downregulated in
HCC, but the reasons for this remain unclear (Figure 3). There is
also evidence for the upregulation of lipid metabolism (Figure 3)
and the biosynthesis of some amino acids to provide energy
and precursors that support tumorigenesis. Despite the wealth
of information thus far, more has to be done to fully compre-
hend the range of metabolic alterations responsible for promot-
ing HCC tumorigenesis.

Many of these metabolic processes have been studied in iso-
lation, but it is likely that the cross talk between pathways and
synergy among pathways plays an important role in HCC.
Examples include the dual roles of TGFb in reducing oxidative
phosphorylation while enhancing glutamine anaplerosis [45],
NANOG in repressing oxidative phosphorylation while upregu-
lating fatty-acid oxidation in HCC tumor-initiating cells [50],
and SALL4 in upregulating oxidative phosphorylation and urea-
cycle intermediates [51]. A more complete understanding of
metabolic alterations in HCC will enable a precision-medicine
approach, in which patients with HCC metabolic subtypes can
be diagnosed and treated with drugs targeting the metabolic
vulnerabilities of these subtypes.

The characterization and validation of multiple metabolic
vulnerabilities in HCC can also inform the use of combination
therapy with metabolic inhibitors, which might elicit better
outcomes for patients in the future. There are already a number
of small molecules, such as inhibitors of oxidative phosphoryla-
tion, GS, and HMG-CoA reductase, available for targeting spe-
cific enzymes in the aforementioned metabolic pathways.
Based on current and future studies of HCC metabolism, one

can envision the future clinical development of combinations of
metabolic drugs that can hopefully effectively treat HCC.

An interesting aspect of HCC metabolism that remains to be
fully elucidated is HCC risk-factor-induced metabolic changes.
There is evidence that risk factors such as HBV and HCV infec-
tions alter the metabolism of liver cells in a similar manner to
that observed in HCC. However, there remain unanswered
questions on how metabolic changes induced by alcohol intake,
diabetes, and NAFLD relate to HCC. Having a complete under-
standing of how these pre-HCC metabolic changes precondition
or encourage cells to progress to HCC might unlock new thera-
peutic strategies to slow or prevent the progression of these
high-risk disease states to HCC. Overall, the study of the HCC
metabolism in its entirety is timely and crucial, and will poten-
tially serve as the basis for the development of better HCC ther-
apeutic strategies in the long run.
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