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Abstract
Background and aims: Complete surgical resection with negative margin is one of the 
pillars in treatment of liver tumours. However, current techniques for intra-operative 
assessment of tumour resection margins are time-consuming and empirical. Mass 
spectrometry (MS) combined with artificial intelligence (AI) is useful for classifying 
tissues and provides valuable prognostic information. The aim of this study was to 
develop a MS-based system for rapid and objective liver cancer identification and 
classification.
Methods: A large dataset derived from 222 patients with hepatocellular carcinoma 
(HCC, 117 tumours and 105 non-tumours) and 96 patients with mass-forming chol-
angiocarcinoma (MFCCC, 50 tumours and 46 non-tumours) were analysed by Probe 
Electrospray Ionization (PESI) MS. AI by means of support vector machine (SVM) and 
random forest (RF) algorithms was employed. For each classifier, sensitivity, specific-
ity and accuracy were calculated.
Results: The overall diagnostic accuracy exceeded 94% in both the AI algorithms. For 
identification of HCC vs non-tumour tissue, RF was the best, with 98.2% accuracy, 
97.4% sensitivity and 99% specificity. For MFCCC vs non-tumour tissue, both algo-
rithms gave 99.0% accuracy, 98% sensitivity and 100% specificity.
Conclusions: The herein reported MS-based system, combined with AI, permits liver 
cancer identification with high accuracy. Its bench-top size, minimal sample prepara-
tion and short working time are the main advantages. From diagnostics to therapeu-
tics, it has the potential to influence the decision-making process in real-time with the 
ultimate aim of improving cancer patient cure.
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1  | INTRODUC TION

Liver cancer, including hepatocellular carcinoma (HCC) and mass-
forming cholangiocarcinoma (MFCCC), is the seventh most common 
cancer and the fourth leading cause of cancer death worldwide.1 
Despite a decrease in overall liver cancer mortality in Southern 
Europe and Japan, it has risen in some Northern and Central 
European countries, as well as in the United States, South America 
and Australia.2-4 In some countries, HCC resulting from steatohepa-
titis, such as non-alcoholic steatohepatitis (NASH) or non-alcoholic 
fatty liver disease (NAFLD), has increased.

Local therapies, such as radiofrequency ablation (RFA), hepatic 
resection, percutaneous ablations and transarterial treatments, are 
applied with curative intent,4,5 while liver transplantation is the first 
choice for a limited number of patients. Traditional surgical methods 
for intra-operative tissue identification are based on frozen section 
pathology analysis. This procedure, which involves rapid freezing, 
cutting, staining and examination, is time-consuming, laborious and 
more importantly lacks in specificity. Moreover, pathological diag-
nosis can be affected by artefacts introduced during sample prepa-
ration. Histological diagnosis is usually based on the morphological 
characteristics of tumour cells and tissues which vary from patient 
to patient and even in the same nodule of a single liver (the so called 
‘nodule in nodule’). Many different techniques have been applied 
in clinical settings: conventional morphological examination with 
Haematoxylin and Eosin (H&E) staining, immunohistochemistry and 
molecular biology.6 However, these procedures take 20-30 minutes, 
so a more reliable, time-efficient and less operator-dependent tech-
nique is needed.

While conventional tumour diagnosis is based on morphological 
changes of cells and tissues, the chemical composition of tissue is 
also important to grasp the full profile of a particular tissue cell type. 
Mass spectrometry (MS) was introduced to the clinical field over 
50 years ago and is commonly used to identify and quantify exog-
enous or endogenous molecules, like drugs, metabolites or proteins 
in tissue samples and blood by measuring the mass-to-charge ratio 
(m/z) of the molecular ions or their charged fragments.7,8 For exam-
ple, MS has been used as a powerful tool in screening for newborn 
congenital metabolic diseases.9 The MS profile can be used for clas-
sifying tissues and provides valuable prognostic information, such as 
tumour subtype and grade. Moreover, in recent years, MS technolo-
gies for tissue analysis have given promising results in refining the di-
agnosis and intra-operative evaluation of surgical margins in common 
cancers, such as breast and pancreatic cancers, glioma, lung cancer, 
brain tumours and HCC.10-17 These molecular-based approaches are 

mainly based on the identification of MS signals specific to the tu-
mour vs non-tumour tissue or typical of a specific tumour subtype. 
The alterations identified are usually attributed to the modification 
of cellular metabolism or the tumour microenvironment.

