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A 38-gene model comprised of key TET2-
associated genes shows additive utility to
high-risk prostate cancer cases in the
prognostication of biochemical recurrence
Shivani Kamdar1,2, Neil E. Fleshner3 and Bharati Bapat1,2,3*

Abstract

Background: Early treatment of patients at risk for developing aggressive prostate cancer is able to delay
metastasis and reduce mortality; as such, up-front identification of these patients is critical. Several risk classification
systems, including CAPRA-S, are currently used for disease prognostication. However, high-risk patients identified by
these systems can still exhibit wide-ranging disease outcomes, leading to overtreatment of some patients in this
group.

Methods: The master methylation regulator TET2 is downregulated in prostate cancer, where its loss is linked to
aggressive disease and poor outcome. Using a random forest strategy, we developed a model based on the
expression of 38 genes associated with TET2 utilizing 100 radical prostatectomy samples (training cohort) with a
49% biochemical recurrence rate. This 38-gene model was comprised of both upregulated and downregulated
TET2-associated genes with a binary outcome, and was further assessed in an independent validation (n = 423)
dataset for association with biochemical recurrence.

Results: 38-gene model status was able to correctly identify patients exhibiting recurrence with 81.4% sensitivity in
the validation cohort, and added significant prognostic utility to the high-risk CAPRA-S classification group. Patients
considered high-risk by CAPRA-S with negative 38-gene model status exhibited no statistically significant difference
in time to recurrence from low-risk CAPRA-S patients, indicating that the expression of TET2-associated genes is
able to separate truly high-risk cases from those which have a more benign disease course.

Conclusions: The 38-gene model may hold potential in determining which patients would truly benefit from
aggressive treatment course, demonstrating a novel role for genes linked to TET2 in the prognostication of PCa and
indicating the importance of TET2 dysregulation among high-risk patient groups.
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Background
Prostate cancer (PCa) is the most common cancer diag-
nosed in men worldwide. Overall, PCa has an excellent
prognosis, with a 5-year survival rate of 98% [1]. How-
ever, PCa is a highly heterogenous disease, with a clinical
course that can range from indolent and localized with
nearly 100% survival rate to metastatic and lethal. Pa-
tients with metastatic disease have a far lower survival
rate, ranging between 29 and 31% [2, 3].
Due to this discrepancy in survival rates, early identifi-

cation of patients at risk of aggressive disease is critical.
Early treatment of patients with biochemical recurrence
(BCR) by salvage radiation therapy and/or androgen
deprivation has been significantly linked to lower inci-
dence of metastasis, and may reduce mortality if admin-
istered within 2 years after BCR first occurs; thus,
models able to predict BCR risk in the period immedi-
ately following surgery are very important for clinical
decision-making [4].
Variations of the UCSF Cancer of the Prostate Risk

Assessment (CAPRA) score have outperformed other
risk classification criteria for prediction of BCR-free sur-
vival, with the postsurgical CAPRA-S score exhibiting a
slight improvement in c-index for BCR over the presur-
gical CAPRA score (0.77 compared to 0.69 respectively)
in the CaPSURE registry cohort [5–8]. In addition, both
scores also show utility in risk analyses for cancer-
specific mortality and metastases, making them particu-
larly useful [5, 6, 9].
Multiple genomic models have been shown to add

further utility to CAPRA-S risk classification. The De-
cipher Prostate Cancer Test, which measures the ex-
pression levels of 22 genes in radical prostatectomy
(RP) specimens, is an independent predictor of metas-
tasis when assessed alongside CAPRA-S, while com-
bination of the Prolaris cell cycle gene-expression test
with CAPRA-S results in superior predictive ability
for BCR risk [10–12]. As such, continued integration
of novel genomic models with CAPRA-S may further
improve its prognostication ability. Recently, our
group identified a four-gene methylation model which
exhibited additive potential to CAPRA-S for associ-
ation with BCR and prognostication of postsurgical
therapies, demonstrating the potential contribution of
epigenetic mechanisms in this field as well [13].
In this regard, ten-eleven translocase (TET) enzymes,

