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Abstract 

With the overwhelming volume of genomic and 

molecular information available on many databases 

nowadays, researchers need from bioinformaticians 

more than encouragement to refine their searches. 

We present here GeneRanker, an online system that 

allows researchers to obtain a ranked list of genes 

potentially related to a specific disease or biological 

process by combining gene-disease (or gene-

biological process) associations with protein-protein 

interactions extracted from the literature, using 

computational analysis of the protein network 

topology to more accurately rank the predicted 

associations.  GeneRanker was evaluated in the 

context of brain cancer research, and is freely 

available online at http://www.generanker.org. 

Introduction 

It is an exciting time for genomic research: the 

Human Genome Project is complete, a wide array of 

high-throughput gene expression analysis techniques 

is now available, and genomic data is pouring into 

public databases. The challenge now is to translate 

genomic research to improved human health.  

In order to discover potential gene candidates for 

their role in specific disease-related behavior, 

researchers often use gene lists from different sources 

(such as genes annotated for a specific function in the 

Gene Ontology) as a starting point, proceeding to 

further computational analysis (say by comparing 

against clinical datasets for differential expression of 

the target genes) and empirical validation. This 

process allows some room for discovery, as the 

function mapping of the Gene Ontology might not be 

specific to the disease the researcher is studying. 

However, these findings do not stray too far from 

established knowledge, creating the bursts of 

popularity observed for genes that become widely 

studied at around the same time by many laboratories.  

On the other hand, it is difficult for researchers to 

incorporate little known molecular associations and 

new knowledge in their discovery process, given the 

impressive volume of publications that need to be 

reviewed. For example, a search for a single gene, 
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TNF alpha, yields 76,220 articles, with almost half of 

them published in the last 5 years. Refining the search 

to TNF alpha and inflammation reduces this number 

to 15676 articles, still too many for a researcher to 

review. Finding all the protein-protein interactions in 

which TNF alpha is involved (in order to discover 

new potential targets) becomes an even more 

frustrating exercise, as there is no way to express such 

a query in PubMed, and existing curated interaction 

databases cover a very small fraction  of the existing 

relevant literature
1
 (less than 5%(1)). 

It has become a self-evident truth that genetic 

researchers need more from bioinformaticians than 

encouragement to refine their searches. The volume 

of information requires advanced analysis and 

integration techniques that need to yield trustworthy 

results of biological relevance. We present 

GeneRanker, an online system that allows researchers 

to obtain a ranked list of genes potentially related to a 

disease or biological process which integrates 

knowledge from the literature with graph-theoretical 

analysis of relevant protein-protein interactions. 

Background 

Data sources. GeneRanker serves as an interface to a 

method for predicting gene-disease associations by 

combining data extracted from the literature and from 

curated sources. Its biological and mathematical basis 

were introduced in (2). GeneRanker is not an 

information extraction system nor a natural language 

processing system, as it relies on data stored by 

another system from our lab, CBioC (3). The CBioC 

database contains over 1 million protein-protein 

interactions as well as over 300,000 gene-disease and 

250,000 gene-biological process associations 

extracted from 1.6 million biomedical abstracts using 

natural language processing
2
. Details on related NLP 

work have been previously reported. 
 
CBioC also 

integrates close to 380,000 protein-protein 

interactions from IntAct(4), MINT(5), BIND(6), and 

                                                           
1 DIP, MINT, and IntAct, the three largest freely available 

databases, cover less than 10,000 articles altogether. BIND, now 

private, included interactions from 22,000 articles at its peak. 
2 The most recent CBioC database statistics are available at 

http://www.cbioc.org 
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DIP(7).  The NLP engine behind CBioC, IntEx, has 

been rated as around 65% accurate for protein-protein 

extractions from text (8), and at 77% for gene-disease 

association extractions. We sought to increase the 

precision of the extracted data through knowledge 

integration via the ranking method presented in (2), 

briefly described next. 

Method. The knowledge integration and data analysis 

method behind the GeneRanker interface can be 

summarized as follows:  

1. Given a target disease or biological process 

name, obtain a list of genes known to be 

involved with the target disease from the CBioC 

database. This becomes the initial set.  

2. Extract from the CBioC database all interactions 

that involve genes in the initial set. A network 

where each protein has edges to others with 

which it reportedly interacts is built from this 

set. Edges are weighted with a “confidence 

level” that reflects the source of the interactions. 