Recently, ambient probe electrospray ionization (PESI) MS has 
been applied for the diagnosis of human renal cell carcinoma and 
chemically induced murine HCC.18,19 The great advantage is the 
ability to generate ions directly from the tissues in real-time, with 
minimal sample pretreatment.20 The operational ease of use and the 
real-time assessment of tissue molecular information make MS ex-
tremely appealing, potentially meeting the requirements for routine 
clinical use.

With the aim to apply this novel methodology on liver cancer 
patients, we herein analysed a large dataset of Italian cancer pa-
tients using PESI-MS instrumentation. Mass spectra data from these 
samples were used to build new artificial intelligence (AI) data algo-
rithms. The system was validated in terms of concordance with a pa-
thologist to determine whether it could usefully assist the clinicians 
in the clinical setting.

2  | METHODS

2.1 | Patients

The study was approved by the Ethics Committee of Humanitas 
University, Humanitas Clinical and Research Center – IRCCS (protocol 
ID 1705/2017). The tumour and the corresponding non-tumour tissue 
samples were obtained from the institutional Cancer Center Bio-bank 
and were selected by the pathologist of reference. Inclusion criteria 
for the selection of patients were the availability of written informed 
consent and the availability of clinical, oncological and pathological 
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Key points

We applied a mass spectrometry and artificial intelligence-
based approach to primary liver cancer rapid identifica-
tion and classification. Once inter-laboratory confirmatory 
studies are conducted, the proposed methodology might 
be translated into clinical practice with a wide range of 
applications in surgical oncology. From diagnostics to 
therapeutics, it has the potential to influence the decision-
making process in real-time with the ultimate aim of im-
proving cancer patient cure.
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data. Patients whose data were missing were excluded. The samples 
in the certified bio-bank were originally collected without compromis-
ing their diagnostic integrity, meaning that the total tissue was more 
than sufficient to achieve the final histological diagnosis. The follow-
ing quality control procedures were used: the tumour and non-tumour 
samples were thinly sliced by the pathologist and alternately submitted 
for histological assessment (paraffin-embedded) or for biobanking in a 
mirror-image fashion. The term ‘mirror-image’ refers to embedding the 
frozen block so that its free, first-cut surface corresponds to the cut 
surface of the immediately adjacent paraffin-embedded block. Details 
of patients and tumours for all samples used in the study are shown in 
Tables S1 and S2.

2.2 | Samples collection

Once the surgical piece was removed from a patient, the surgeon 
placed it in a sterile container and delivered it to the Department 
of Pathology at room temperature. The pathologist selected a frag-
ment of representative tissue, carefully excluding any necrotic re-
gion, and the corresponding portion of non-tumour tissue that was 
equally preserved. The selected tissue sample was divided into 50-
100 mg (~0.5 cm3) portions, and immediately frozen in liquid nitro-
gen and stored at −80°C until analysis.

2.3 | Chemicals and reagents for MS

Triol-type polypropylene glycol (PPGT, MW 300, 700, 1500) stand-
ard solutions were obtained from Wako Chemicals and the calibra-
tion solution was prepared in 2-propanol 50%, NaCl 5%. Ethanol 
and 2-propanol were purchased from Carlo Erba (Cornaredo) at 
chromatographic grade. Water was purified using a Milli-Q system 
(Millipore).

