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Abstract

Motivation: Few Bayesian methods for analyzing high-dimensional sparse survival data provide scalable variable selec-
tion, effect estimation and uncertainty quantification. Such methods often either sacrifice uncertainty quantification by
computing maximum a posteriori estimates, or quantify the uncertainty at high (unscalable) computational expense.

Results: We bridge this gap and develop an interpretable and scalable Bayesian proportional hazards model for pre-
diction and variable selection, referred to as sparse variational Bayes. Our method, based on a mean-field variational
approximation, overcomes the high computational cost of Markov chain Monte Carlo, whilst retaining useful fea-
tures, providing a posterior distribution for the parameters and offering a natural mechanism for variable selection
via posterior inclusion probabilities. The performance of our proposed method is assessed via extensive simulations
and compared against other state-of-the-art Bayesian variable selection methods, demonstrating comparable or bet-
ter performance. Finally, we demonstrate how the proposed method can be used for variable selection on two tran-
scriptomic datasets with censored survival outcomes, and how the uncertainty quantification offered by our method
can be used to provide an interpretable assessment of patient risk.

Availability and implementation: our method has been implemented as a freely available R package survival.svb
(https://github.com/mkomod/survival.svb).

Contact: mk1019@ic.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The development of high-throughput sequencing technologies has
led to the production of large-scale molecular profiling data, allow-
ing us to gain insights into underlying biological processes (Widłak,
2013). One such technology is microarray sequencing, in which
mRNA counts are used to describe gene expression. Such data,
known as transcriptomics, are widely used in the biomedical domain
and when analyzed alongside survival times have provided extraor-
dinary opportunities for biomarker characterization and prognostic
modeling (Bøvelstad et al., 2007; Lightbody et al., 2019; Lloyd
et al., 2015; Lu et al., 2021). However, profiling data are often
high-dimensional, which introduces several statistical challenges
including: (i) variable selection, (ii) effect estimation of the features,
(iii) uncertainty quantification and (iv) scalable computation. The

task of variable selection is particularly important, as few genes typ-
ically have an effect on the outcome. Motivated by clinical applic-
ability, we propose a state-of-the-art scalable (variational) Bayesian
variable selection method for the proportional hazards model
(PHM).

In recent years, several methods have been proposed to analyze
sparse high-dimensional data, with one of the most popular being
the LASSO (Tibshirani, 1996). As biomedical studies are often con-
cerned with clinical phenotypes, such as time to disease recurrence
or overall survival time, these methods have been adapted to support
survival analysis (Antoniadis et al., 2010; Witten and Tibshirani,
2010). For instance, the LASSO, ridge and elastic-net penalties have
all been extended to the PHM (Gui and Li, 2005; Simon et al.,
2011; Tibshirani, 1997; Zou and Hastie, 2005). More recently,
Bayesian shrinkage and variable selection methods have grown in
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popularity (Bai et al., 2021; Bhadra et al., 2019; Carvalho et al.,
2010; Lewin et al., 2019; Li and Zhang, 2010; O’Hara and
Sillanpää, 2009; Park and Casella, 2008), with several methods
being extended to survival data (Maity et al., 2020; Nikooienejad
et al., 2020; Tang et al., 2017).

Bayesian approaches to variable selection are popular, not least
since the relevance of a covariate can be assessed simply by comput-
ing the posterior probability that it is included in a model. This
recasts variable selection as a model selection problem (George and
McCulloch, 1993; Mitchell and Beauchamp, 1988), with every pos-
sible model assigned an individual posterior probability. One of the
most popular such model selection priors is the spike-and-slab prior,
see (Banerjee et al., 2021) for a recent survey. However, exact pos-
terior computation involves summing over 2p models, where p is the
number of covariates, which is intractable for even moderate p.
Markov chain Monte Carlo (MCMC) methods avoid this problem
but are known to have difficulty efficiently exploring the model
space for high-dimensional covariates (Ormerod et al., 2017), espe-
cially for the problem sizes found in many modern omics studies
which motivate our work. This high computational cost has led to
several methods either making continuous relaxations, giving rise to
continuous shrinkage priors (Banerjee et al., 2021; O’Hara and
Sillanpää, 2009), or computing only maximum a posteriori (MAP)
estimates, thereby not offering the full Bayesian machinery. Since we
wish to preserve certain interpretable features arising from the
original discrete model selection approach, such as inclusion
probabilities of particular covariates for variable selection, we
instead turn to variational inference.