Interactions extracted from the literature have a 

confidence of 0.65 (the reported accuracy of the 

NLP engine behind CBioC) and those from 

curated sources a 1.0. The proteins in this 

network form the extended set. 

3. Apply a two-part scoring formula to each the 

extended set to predict the proteins most likely 

related to the disease.  

The first part of the scoring formula counts the 

number of interactions of each protein in the extended 

set with proteins in the initial set, and weights it with 

the average confidence of the interactions. The 

second part of the score measures the importance of 

the protein in keeping its “neighborhood” connected. 

Given that high degrees of local network 

interconnectivity identify sets of functionally related 

proteins (9, 10), we hypothesized that the relative 

importance of a protein in keeping this connectivity 

could reflect its biological relevance for particular 

molecular behaviors, and by extension (as the 

network is derived from proteins that are potentially 

relevant to a specific disease), its biological relevance 

with respect to the disease. The two measures are 

then combined using their harmonic mean.  

To measure the connectivity of a protein p, we use the 

traditional clustering coefficient measure from graph 

theory: the ratio of actual edges in the neighborhood 

of p to the maximum number of edges that can exist 

in the neighborhood (11), denoted cc(p). If cc(p) is 

close to 1, the small set formed by p and its neighbors 

is highly connected, and thus, if p were to be 

“removed” from the network (aberrantly expressed), 

there would likely be another “connection” around its 
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neighbors, and the network will remain connected 

(and the local function preserved). Otherwise, its 

“absence” will likely affect the function of the cluster, 

as there are not too many alternative paths. To be able 

to combine it with the first part of the scoring 

formula, we use 1-cc(p) as the second part of the 

score for p (to match the implication of  importance 

derived from a high/low score). 

GeneRanker Interface 

The current implementation of GeneRanker includes  

the basic information for the method to work. Options 

that will allow users to add weights to the scoring 

process (such as adding to the score of interactions 

due to phosphorylation, or to those that involve genes 

in a certain region of the genome), as well as 

gene/protein annotation features are in development.  

Selecting the disease to study. GeneRanker allows 

users to enter a search term, which can be a disease or 

biological process –such as glioblastoma or 

apoptosis-, and then queries the CBioC database for a 

list of genes and proteins found to be associated with 

that disease or process. 

Working with the initial set of genes. The list of genes 

or proteins found to be associated with the disease or 

biological process is displayed in full (Figure 1). 

Depending on the term, there can be anywhere from 

20 to over 300 genes and proteins in the list. The user 

can add other genes to this initial set or remove any 

deemed to be redundant or incorrect. Once the initial 

set is finalized, the protein network will be 

constructed upon clicking on the “Expand the 

Network” button. 

 

Figure 1. Initial set of genes. After the user types a 

disease or biological process, the GeneRanker system web 

interface (available at www.generanker.org) displays an 

initial set of genes obtained from relevant gene-disease 

associations extracted by CBioC from biomedical 

literature. Accuracy is estimated at 75% for this initial set. 
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Figure 3. GeneRanker, showing the top ranked genes for glioblastoma. The 

interface allows users to apply the method to any disease or biological process, 

obtaining a ranked list of potentially related genes. Precision reaches 91 to 94% 

for the top 100 genes in the list. 
Ranking the extended set of proteins. For each gene 

in the initial set, GeneRanker obtains a set of all the 

interactions in which it is involved. This is the most 

time consuming step (taking on average about 10-15 

minutes), and results in an extended set of genes that 

is about 100 times as large as the initial set. All 

interactions among genes in these larger set (the 

extended set) form the network that will be analyzed 

to assign a score to each gene, as described in the 

previous section. The user can then choose to 

continue ranking the extended set or store the 

network (as an XML file). Figure 3 shows the final 

screen, once the genes have been scored. The user 

initiates the scoring process by clicking on “Compute 

Seed Measure”, “Compute Clustering Coefficient” 

and “Compute Combined Score” in succession. The 

combined score is the weighted harmonic mean of the 

two scores, and the user can vary the relative weight 

of each score by changing the “Seed Measure” and 

“Clustering Coefficient” values. The process is 

memory intensive, but usually runs in less than 5 

minutes altogether. The user can sort the genes by any 

of the scores or by gene name. 