considered master methylation regulators, are aberrantly
expressed in multiple cancers. TET-mediated regulatory
mechanisms present a potentially promising strategy for
identifying genes useful in prognostic modeling. Loss of
TET2 expression in particular is correlated with metasta-
sis, increased Gleason score, and worse cancer-specific
survival in PCa patients [14–16]. Previously, we used
CRISPR-Cas9 directed TET2 knockout of prostate cells

to identify candidate genes whose expression is regulated
by TET2 loss in PCa. Subsequently, we showed that the
expression status of seven target genes regulated by
TET2-mediated promoter methylation is significantly as-
sociated with shorter recurrence-free survival time in
PCa patients, showing the possible utility of mining both
downregulated and upregulated TET2-related genes for
improved disease prognostication [17].
To further investigate the combinatorial utility of

genes associated with TET2 for improved clinical
decision-making, we used a backwards feature selection
strategy to generate an optimal 38-gene random forest
model with binary outcome, in a training cohort (the
Moreno cohort) of 100 formalin-fixed, paraffin-
embedded prostate cancer samples [18], and validated
this model in the Cancer Genome Atlas (TCGA) pros-
tate tumor dataset [19]. Our 38-gene model (38G) is sig-
nificantly associated with BCR via Cox regression
modeling in both training and validation sets, and ex-
hibits 81.4% sensitivity for BCR in the validation cohort.
Most importantly, the 38G model adds significant dis-
criminatory ability to CAPRA-S high-risk cases specific-
ally, as PCa patients with CAPRA-S scores ≥6 and a
positive 38G model score exhibit significantly shorter
time to BCR than those with negative 38G model scores.
Overall, our 38G model is able to differentiate those
cases which are truly at an increased risk of progression
from those with outcomes similar to CAPRA-S
intermediate-risk or low-risk categories, indicating that
TET2-associated gene dysregulation may be implicated
in bona-fide high-risk PCa cases. Further validation of
this model in independent cohorts will allow the additive
utility of 38G to CAPRA-S risk classification to be more
extensively explored.

Methods
Patient cohorts
Two publicly available datasets were analysed in this
study. The training cohort (Moreno) was comprised of
106 formalin-fixed, paraffin-embedded (FFPE) radical
prostatectomy samples from 100 patients, of whom 49
exhibited BCR [18]. The validation cohort (TCGA) was
comprised of 423 fresh-frozen radical prostatectomy
samples, of whom 43 exhibited BCR [19]. Outcome clas-
sification at follow-up was derived from the TCGA data-
base as either exhibiting progressive disease, stable
disease, complete remission, or partial remission. BCR
was defined as two consecutive postoperative PSA read-
ings ≤0.2 ng/mL. Both cohorts exhibited similar median
age and preoperative PSA levels (Table 1). CAPRA-S
was calculated on a 12-point scale as per the original
system by Cooperberg et al. [6] Briefly, one point was
assigned for the presence of extracapsular extension and
lymph node invasion, two points for positive surgical
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margins and seminal vesicle invasion, while Gleason
score and PSA were assessed on a point scale from 0
(lowest) to 3 (highest). Patients were assigned to risk cat-
egories of CAPRA-S low (0–2 points), intermediate (3–5
points), or high-risk (6–12 points) as per this scale.

Whole-Transcriptome sequencing and analysis
RNA-sequencing data used in this study was derived
from previously published work from our group [17].
Briefly, CRISPR-Cas9 targeting the first coding exon of
TET2 was used to achieve TET2 knockout in normal
prostate (RWPE-1) cells. Whole RNA extracted via TRI-
zol was sequenced and aligned at The Centre for Ap-
plied Genomics (TCAG, Toronto).

Gene selection
An initial list of genes was identified based on the fol-
lowing characteristics: firstly, genes exhibiting significant
gain of expression (> 1.5-fold increase, p < 0.05) or loss

of expression (> 1.5-fold decrease, p < 0.05) in TET2-
knockout cells as compared to unmodified parental
RWPE-1 cells by edgeR; secondly, genes exhibiting sig-
nificantly increased or decreased expression respectively
in a low-TET2 expressing subset (bottom 10th percentile
for TET2 expression) of the TCGA dataset as compared
to the remaining tumors (p < 4.46E-5, Mann-Whitney U
test). An expanded description of selection criteria is
presented in the Supplementary Methods section. The
intersection of these gene lists was used to form a final
gene set of 1122 genes. These were considered high-
confidence TET2-associated genes, and were used for
downstream model generation analyses.