2.4 | PESI-MS

Analysis was performed on a DPiMS-2020™ (Shimadzu Corp.) based 
on the PESI ion source coupled to a single quadrupole mass analyzer. 
Instrument performance was verified at the start of each day of anal-
ysis, checking mass values and peak intensity ratios of a PPG mix-
ture. For each sample, a 2 mm diameter piece of tissue was cut with 
a scalpel and homogenized with a PTFE pestle in 100 µL of ethanol/
water (50:50). Ten microliter of the homogenized solution was dis-
pensed in the solvent drip position of the sample plate and analysed. 
Analyses were performed in positive ion mode acquiring in full-scan 
mode in the range of m/z 10-2000. Mass spectra were acquired in 
full-scan continuum mode (peak profile) and tables containing all 
mass peaks information were exported using LabSolutions software 
(Shimadzu Corp). After that, the exported m/z peak list was sub-
jected to peak alignment (m/z tolerance 0.5 Da) and normalization 
on the TIC using eMSTAT Solution (Shimadzu Corp). The software 

eMSTAT was also used for multivariate partial least squares discri-
minant analysis (PLS-DA). MS parameters are shown in Table 1. Each 
tissue sample was analysed for 2 minutes in order to have a number 
of mass spectra sufficient to maximize signal-to-noise ratio and to 
maintain optimal ionization process, preventing loss of signal caused 
by PESI needle contamination.

2.5 | Application of artificial intelligence

Each 2-minute sample acquisition was arbitrary divided into frag-
ments of 10 seconds each. Mass spectra were averaged for every 
acquisition fragment and 12 mass spectra were exported for analy-
sis. The last two fragments were discarded in order to give a more 
consistent signal intensity. Thus, for each sample, 10 acquisition 
fragments were used for machine learning. As a first step, we tested 
the ability of the system to distinguish HCC and MFCCC from the 
respective non-tumour tissues. In the second step, we tested its 
ability to classify HCC separately from MFCCC, comparing one tu-
mour group against the other one. Two different algorithms, sup-
port vector machine (SVM) and random forest (RF), were tested for 
machine learning and classification, being both available with eM-
STAT Solution software (Shimadzu Corp.). Both models were evalu-
ated using the K-Fold cross-validation method (K = 10). The accuracy 
of these statistical models was evaluated in terms of concordance 
with pathologist classification. Statistical validation and evaluation 
of the SVM and RF models were done using the leave-many-out 
cross-validation method: for each classification model, all of the 
collected fragments were split into 10 sets and each set was then 
tested against the others used for machine learning. To prevent data 
leakage, data fragments from the same patient and sample were in-
cluded in the same cross-validation dataset.

3  | RESULTS

3.1 | Patients' clinical characteristics

According to the aforementioned selection criteria, the study com-
prised a consecutive cohort of 117 HCC and 50 MFCCC patients 
for a total of 167 patients, who underwent liver resection in the 
Department of Hepatobiliary and General Surgery of Humanitas 

TA B L E  1   Mass spectrometry parameters for hepatocellular 
carcinoma and mass-forming cholangiocarcinoma analyses

Polarity Positive

Mass range m/z 10-2000

Desolvation line 250°C

Heat block 50°C

Nebulizing gas 0 L/min

Drying gas 0 L/min
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University, Humanitas Clinical and Research Center in Milan (Italy) 
from 1 June 2011 to 31 December 2018. Among HCC patients, 
we collected 117 tumour and 105 non-tumour samples while for 
MFCCC, we collected 50 tumour and 46 non-tumour samples.

Of the HCC patients, 95 (82%) were men and 22 (18%) were 
women. The median age of cohort was 71 years (ranging from 27 to 
85). Most of the patients (91%) had underlying chronic hepatitis or 
cirrhosis, which was associated with HCV, HBV or alcohol in 28%, 
16% and 19% of the patients respectively. Sixty-two patients (53%) 
had microvascular invasion, while 14 (12%) also had macrovascular 
invasion. Among the MFCCC patients, 37 (74%) were men and 13 
(26%) were women. The median age of cohort was 67 years (ranging 
from 31 to 74). Most of the patients (78%) had an underlying normal 
liver with no known risk factors for developing such tumours. Thirty-
five patients (68%) had vascular invasion.

3.2 | PESI-MS analysis

Figure 1 shows two representative full-scan mass spectra, averaged 
from 10-second acquisition fragments, from the tumour-free part of 
the liver and the tumour counterpart from the same patient.