Automatic Annotation. A useful feature on this last 

screen is the “Annotate” function. Users can select a 

subset of genes which are annotated using 

information from PubMed. There are two annotation 

measures: “PubMed Count” and “Overrepresentation 

Index”. “PubMed Count”, is the number of 

publications found in PubMed when querying for the 

protein name and the disease or biological process 

term together. The “Overrepresentation Index”, 

calculated as in (12), is a measure of how much more 
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likely it is to find the protein in 

PubMed together with the disease-

related term as compared to with other 

terms. In other words, it is a measure 

of specificity: it shows the strength of 

the relationship between a gene and a 

disease by indicating how much the 

observed number of co-occurrences in 

the PubMed documents deviates from 

the expected number if the co-

occurrence were by chance. Thus, an 

index greater than 1 indicates the co-

occurrence is not likely by chance, and 

the more it exceeds 1, the stronger the 

association. For example, for “tp53”, 

“PubMed Count” is 60, while “insulin” 

has 190. However, the over-

representation index for tp53 is 13.49, 

while for insulin, it is 0.48, indicating 

insulin occurs often with other terms 

as well, not only glioblastoma. 

Tempting as it might be to use the overrepresentation 

index as part of the ranking criteria, it would only 

help to find known targets, and will exclude 

potentially valuable new discoveries that can be 

unveiled through the GeneRanker method. Thus, the 

measure is included only as aggregated information 

for the researcher.  

Evaluation 

We conducted an evaluation of the gene ranking 

method in the context of a specific disease (glioma), 

using two different approaches: (i) comparing 

GeneRanker lists to those obtained from text 

extraction, and (ii) evaluating GeneRanker results 

against a clinical glioma dataset. 

Comparing GeneRanker to text extraction. Given that 

biomedical text mining has reached a point were 

performance improvements of even 1 to 2 percent are 

very difficult to achieve (and highly significant), a 

comparison of the precision of GeneRanker to lists 

obtained from the CBioC database provides a 

measure of the value of post-processing results from 

text extraction using the knowledge integration and 

computational analysis techniques in GeneRanker. 

The value of such post-processing becomes clear if 

we compare the 17% performance gain of 

GeneRanker over text extraction (see Table 1) to the 

1.23% that was consider a “highly significant 

difference” in the Biocreative II gene mention task 

(13). An overview of current challenges and 

limitations of biomedical text mining and why 

traditional extraction techniques are reaching their 

performance limit for many tasks appears in (14).  
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To measure the performance of a text extraction 

system such as the one behind CBioC, one rates its 

precision (percentage of the extracted entities that are 

considered correct), and its recall (percentage of the 

available entities extracted). The two measures are 

often combined using their harmonic mean, or f-

measure. In biological domains, and particularly for 

gene ranking systems, precision is much more 

relevant than recall(15), as researchers won’t usually 

mind not getting everything that can possibly be 

extracted as long as what is extracted is correct. This 

view was confirmed by the cancer researchers in the 

team. In view of this, we designed the evaluation 

methodology to emphasize precision. 

In order to compare the precision of the top 200 

genes in the GeneRanker list to that of pure text 

extraction, we extracted all gene-disease associations 

in the CBioC database where the disease term was 

either “glioma”, “glioblastoma”, or “astrocytoma” (a 

total of 1560 entries). We then randomly selected 3 

groups of 200 genes each for annotation. Each gene 

in these 3 lists, plus the top 200 genes from 

GeneRanker was automatically annotated with two 

numeric measures obtained from PubMed: one 

indicated the number of articles returned by searching 

for the gene name co-occurring with “glioma”, 

“glioblastoma”, or “astrocytoma”. In addition, we 

also searched PubMed for the occurrence of the gene 

alone and the glioma-related terms alone. The number 

of publications returned was noted for each search. 

The genes were also similarly searched in OMIM. 

Based on whether the gene was in OMIM, plus 

considering the number of publications where the 

gene co-occurs with the disease-terms and the 

overrepresentation index, each gene was marked as 

either a true positive (TP) or false positive (FP). 

Table 1. Results of comparing GeneRanker to text 

extraction in finding genes associated to a specific disease. 

True positives (TP) are genes that are either associated to 

the disease in OMIM or that were found to co-occur in 

PubMed abstracts with an overrepresentation index greater 

than 1. GeneRanker exceeds the performance of text 

extraction by up to 17%.  