Model generation and optimization
We used random forest-based recursive feature elimin-
ation using bootstrapping as the resampling method
(n = 75), with the number of selected features set from 2
to 50, to select a final list of genes from the high-

Table 1 Clinical characteristics of training (Moreno) and validation (TCGA) cohorts

Clinical Characteristic Moreno Cohort (FFPE) TCGA Cohort (RP)

Gleason Score No. of patients (%) No. of patients (%)

≤ 6 (3 + 3) 11 (11.00%) 37 (8.75%)

7 (3 + 4) 53 (53.00%) 162 (38.30%)

7 (4 + 3) 22 (22.00%) 101 (23.88%)

≥ 8 14 (14.00%) 158 (37.35%)

Pathological Stage

pT2 69 (69.00%) 169 (39.95%)

pT3 2 (2.00%) 0 (0.00%)

pT3a 6 (6.00%) 138 (32.62%)

pT3b 9 (9.00%) 104 (24.59%)

pT4 1 (1.00%) 6 (1.42%)

Lymph Node Invasion

Present 0 (0%) 60 (14.18%)

Absent 37 (37.00%) 331 (78.25%)

Surgical Margins

Positive 39 (39.00%) 116 (27.42%)

Negative 56 (56.00%) 312 (73.76%)

Age

Median 61.7 61

Range 43.0–78.0 41.0–77.0

Pre-operative PSA (ng/uL)

Median 7.2 7.5

Range 1.8–72.6 0.7–107

Biochemical Recurrence

Number of recurrences 49 (49.00%) 43 (10.17%)

Average follow-up time in years (range) 5.79 (0.06–15.26) 3.07 (0.06–13.76)

Total 100 423
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confidence TET2-associated genes identified in the pre-
vious step. The random forest model was trained on the
selected features, using 10-fold cross-validation to
optimize the number of variables available for splitting
at each node, tree size, and tree depth. All model train-
ing was performed in the Moreno cohort, and validation
was performed using the TCGA cohort. All random for-
est analyses used biochemical recurrence as the out-
come, and were performed using the caret package of R
(v6.0.84).

Statistical analyses
Association between candidate gene expression and
tumor versus normal status was analyzed using Mann-
Whitney U tests as part of the base “stats” package of R.
Bonferroni correction was applied by dividing 0.05 by
the number of samples analyzed and using the resultant
value as the confidence threshold. Sensitivity, specificity,
positive predictive value, and negative predictive value
for BCR at various timepoints were calculated using the
confusionMatrix function from the caret package of R.
Univariate and multivariate Cox regression analyses, as
well as Kaplan-Meier survival curves, were performed
using the survival package of R, using log-rank p-values
to determine significance.
We used p < 0.05 as the confidence threshold for the

above analyses unless otherwise specified in the manu-
script. All statistical analyses were performed using R
(v3.6.1).

Results
Optimal gene model selection by random forest
High-confidence TET2-associated genes exhibiting ex-
pression changes in PCa were identified as previously
described [17], and were assessed by random forest
modeling in the training cohort to determine which of
these genes would provide the best discriminatory power
for prognostication of biochemical recurrence (BCR). As
the Moreno cohort had a BCR rate of 49%, it was chosen
as the training cohort to ensure an equal distribution of
cases for model optimization (Supplementary Figure 1).
Of the 1122 high-confidence TET2-associated genes

identified, backwards feature selection-based random
forest modeling chose a 38-gene model which consisted
of 18 upregulated and 20 downregulated genes in PCa
(Supplementary Table 1, Supplementary Figures. 2–3).
The 38G model was optimized for predictive accuracy in
the training cohort, and was designed to favour correct
classification of positive cases. This 38G model had a
negative predictive value (NPV) of 94.12%, sensitivity of
94.4, and log-rank p-value <2E-16 for prediction of over-
all BCR within a follow-up period of 14.26 years in the
training cohort (Table 2). The 38G model also exhibited
100% NPV for prediction of early BCR within a 1.5-year

period post RP. In comparison, CAPRA-S exhibited
lower sensitivity (37% versus 94%), slightly higher speci-
ficity (94.0% versus 92.31%) and slightly lower positive
predictive value (PPV; 86.96% versus 92.73%) over the
same time period for overall BCR when using a high-risk
CAPRA-S score (≥6) as the cutoff for binary dichotomi-
zation (Table 2).