For each sample, 10 spectral fragments were extracted from the 
total ion chromatogram to meet the selection criteria, for a grand 
total of 3180. We applied multivariate statistical analysis to test 
whether these datasets were separate from each other (Figure 2). 
PLS-DA showed good separation of HCC from tumour-free tissues 
(Figure 2A), and MFCCC from tumour-free tissues (Figure 2B), 

while some overlapping dots from both groups still remained. 
PLS-DA also distinguished HCC from MFCCC (Figure 2C) but not 
the non-tumour samples of HCC patients vs those of MFCCC pa-
tients (Figure 2D).

Two kinds of machine learning algorithm were then applied, 
SVM and RF, to distinguish the following combinations: HCC vs 
tumour-free tissues, MFCCC vs tumour-free tissues and HCC vs 
MFCCC vs tumour-free tissues. We tested the accuracy of each 
model by the leave-one-out cross-validation method: technically, 
all groups were split into 10 separate sets and each set was tested 
against the others. The results for each algorithm are reported in 
Tables S3-S5 and summarized in Figure 3. For HCC vs tumour-free 
tissues, 2220 acquisition spectral fragments were used for valida-
tion. Concordance with the pathological diagnosis was 83.2% for 
SVM, with 262 extracted fragments resulting false positive and 
110 false negative of 2220 (12% and 5% respectively). In this case, 
sensitivity was 77.6% and specificity was 89.5%. RF gave higher 
concordance than SVM, with 2100 fragments correctly assigned 
(94.6%): non-concordant cases included 60 false negatives and 60 
false positives, with a sensitivity of 94.9% and a specificity of 94.3% 
(Figure 3A; Table S3).

For MFCCC vs tumour-free tissue, 925 of 960 fragments used 
for testing the SVM algorithm were correctly assigned (96.4%). 
Of the remaining 35 fragments, 10 were false positive (specific-
ity 97.8%) and 25 were false negative (sensitivity 95%). The con-
cordance rate with pathological diagnosis for the RF algorithm 
was 98.3%, with a sensitivity of 99.8% and a specificity of 96.7% 
(Figure 3B; Table S4).

F I G U R E  1   Representative mass spectra of non-tumour liver tissue (upper panel) and hepatocellular carcinoma (HCC) (lower panel) from 
the same patient. Each spectrum is the average of a 10-second acquisition fragment
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We applied this system to classify the histological types of liver 
cancer, distinguishing HCC from MFCCC. The accuracy of SVM was 
95.1%: among the non-concordant fragments, 37.1% were false pos-
itive, 42.3% were false negative and 20.6% were misclassified, that 
is mass spectra from HCC classified as MFCCC or vice versa. For 
RF, the accuracy was 94%, with 120 fragments not showing con-
cordance with the pathological diagnosis; 14 of these (11.7%) were 
misclassified (Figure 3C; Table S5).

The final PESI-MS system judgement is based on the majority de-
cisions on the 10 fragments extracted. Technically, if five or more ac-
quisition fragments in a single specimen are classified correctly, the 
sample is judged as concordant; if fewer than five, the judgement is 
non-concordant. This approach gave a higher concordance rate than 
the previous one (Tables S6-S8), identifying HCC separately from 

tumour-free tissue reached 88.7% in SVM (25 of 222 specimens 
were discordant) and 98.2% in RF (with only four samples not con-
cordant). For the diagnosis of MFCCC from tumour-free tissue, the 
concordance rate was 99.0% for both algorithms, with only one false 
negative of 96 cases. The classification of tumour types reached 
98.5% concordance in SVM, where three cases were misclassified 
(one false positive, one false negative and one HCC classified as 
MFCCC), and 94.9% in the RF algorithm, with 10 misclassified cases.