Variational inference (VI) is a popular scalable approximation
technique, which has proven to be an effective tool for approximate
Bayesian inference in many settings. VI involves minimizing the
Kullback–Leibler divergence between a family of tractable distribu-
tions, called the variational family, and the posterior distribution;
thereby recasting conditional inference as an optimization problem.
The resulting minimizer is then used for downstream Bayesian infer-
ence. Though the approximation does not provide exact Bayesian
inference, computationally convenient variational families can dra-
matically increase scalability. A common choice being mean-field
families, under which the model parameters are independent. For a
detailed review of VI, we direct the reader to Blei et al. (2017) and
Zhang et al. (2019).

We propose a scalable and interpretable Bayesian PHM using a
sparsity-inducing spike-and-slab prior with Laplace slab and Dirac
spike, referred to as sparse variational Bayes (SVB). Since the poster-
ior is computationally intractable, we use a mean-field variational
approximation based on a factorizable family of spike-and-slab dis-
tributions, thereby preserving certain desirable discrete model selec-
tion aspects while providing scalable approximate Bayesian
inference. We derive a coordinate-ascent algorithm for our imple-
mentation and investigate its performance in extensive simulations,
comparing it against the posterior obtained via MCMC and demon-
strating that the variational Bayes posterior can be used as a viable
alternative, whilst being orders of magnitude faster to compute. We
further compare with other state-of-the-art Bayesian variable selec-
tion methods, demonstrating comparable or better performance in
many settings. Finally, we analyze two transcriptomic datasets
involving ovarian and breast cancer data with censored survival out-
comes, yielding biologically interpretable results.

Various versions of this sparse variational family have been
employed in linear and logistic regression models (Carbonetto and
Stephens, 2012; Logsdon et al., 2010; Ormerod et al., 2017; Ray
et al., 2020; Ray and Szabó, 2021; Titsias and Lázaro-Gredilla,
2011) with some of these works specifically motivated by high-
dimensional genomic applications. While most of these works use
Gaussian distributions for the slab component, we instead follow
Ray and Szabó (2021) in using a Laplace prior slab since Gaussian
prior slabs are known to cause excessive shrinkage leading to poten-
tially poor performance, even when exact posterior computation is
possible (Castillo and van der Vaart, 2012). Our work can thus be
viewed as extending ideas from the sparse VI literature to the setting
of survival analysis under censoring.

More generally, (not necessarily sparse) VI has proven to be an
effective tool for approximate Bayesian inference and has seen wide
use in several settings, including linear and logistic regression
(Jaakkola and Jordan, 1996; Knowles and Minka, 2011), group fac-
tor analysis (Klami et al., 2015), topic modeling (Blei and Lafferty,
2007), clustering (Teschendorff et al., 2005) and Gaussian processes
(Opper and Arachambeau, 2009) amongst others, with many of
these methods employed in genomic and transcriptomic studies
(Logsdon et al., 2010; Papastamoulis et al., 2014; Svensson et al.,
2020; Zhang and Flaherty, 2017).

2 Materials and methods

Notation: Let D ¼ fðti; di; xiÞgni¼1 denote the observed data, where
ti 2 R

þ is an observed (possibly right censored) survival time, di 2
f0;1g is a censoring indicator with di ¼ 0 if the observation is right
censored and di ¼ 1 if the observation is uncensored, and xi ¼
ðxi1; . . . ; xipÞ> 2 R

p is a vector of explanatory variables.

2.1 Survival analysis and the proportional hazards

model
Let T denote a random variable for an event time with density f(t)
and cumulative distribution function F(t). Then the survival
function, the probability a subject survives past time t, is given by

SðtÞ ¼ 1� FðtÞ ¼ exp
�
�
ðt

0

hðsÞds
�
¼ exp

�
�HðtÞ

�
; (1)

where HðtÞ ¼
Ð t
0 hðsÞds is the cumulative hazard rate and hðtÞ ¼

f ðtÞ=SðtÞ is the hazard rate, the instantaneous rate of failure at time
t. Importantly, expressing S(t) in terms of the hazard function h pro-
vides a natural mechanism for analyzing survival times by assuming
a form for h (Clark et al., 2003; Ibrahim et al., 2001).