Table 2 38G model performance compared to CAPRA-S for
association with BCR in the training cohort (n = 100)

Sensitivity Specificity PPV NPV

Overall BCR

38G 94.44 92.31 92.73 94.12

CAPRA-S 37.74 94 86.96 58.75

BCR within 1.5 years

38G 100 62.65 42.59 100

CAPRA-S 52.17 86.25 52.17 86.25

BCR within 3 years

38G 95.35 79.37 75.93 96.15

CAPRA-S 41.86 91.67 78.26 68.75

BCR within 5 years

38G 94.12 89.09 88.89 94.23

CAPRA-S 40 94.34 86.96 62.5

BCR within 7 years

38G 92.31 88.89 88.89 92.31

CAPRA-S 39.22 94.23 86.96 61.25

Table 3 38G model performance compared to CAPRA-S for
association with BCR in the validation cohort (n = 423)

Sensitivity Specificity PPV NPV

Overall BCR

38G 81.4 36.33 15.02 93.39

CAPRA-S 52.5 72.67 20.39 91.98

BCR within 1.5 years

38G 77.78 35.17 9.01 95.04

CAPRA-S 52 71.43 12.62 94.94

BCR within 3 years

38G 81.58 36.08 13.3 89.27

CAPRA-S 51.43 72.13 17.48 92.83

BCR within 5 years

38G 80.95 36.22 14.59 93.39

CAPRA-S 53.85 72.76 20.39 92.41

BCR within 7 years

38G 81.4 36.33 15.02 93.39

CAPRA-S 52.5 72.67 20.39 91.98
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Validation of the 38G model for prognostication of BCR
The TCGA cohort was used for validation of the prog-
nostic accuracy of the 38G model, which exhibited an
NPV of 93.39% and sensitivity of 81.4% for prediction of
overall BCR within a follow-up period of 13.76 years in
the validation cohort (Table 3). On univariate Cox pro-
portional hazards analysis, binary 38G model score was
significant for association with BCR, with a positive
model score giving a 2.46-fold increased risk of a patient
exhibiting BCR (95%CI 1.14–5.3; log-rank p-value
0.022). (Fig. 1) When compared to CAPRA-S in the
same cohort, our model outperformed CAPRA-S in
terms of sensitivity for overall BCR and at timepoints of
BCR within 1.5, 3, 5, or 7 years; CAPRA-S favored higher
specificity and PPV for the same timepoints (Table 3).
In order to determine whether our model was an inde-

pendent predictor of BCR in this cohort, we performed
multivariate Cox regression analysis, evaluating our 38G
model as compared to CAPRA-S scores categorized into

Fig. 1 Univariate Kaplan-Meier curve for prediction of BCR in the validation (TCGA) cohort, comparing survival probability between negative (0) or
positive (1) 38G model result, with log-rank p-value outlined. Below: Risk table indicating the number of patients in each category at risk at
various timepoints. Figure generated using the R (v3.6.1) package survminer (v0.4.6)

Table 4 Univariate and multivariate Cox regression analyses for
38G and CAPRA-S in the validation (TCGA) cohort

Hazard ratio 2.50% 97.50% log-rank p-value

Univariate

38G 2.458 1.14 5.3 0.0218

CAPRA-S 2.209 1.441 3.387 2.77E-04

Multivariate (low vs intermediate vs high risk CAPRA-S)

38G 2.222 0.976 5.059 0.0571

CAPRA-S 2.073 1.344 3.198 9.81E-04

Multivariate (high-risk vs. low/intermediate-risk CAPRA-S)

38G 2.799 1.498 5.229 0.0013

CAPRA-S 2.362 1.039 5.37 4.03E-02

CAPRA-S has been assessed as per categorical risk classification: low,
intermediate, and high-risk
Multivariate analysis 1: HR represents increased risk in intermediate-risk cases as
compared to low-risk, or in high-risk cases as compared to intermediate-risk
Multivariate analysis 2: HR represents increased risk in high-risk cases as
compared to low- or intermediate-risk cases
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low-risk (score ≤ 2), intermediate-risk (score 3–5), or
high-risk (score ≥ 6) classification groups (Table 4, Sup-
plementary Figure 4).
Although our model was not an independent predictor

of BCR when combined with CAPRA-S risk categories,
its trending p-value (p = 0.057) indicated that it may pos-
sess some additive utility to one or more risk categories
in particular.