4  | CONCLUSIONS

Complete surgical resection with negative margins remains 
an important pillar in surgery for liver tumours. And accurate 

F I G U R E  2   Partial least squares discriminant analysis score plot of (A) hepatocellular carcinoma (HCC) vs non-tumour liver tissue; (B) 
mass-forming cholangiocarcinoma (MFCCC) vs non-tumour liver tissue; (C) HCC vs CCC; and (D) non-tumour HCC vs non-tumour MFCCC

F I G U R E  3   Support vector machine (SVM) and random forest (RF) machine learning algorithm results on mass spectra fragments. Green= 
Concordant, Grey=Not corcordant, Blue=False negative, Yellow=False positive, Red=Misclassified



3122  |     GIORDANO et Al.

intra-operative evaluation of residual tumours on the resection 
margin or classification of small new nodules of uncertain origin 
found during surgery is the critical step to improve overall patient 
survival. Currently, the presence of cancer cells in tumour mar-
gins is scanned intra-operatively by ultrasonography with reliable 
results21 or less frequently by rapid frozen pathology. However, 
several limitations still remain and we have to cope with those by 
alternatives.

The MS techniques that have been successfully used to char-
acterize tumour resection margins are currently grouped into two 
main categories: MS imaging (MSI) of tissue slices, and direct tis-
sue sampling under ambient conditions.22-24 MSI can be very use-
ful for tissue classification based on the distribution of specific 
molecules, but its translation into routine clinical and surgical set-
ting is complex. Moreover, because of its time-consuming sample 
preparation, MSI does not overcome the conventional immunocy-
tochemical staining. Since its introduction into the operating room 
(OR) over a decade ago,25 a number of MS techniques have been 
developed and classified into two main groups: online direct in-
tra-operative MS and offline sampling probe-based methods. The 
online techniques employ classical tissue manipulation methods 
that, during surgery, cause the thermal or mechanical disintegra-
tion of tissues, producing an aerosol of charged droplets which 
can yield gas phase ions. The aerosol is sampled with a vacuum 
pump and delivered to the mass spectrometer inlet orifice. Two of 
the most commonly used online approaches are Rapid Evaporative 
Ionization Mass Spectrometry (REIMS)13,26,27 and the MasSpec 
Pen.17,28 All data points in REIMS are acquired and analysed within 
3 seconds, with specificity that ranges from 92% to 100% for pos-
itive tissue identification.29 Offline methods require a small tis-
sue portion to be sampled and transported to the MS where it is 
analysed. While the online solutions last a few seconds but are 
isolated from the pathology, offline approaches take longer but 
are integrated with the pathology.

In this study, we developed a new automated system to identify 
and classify, with high diagnostic accuracy, liver cancer tissue from a 
large dataset of patients. While both positive and negative MS ion-
ization modes were tested in developing the system, only positive 
ion mode gave valuable data being capable of discriminating the can-
cer from non-can

cer specimens (data not shown). This could be the consequence 
of an alteration, during cancer progression, to a larger number of 
molecular species that dominate the mass spectrum in positive ion 
mode.30 Studies are ongoing to address this point, with metabolomics 
approaches, in order to identify molecular species, mainly involved 
in this process. Ninety-six MFCCC and 222 HCC were collected and 
analysed by our MS instrument combined with a dedicated AI cal-
culation model. The mass spectra of 10 fragments, averaged from a 
10-second acquisition for each analysis, were exported to the da-
tabase; a total of 3180 mass spectra were used for statistical anal-
ysis in order to minimize errors caused by instrumental noise and 
ionization variability. The PLS-DA analysis showed a good separa-
tion of non-tumour samples vs tumour samples (Figure 2A,B) and 

between the two different tumour histotypes (Figure 2C) showing 
the ability of the system to distinguish these samples. As reported 
in Figure 2D, the non-tumour samples were not pooled but each pa-
tient had their own non-tumour control sample, taken and assessed 
by the hepatobiliary pathologist. Comparing non-tumour samples of 
HCC patients vs those of MFCCC patients, there is a minor separa-
tion using PLS-DA. From the biological and clinical standpoints, it 
is reasonable that these two non-tumour samples were not com-
pletely overlapped: the non-tumoural samples were free of cancer 
cells but they might differ in the amount of steatosis, fibrosis and 
inflammation. However, such diversity of non-tumour tissue was not 
the object of this research and might be further investigated in the 
next future.