 TP FP 

Precision 

% 

Text extraction list 1 153 47 77% 

Text extraction list 2 159 41 80% 

Text extraction list 3 150 50 75% 

Average(std dev) 154.0(4.6) 46.0(4.6) 77%(2%) 

GeneRanker (top 50) 47 3 94% 

Effect (gain in precision wrt text extraction) 17%  

GeneRanker (top 100) 91 9 91% 

Effect (gain in precision wrt text extraction) 14% 

GeneRanker (top 200) 175 25 88% 

Effect (gain in precision wrt text extraction) 11% 
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Results are summarized in Table 1. Genes that had no 

hits in PubMed were considered a false positive, 

although they could in fact be related to the disease 

(these are the potential new targets).  

Evaluating against a clinical dataset. The next step 

of contextual evaluation was to test the method in a 

biological context for its ability to identify potential 

gene targets (known or not). The method was run for 

“glioblastoma”, and the final ranked list was analyzed 

by TGen’s Brain Tumor Unit researchers Armstrong 

and McDonough. The top 300 genes reported by 

GeneRanker to be related to glioma were queried 

against a whole-genome expression microarray 

(Affimetrix U133 Plus 2.0) using the Repository of 

Molecular Brain Neoplasia DaTa (REMBRANDT) 

Database(16), seeking to discern candidate genes 

which demonstrate variations in expression related to 

this type of glioma. Similarly, 10 random gene lists 

and a list generated from Gene Ontology annotations 

for cell-cell adhesion, a biological process relevant to 

glioma. Table 2 summarizes the results.  

As shown in Table 2, the set of probes obtained from 

the GeneRanker list are 2x differentially expressed 

28.2% of the time, which represents an 8.7% greater 

yield over the Gene Ontology list. This represents an 

effect-size statistic of 4.0. Effect size is the preferred 

method of determining both the statistical and clinical 

significance of the difference between two groups(17, 

18), and, as proposed by Cohen (19), it is estimated 

by the ratio of the mean difference between the two 

Table 2. Evaluation against glioblastoma (GBM) dataset. 

The percentage of probes with 2-fold differential 

expression (up or down) in the GBM dataset are noted for 

(a) a set of 10 random lists of 300 genes, (b) a list of genes 

obtained from gene ontology (GO) annotations for cell-cell 

adhesion, and (c) the top 300 genes from GeneRanker. The 

effect size of the later with respect to the GO list (and 

therefore, wrt the random list) is highly significant.  

 
% of 2x diff. 

expr. probes  
Random gene list 1 16.4% 

Random gene list 2 13.6% 

Random gene list 3 17.4% 

Random gene list 4 14.5% 

Random gene list 5 14.8% 

Random gene list 6 17.9% 

Random gene list 7 11.6% 

Random gene list 8 18.8% 

Random gene list 9 16.1% 

Random gene list 10 14.8% 

Average(std dev) 15.6% (2.2%) 

GO list for cell-cell adhesion 19.5% 

Effect size (wrt random list) 1.2 

GeneRanker top 300 list 28.2% 

Effect (% difference wrt GO list) 8.7% 

Effect size  4.0 
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groups divided by the standard deviation of the 

control group. In the Cohen (19) scale (adjusted for 

effect size rather than correlation, as done in (20)), 

anything with an effect size of over 0.8 is large, 

between 0.5 and 0.8 is moderate, between 0.2 and 0.5 

is small, and anything smaller than 0.2 is 

insubstantial. Thus, the effect size shown for the 

GeneRanker list is highly significant. 

Conclusion 

We have presented GeneRanker, an online tool for 

predicting associations between proteins and diseases 

using data from the literature. The precision for 

GeneRanker was measured to be between 91% and 

94% for glioblastoma, surpassing the precision of text 

extraction systems alone. It also outperforms other  

gene ranking methods, such as the one by Morrison et 

al (21), which reports a maximum accuracy of less 

than 90% for their best combination of inputs; and the 

one by Seki and Mostafa (22)  to associate genes and 

hereditary diseases, which reports an accuracy of 

74% for their best prediction. Our results are thus 

very encouraging, although evaluation of the method 

for other diseases is still ongoing.  

Overall, GeneRanker was judged by the BTU 

researchers as a promising tool for finding potential 

gene targets. In contrast to a list obtained from other 

sources (such as the Gene Ontology), the GeneRanker 

top-ranked list includes well-known targets (such as 

P53, EGFR, VCAM1, AKT1, and CD44) increasing 

confidence on the tool, as well as potentially novel 

targets (at least one novel target that could have been 

missed otherwise has already been identified and is 

currently under empirical validation).  
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