The 38G model adds significant prognostic utility to
CAPRA-S high-risk classification patients
We examined the additive potential of the 38G model
by assessing it in combination with CAPRA-S risk cat-
egories via Kaplan-Meier analysis. On its own, there was
no significant difference in outcome between CAPRA-S
low- and intermediate-risk groups in the TCGA cohort;
however, both groups exhibited significantly longer time

to progression than those in the high-risk group (Sup-
plementary Figure 5).
Intriguingly, addition of our random forest classifier

to high-risk CAPRA-S was able to significantly im-
prove prognostication of BCR. Among high-risk
CAPRA-S cases, 38G-positive cases exhibited signifi-
cantly worse outcome than 38G-negative cases. In
multivariate analysis, the 38G model was an inde-
pendent predictor when combined with binary
CAPRA-S high-risk versus CAPRA-S intermediate-or
low-risk classifications (Table 4) and improved the c-
index of CAPRA-S alone from 0.660 to 0.680. Fur-
thermore, despite the fact that high-risk CAPRA-S
cases exhibited significantly worse outcome in terms
of BCR than intermediate- or low-risk cases when
assessed alone, high-risk cases did not significantly
differ from intermediate-risk and/or low-risk cases
when the 38G classifier was negative (Figs. 2, 3, 4).

Fig. 2 Multivariate Kaplan-Meier curve for prediction of BCR in the validation (TCGA) cohort. Binary 38G model is assessed alongside CAPRA-S
divided into three categories: low-risk, intermediate-risk, or high-risk. Log-rank p-values for pairwise comparisons among negative and positive
model subsets are indicated in the accompanying chart. Overall log-rank p-value is indicated on the graph. Below: Risk table indicating the
number of patients in each group at risk at various timepoints. Figure generated using the R (v3.6.1) package survminer (v0.4.6)
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Overall, these results indicate that a negative 38G re-
sult is strongly indicative of better outcome in terms of
BCR. As such, a positive 38G result is able to distinguish
those cases which are truly high-risk for BCR from those
which exhibit similar outcomes to intermediate- or even
low-risk CAPRA-S cases, adding significant utility to
CAPRA-S risk classification.
The 38G model did not add significant discriminatory

ability to CAPRA-S low-risk or CAPRA-S intermediate-
risk cases alone (Fig. 2).

38G model classifier is an independent predictor of tumor
outcome in patients
We next examined the association of 38G classifier sta-
tus with tumor outcome on patient follow-up in the val-
idation dataset. On its own, a positive 38G model result
was significantly associated with increased likelihood of
a patient exhibiting partial remission or progressive

disease as compared to complete remission (OR: 7.99,
95% CI 2.28–50.66, p = 5.65E-3). When combined with
categorical CAPRA-S, the 38G model remained an inde-
pendent predictor of partial remission or progressive dis-
ease (OR: 5.70, 95% CI 1.57–36.66, p = 2.26E-2),
indicating that the 38G classifier is significantly associ-
ated with patient outcome (Table 5).

Discussion
Although statistically significant differences in BCR rates
between the three different CAPRA-S risk groups have
been validated in multiple cohorts [5–8, 20, 21], hetero-
geneity of clinical outcome is still observed among the
high-risk CAPRA-S group. As such, while some patients
with high-risk CAPRA-S scores may benefit from multi-
modal therapy up-front, a proportion of these high-risk
patients will not go on to develop BCR or metastasis,
and will experience unnecessary morbidity from early

Fig. 3 Multivariate Kaplan-Meier curve for prediction of BCR in the validation (TCGA) cohort. Binary 38G model is assessed alongside CAPRA-S
divided into two categories: low-risk/intermediate risk, or high-risk. Log-rank p-values for pairwise comparisons are indicated in the accompanying
chart. Overall log-rank p-value is indicated on the graph. Below: Risk table indicating the number of patients in each group at risk at various
timepoints. Figure generated using the R (v3.6.1) package survminer (v0.4.6)