Although there were reports of differences in molecular pat-
terns between tumour and tumour-free liver tissues,10,27,28 they 
chiefly focus on the identification of each signal alteration in a spe-
cific tissue type.31 In our study, we made the most of whole spec-
tra without selecting specific peaks (Figure 2). By appropriately 
augmenting and controlling the size of database, this system gains 
more accuracy in prediction power. As our initial aim is to make bi-
nary judgement of tumour and non-tumour, we decided to employ 
renowned machine learning algorithm, such as SVM and RF.32,33 
These models, compared to deep learning algorithms like artificial 
neural networks, can be implemented with relatively smaller data-
set, being probably better suited for clinical samples, and are eas-
ier and faster to train. Their predictive accuracy was validated by 
the K-fold cross-validation method (K = 10), that is all mass spectra 
acquired were split into 10 sets and each set was tested against 
the others used for training. We took care not to include the mass 
spectra from the same analysis into the simultaneous set used for 
training and testing, to avoid over-fitting of algorithm. Under this 
condition, the power of prediction was 95% in all cases. For the 
classification of HCC and tumour-free tissue class, RF was the best 
with 98.2% accuracy; for MFCCC vs tumour-free tissue, accuracy 
was 99% in both SVM and RF, with only one misclassified sample. 
This means that only one patient of 96 was misdiagnosed by both 
algorithms.

While MFCCC accounts for only 5% of primary liver malignan-
cies, it is often difficult to make a differential diagnosis from HCC, 
and a definitive conclusion is vital to choose appropriate thera-
peutics. Our multivariate statistical analysis showed the possibility 
of the system to distinguish tumour-free tissues from both HCC 
and MFCCC, with limited overlap causing false positive or nega-
tive outcomes. Moreover, PLS-DA can distinguish the two tumour 
types. This is pivotal as each histotype may require a different 
therapeutic strategy. Indeed, even though these two tumours 
usually have different radiological features that are used for dif-
ferential diagnosis, several other factors can complicate their clin-
ical management.34 An accurate and valid method to distinguish 
HCC from MFCCC on the basis of the physicochemical parame-
ters of each tumour would be of paramount importance in clinical 
settings – especially when only an ambiguous decision is possible 
from the radiological findings. Of note, this last result, which is 
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the capability of an automated system to distinguish between two 
different tumour histotypes, has never been reported and open 
important applications in the burgeoning field of AI in medicine 
and surgery.

Importantly, the approach used in this study requires minimal 
sample pretreatment with almost real-time analysis, making it pos-
sible to determine tumour resection margins in surgical practice. 
Several approaches are now showing increasingly more frequently 
how MS, combined with AI, is a reliable emerging technique for 
tissue classification. This is possible using different instrumental 
technologies, with different levels of complexity. The high ac-
curacy of the results presented here, obtained with entry-level 
equipment, demonstrates that this approach might be transferred 
into clinical practice, once inter-laboratory confirmatory studies 
are conducted. PESI-MS is a bench-top, fully automated system 
that can be used by personnel with limited analytical training. Its 
positioning in the OR cuts down the steps needed for conven-
tional pathological diagnosis, which risk introducing artefacts. 
Intra-operative pathological examination of frozen sections is 
often time-consuming and sometimes unreliable. An objective 
MS-based approach for direct tissue analysis may help to tackle 
some of the challenges still encountered in daily clinical practice, 
including the difficulty in providing a detailed histological defini-
tion, inter-observer variance across centres and a delay in diag-
nosis. A clinical trial on this MS-based technology is already on 
course in Japan. Preliminary data are promising and will be object 
of our future publication.

The main limitation of this study is that all samples came from 
the same clinical centre. This could limit the machine learning ability 
to cope with inter-institutional differences in specimens. However, 
even considering that the results reported need to be confirmed in 
other centres, this study provides compelling evidence that the pro-
posed methodology can be translated into clinical practice with a 
wide range of applications in surgical oncology. From diagnostics to 
therapeutics, it has the potential to influence the decision-making 
process in real-time with the ultimate aim of improving cancer pa-
tient cure.
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