One such form, used to quantify the effect of features collected
alongside survival times, is the proportional hazards model,
wherein,

hðt; x; bÞ ¼ h0ðtÞ exp ðb>xÞ; (2)

where h0ðtÞ is a baseline hazard rate and b ¼ ðb1; . . . ; bpÞ> 2 R
p are

the model coefficients corresponding to the potential covariates of
interest. Typically, estimating b is done by maximizing the partial
likelihood,

LpðD; bÞ ¼
Y
fi:di¼1g

exp ðb>xiÞP
r2RðtiÞ exp ðb>xrÞ

; (3)

where RðtiÞ ¼ fr : tr � tig (Cox, 1972, 1975). Under the partial like-
lihood, the baseline hazard rate h0ðtÞ is treated as a nuisance param-
eter and not specified, meaning the survival function is not directly
accessible without further assumptions on the hazard rate. This ap-
proach is commonly used when the main interest is on quantifying
the effect of covariates on the survival time to understand the under-
lying mechanisms, rather than purely for predictive purposes. Since
our focus is on variable selection and analyzing effect sizes, we use
the partial likelihood to compute the posterior.

The use of the partial likelihood (3) is common in Bayesian sur-
vival analysis and can be understood via multiple Bayesian and fre-
quentist justifications (Ibrahim et al., 2001). For the frequentist, the
partial likelihood is the empirical likelihood with the maximum like-
lihood estimator (MLE) for the cumulative baseline hazard function
H0 plugged in, i.e. the profile likelihood (Murphy and Van Der
Vaart, 2000). Using it in a Bayesian way thus means we are fitting a
prior to our parameter of interest b and an MLE on the nuisance
parameter H0. For the Bayesian, assigning a Gamma process prior
to H0, marginalizing the posterior over H0 and taking the limit as
the prior on H0 becomes non-informative, gives a marginal posterior
for b exactly based on the partial likelihood (3) (Kalbfleisch, 1978).
Thus using (3) can be viewed as using a diffuse Gamma process
prior on the nuisance parameter H0.
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2.2 Prior and variational family
We consider a spike-and-slab prior (George and McCulloch, 1993;
Mitchell and Beauchamp, 1988) for the model coefficients b. Our
choice of prior is conceptually natural for variable selection prob-
lems as it leads to interpretable inference regarding the inclusion
probabilities of individual features. However, unlike the original
formulation which uses Gaussian slabs, we use Laplace slabs, since
Gaussian slabs are known to overly shrink the true large signals
(Castillo and van der Vaart, 2012; Ray and Szabó, 2021). Formally,
the prior distribution, Pðb; z;wÞ, has hierarchical representation,

bjjzj �ind
zjLaplaceðkÞ þ ð1� zjÞd0

zjjwj �ind
BernoulliðwjÞ

wj �iid Betaða0; b0Þ;

(4)

where d0 is a Dirac mass at zero, Laplace(k) has density function
k
2 e�kjxj on R and k; a0;b0 > 0. Placing a hyperprior on ðwjÞ allows
mixing over the sparsity level and allows adaptation to the unknown
sparsity. The posterior density is proportional to the partial
likelihood Lp in (3) times the joint prior density, formally,

pðb; z;wjDÞ / LpðD; bÞpðb; z;wÞ; (5)

where b ¼ ðb1; . . . ; bpÞ> 2 R
p; z ¼ ðz1; . . . ; zpÞ> 2 f0; 1gp and w ¼

ðw1; . . . ;wpÞ> 2 ½0;1�p.
Since the posterior (5) is computationally intractable, we use a

variational approximation. For the variational family, we choose a
mean-field family given by the product of independent spike-and-
slab distributions with normal slab and Dirac spike for each
coefficient:

Q ¼ Ql;r;c ¼ �
p

j¼1
½cjNðlj; r

2
j Þ þ ð1� cjÞd0�

� �
; (6)

where lj 2 R;rj 2 R
þ; cj 2 ½0; 1�. The notation � means a product

measure implying coordinate independence, so that b � Ql;r;c

means

bj�
ind

cjNðlj; r
2
j Þ þ ð1� cjÞd0:

Our choice of Q thereby provides scalability and maintains the
property of variable selection via the Dirac mass, since the quantities
cj ¼ Qðbj 6¼ 0Þ are the inclusion probabilities. The variational
posterior is then given by finding an element Q 2 Q minimizing the
KL divergence between Q and the posterior distribution Pð�jDÞ,

~P ¼ argmin
Ql;r;c2Q

KL
�

Ql;r;c jjPð�jDÞ
�
; (7)

which is then used for inference. Note this approximation has O(p)
parameters compared to the full posterior dimension Oð2pÞ. As with
all mean-field approximation, dependent information between the
components of b are lost, such as whether two coefficients bi and bj

are likely to be selected simultaneously or not.

2.3 Coordinate-ascent algorithm
A convenient method for computing the mean-field variational pos-
terior ~P is coordinate-ascent variational inference (CAVI) (Blei
et al., 2017). In CAVI, the parameters lj; rj; cj for j ¼ 1; . . . ;p are se-
quentially updated by finding the values that minimize the KL diver-
gence between the variational family and the posterior, whilst all
other parameters are kept fixed, iterating until convergence. This
reduces the overall optimization problem to a sequence of one-
dimensional optimization problems.