Kamdar et al. BMC Cancer          (2020) 20:953 Page 7 of 11



treatment [22]. Genomic markers, either individually
(such as the ability of SPINK1 overexpression to signifi-
cantly predict BCR independently of pathological fea-
tures) or in combination (in models such as Decipher or
Prolaris), have shown utility in distinguishing patients at
risk of BCR from those at low risk of progression.
Our 38G model, when combined with CAPRA-S risk

classification categories, is able to distinguish patients
who are truly at high risk of BCR and should receive
timely multimodal therapy from those whose risk of
BCR does not actually differ from CAPRA-S low-risk pa-
tients, and may benefit from active surveillance pro-
grams instead. Furthermore, 38G model status is an
independent predictor of patient outcome in the TCGA
cohort, and may hold potential as a further indicator of
which patients would most benefit from early treatment.
These findings suggest that differential expression of
TET2-associated genes may affect disease progression.

Fig. 4 Multivariate Kaplan-Meier curve for prediction of BCR in the validation (TCGA) cohort. Binary 38G model is assessed alongside CAPRA-S
divided into two categories: low-risk, or intermediate/high-risk. Log-rank p-values for pairwise comparisons are indicated in the accompanying
chart. Overall log-rank p-value is indicated on the graph. Below: Risk table indicating the number of patients in each group at risk at various
timepoints. Figure generated using the R (v3.6.1) package survminer (v0.4.6)

Table 5 Logistic regression analyses for 38G and CAPRA-S for
association with patient outcome (TCGA cohort)

Odds ratio 2.50% 97.50% p-value

Univariate

38G 7.99 2.28 50.66 5.65E-03

CAPRA-S 2.99 1.68 5.72 4.18E-04

Multivariate

38G 5.7 1.57 36.66 2.26E-02

CAPRA-S 2.5 1.39 4.85 3.65E-03

Note: CAPRA-S has been assessed as per categorical risk classification: low,
intermediate, and high-risk
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Overall, this model integrates both genomic expression
data and epigenomic regulation by selecting candidate
genes governed by TET2 in prostate cancer.
Currently available genomic models which have been

used to prognosticate recurrence from RP samples in-
clude Decipher and Prolaris, which use continuous clas-
sifier scores for prediction. Although Decipher is most
commonly used for prognostication of metastasis or
PCa-specific mortality, one study showed that it im-
proved c-index for prediction of BCR from 0.64 to 0.69
when added to continuous CAPRA-S scores [23]. In
contrast, multiple studies have assessed the ability of
Prolaris to predict BCR, with univariate HRs ranging
from 1.44 to 1.89 across both biopsy and RP specimens
[24–26]. In comparison, our binary model exhibits a
more modest c-index improvement of 0.02 in the validation
cohort, with a univariate HR of 2.46 for BCR. As a closer
comparison, the recently published binary copy number-
based GEMCaP signature exhibited an HR of 2.69 in a co-
hort of 140 PCa patients, and was shown on multivariate
analysis of categorial CAPRA-S risk groups to provide sig-
nificant (p = 0.012) additive utility to intermediate-risk
CAPRA-S cases only, while our model added significantly
to high-risk CAPRA-S cases specifically [27]. These studies
highlight the differing potential contributions of both gen-
omic and epigenomic mechanisms to different PCa risk
groups and outcomes in disease.
Aberrant androgen receptor activation, the key driver

of PCa development, represses TET2 both directly via
enhancer binding and indirectly via induction of inhibi-
tory miRNAs 29a and 29b, indicating an important and
specific role for TET2 loss in PCa [15, 16]. However,
until recently, the role of specific TET2-associated genes
in disease progression was relatively unexplored. Here,
we have demonstrated the combinatorial efficacy of
genes associated with TET2 in improved prognostication
of PCa.
Our previous studies identified seven genes governed by

TET2-mediated methylation and significantly associated
with recurrence in the TCGA dataset, which were among
the 1122 TET2-associated genes used as the base gene set
to generate the 38G model. However, none of these genes
were among the final candidates selected as part of the
model. Due to the recursive feature elimination method
used to generate the model, other genes within the train-
ing (Moreno) dataset may have been determined to have
greater importance to a combinatorial model, even though
these seven genes were found to be significant individually
in the TCGA dataset [17]. Furthermore, expression of
these genes may also have been correlated with that of
other genes, resulting in their feature importance being
decreased by random forest modeling.
The thirty-eight upregulated or downregulated TET2-

linked genes comprising our model have a variety of

functions, and are enriched via pathway analysis for lipid
binding and transport, oxidoreductase and transferase
activity, and cholesterol or steroid esterification, reflect-
ing the importance of steroid metabolism in PCa devel-
opment and progression. Among these genes, several
have been identified as known oncogenes or tumor sup-
pressors in prostate or other cancers. For example, tyro-
sine kinase non receptor 2 (TNK2) promotes androgen
receptor transcription and is a critical oncogene in
castration-resistant prostate cancer [28], while the retin-
oic acid synthesis enzyme aldehyde dehydrogenase 1
family member A2 (ALDH1A2) is a known candidate
tumor suppressor associated with decreased colony for-
mation in PCa cell lines [29]. Several other genes in our
model have been independently verified as oncogenes
(SPAG5, PARM1) or tumor suppressors (VEPH1, GLCE)
in prostate or other cancers, showcasing the ability of
our TET2-based model to capture these key changes
[30–35]. Our work shows, for the first time, the regula-
tion of these genes by TET2 loss, which may constitute a
novel epigenetic mechanism contributing to the expres-
sion changes exhibited by these candidates in PCa.
There are some limitations to this study. A major ad-

vantage of the CAPRA-S score is its utility in predicting
metastasis and cancer-specific survival outcomes. How-
ever, as there were very few cases in the TCGA cohort
which exhibited either metastasis or cancer-specific death,
the ability of the model to add to CAPRA-S for prediction
of these outcomes could not be assessed. Furthermore, in
accordance with our previously published strategy for can-
didate gene identification, the TCGA cohort was initially
used to identify high confidence TET2 associated genes.
Although this analysis was independent of gene associ-
ation with BCR, these findings should be further validated
in independent testing cohorts in future studies in order
to confirm the potential of the 38G model. An advantage
of our model generation strategy using the random forest
approach in identifying risk models for PCa recurrence is
that the prostate cancer datasets used in this study may
also be examined independent of TET2-related parame-
ters, or using differing selection criteria, to generate and
characterize novel risk gene models using a similar
method. Finally, as TET2-associated gene expression at RP
defines a subset of cases with significantly worse prognosis
in the tested cohorts, the biological role of TET2 in high-
risk PCa could also be examined further through in vitro
studies to determine whether knockdown or induction of
these genes is associated with motility or proliferation in
prostate cancer cells.

Conclusions
Distinguishing prostate cancer patients at high risk for
recurrence from those at low risk up-front is an import-
ant step influencing clinical decision-making for patient
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treatment. Our results show the additive potential of an
expression-based 38G model, comprised of genes associ-
ated with TET2, to high-risk CAPRA-S classification for
further delineation and accurate /refined prediction of
BCR. In future studies, validation of the 38G model
alongside CAPRA-S in additional cohorts with expanded
information on other disease outcomes will allow the
predictive ability of our gene model to be confirmed,
and may be able to further elucidate the link between
TET2-associated genes and high-risk outcomes in pros-
tate cancer.
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cohort (n = 100) for the 1122 TET2-associated genes identified in this
study. Expression gradient bar indicates log10-transformed expression
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cohort (n = 100) for the 38 genes comprising our model. Expression
gradient bar indicates log10-transformed expression levels, ranging from
highest (pale yellow) to lowest (black). Dendrograms indicate clustering
between genes (top) or tissue samples (left). Figure generated using the
R (v3.6.1) packages viridis (v0.5.1) and pheatmap (1.0.12).

Additional file 3: Supplementary Figure 3. Forest plot depicting
individual hazard ratios for each of the 38 genes comprising our model,
generated using the ggforest function of the survminer (v0.4.6) package
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cases among the CAPRA-S risk scores. Figure generated using the R
(v3.6.1) package ggplot2 (v3.2.1).
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curve for prediction of BCR in the validation (TCGA) cohort. The three risk
categories of CAPRA-S are assessed, with log-rank p-values for pairwise
comparisons between risk categories indicated in the accompanying
chart. Overall log-rank p-value is indicated on the graph. Below: Risk table
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points. Figure generated using the R (v3.6.1) package survminer (v0.4.6).
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