Minimizing the objective (7) is intractable for the Bayesian PHM
due to the form of likelihood (3) and so we instead minimize an
upper bound for the KL divergence. Such surrogate type functionals
are well-used in variational inference, for example in logistic regres-
sion (Depraetere and Vandebroek, 2017; Jaakkola and Jordan,
1996; Knowles and Minka, 2011) and can lead to an increase in
accuracy.

The component-wise variational updates for lj and rj are given
by the minimizers of

f ðlj; l�j;r; c; zj ¼ 1Þ ¼X
fi:di¼1g

�
log

X
r2RðtiÞ

Mðxrj; lj; rjÞPjðxr;l;r; cÞ � ljxij

�
þkrj

ffiffiffiffiffiffiffiffi
2=p

p
e�l2

j =ð2r2
j Þ þ kljð1� 2Uð�lj=rjÞÞ

(8)

and

gðrj; l; r�j; c; zj ¼ 1Þ ¼X
fi:di¼1g

�
log

X
r2RðtiÞ

Mðxrj; lj; rjÞPjðxr;l; r; cÞ
�

þkrj

ffiffiffiffiffiffiffiffi
2=p

p
e�l2

j =ð2r2
j Þ þ kljð1� 2Uð�lj=rjÞÞ � log rj

(9)

where Mðxrj;lj; rjÞ ¼ expðljxrj þ 1
2 r2

j x2
rjÞ; Pjðxr;l; r; cÞ ¼

Q
k 6¼jðckM

ðxrk;lk; rkÞ þ ð1� ckÞÞ and U denotes the CDF of the standard nor-
mal distribution. The minimizers of these expressions do not have
closed-form solutions, and therefore optimization routines are
needed to find them, for instance via Brent’s method (Brent, 1973).
Finally, the component-wise variational update for cj is given by
solving,

log
cj

1� cj

¼ log
a0

b0
� krj

ffiffiffiffiffiffiffiffi
2=p

p
e
�

l2
j

2r2
j þ kljð1� 2U �

lj

rj

� �0@ 1A
þ
X
fi:di¼1g

 
log

X
r2R tið Þ

M xrj; lj;rjð ÞPj xr; l;r; cð Þ

� log
X

r2R tið Þ
Pj xr; l; r; cð Þ � ljxijÞþlog

ffiffiffi
2
pffiffiffi
p
p

rjk

!
þ 1

2

(10)

A full derivation of these expressions is provided in Supplementary
Section SA.

Algorithm 1 summarizes the CAVI algorithm. We denote the
RHS of (10) by fðcj; l; r; c�jÞ, and assess convergence by computing
the change in l; r and c after each iteration, stopping when the total
absolute change is below a specified threshold (e.g. 10�3). While the
evidence lower bound (ELBO) is often used to assess convergence,
the ELBO is not analytically tractable in the present setting, which
instead requires computationally expensive Monte Carlo integration
to evaluate it. For this reason, we instead choose to assess conver-
gence using the absolute change in l; r and c.

Due to the non-convex objective in (7), CAVI generally only
guarantees convergence to a local optimum, and therefore can be
sensitive to initialization (Blei et al., 2017). We found this to be the
case for our method, particularly for l and c, therefore providing
good starting values is generally important (see Supplementary
Section SD for more details). In turn, we initialized l using the
LASSO with a small regularization hyperparameter, since l corre-
sponds to the unshrunk means if the variables are included in the
model, and c as ð0:5; . . . ; 0:5Þ>, since this corresponds to an initial
inclusion probability of 0.5 for each feature. We found the proposed
method is less sensitive to initial value of r, for example initializing
r as ð0:05; . . . ; 0:05Þ> is sufficient.

Algorithm 1: CAVI for VB approximation to posterior (5)

1: require D; k; a0;b0

2: Initialize l; r; c
3: while not converged

4: for j ¼ 1; . . . ; p

5: lj  argminlj2R f ðlj; l�j; r; c; zj ¼ 1Þ // (8)

6: rj  argminrj2Rþ gðrj; l; r�j; c; zj ¼ 1Þ // (9)

7: cj  sigmoid fðcj; l; r; c�jÞ // (10)

8: return l; r; c.

3920 M.Komodromos et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac416#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac416#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac416#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac416#supplementary-data


2.4 Parameter tuning
The proposed method involves three prior parameters k; a0 and b0

defined in (4), where k controls the shrinkage imposed on bjjzj ¼ 1,
with large values imposing more shrinkage, and a0 and b0 control
the shape of the Beta distribution, whose expectation a0=ða0 þ b0Þ
reflects the a priori proportion of non-zero coefficients. Generally,
our method is not particularly sensitive to the prior parameters (see
Supplementary Section SD for a numerical investigation) and in
practice using sensible a priori choices is appropriate for most
settings. For example, if it is believed there are a small number of
non-zero coefficients with moderate effect sizes, taking a0 as a small
constant (such as 1; 10; p=100), b0 ¼ p and k between 0.5 and 2.0 is
appropriate.

If an a priori choice is unavailable, the prior parameters can be
tuned using the data. To do so, we suggest performing a grid search
over a predefined set of values, selecting the element that maximizes
a given goodness of fit measure, several options of which are pre-
sented in Supplementary Section SB. Furthermore, when tuning a0

and b0, to limit computation we suggest fixing b0 and searching
across a set of values for a0, thereby exploring different values of the
a priori inclusion probability.

2.5 Implementation
A freely available implementation is available for the R program-
ming language via the package survival.svb, with functions
available for fitting and evaluating models.

3 Simulation study

We use simulations to validate the proposed method, referred to as
SVB. Firstly, we compare the variational posterior to the posterior
obtained via MCMC, assessing whether our approximation can be
used as a viable alternative. Secondly, we compare against other
state-of-the-art Bayesian variable selection methods for the PHM. R
scripts to reproduce our results can be found at https://github.com/
mkomod/svb.exp.

3.1 Simulation design
Data are simulated for i ¼ 1; . . . ; n observations, each having a
survival time ti, censoring indicator di and p continuous predictors
xi 2 R

p. The survival time is sampled independently from
T jxi;b0; h0, which has density f ðt; x; b0; h0Þ ¼ h0ðtÞ exp

ðb>0 x� eb>0 x
Ð t
0 h0ðsÞdsÞ, where we have taken h0ðtÞ ¼ 1 and where

the coefficient vector b0 2 R
p contains s non-zero elements with val-

ues sampled iid. uniformly from ½�2:0;�0:5� [ ½0:5; 2:0� and indices
chosen uniformly at random. To introduce censoring, we sample

di�iidUð0; 1Þ, letting di ¼ Iðdi > cÞ where c 2 ½0; 1� is the censoring

proportion, and set ti  t0i where t0i�
ind

Uð0; tiÞ if di ¼ 0, leaving ti un-
changed otherwise. Finally, the predictors are generated from one of
four different settings designed to examine the behavior under
varying degrees of difficulty:

• Setting 1, an independent setting where xi�iidNð0p; IpÞ.
• Setting 2, a fairly challenging setting where predictors are moder-

ately correlated within groups and independent between groups,

formally xi�iidNð0;RÞ with diagðRÞ ¼ 1; Rij ¼ 0:6 for i 6¼ j; i; j ¼
50kþ 1; . . . ; 50ðkþ 1Þ; k ¼ 0; . . . ;p=50� 1; Rij ¼ 0 otherwise.

The setting is similar to Tang et al. (2017).
• Setting 3, a challenging setting where xi�iidNðl;RÞ with l;R

estimated from the design of the TCGA dataset analyzed in

Section 4.1. The s causal variables are randomly selected to

correspond to features with a variance of at least 1.0.
• Setting 4, a realistic setting where the first p predictors are taken

from the TCGA dataset analyzed in Section 4.1 and the s causal

features are selected as in Setting 3.

To evaluate the methods, we examine the accuracy of the corre-
sponding point estimates, quality of the variables selected, and (if ap-
plicable) the uncertainty quantification. The point estimates are
assessed via the ‘2 � error; jjb0 � bbjj and the ‘1 � error; jb0 � bbj,
where bb is either a MAP estimate for b or the posterior mean if a distri-
bution is available. For the variables selected the: (i) true positive rate
(TPR) (ii) false discovery rate (FDR) and (iii) area under the curve
(AUC) of the receiver operator characteristic curve are computed. For
the TPR and FDR a coefficient is considered to have been selected if
the posterior inclusion probability is at least 0.5. Finally, regarding un-
certainty quantification, we evaluate the marginal credible sets by com-
puting the: (i) empirical coverage, i.e. the proportion of times the true
coefficient b0;j is contained in the credible set, and (ii) set size, given by
the Lebesgue measure of the set. Details regarding the construction of
the credible sets are presented where appropriate. For all metrics, we
report the median, 5% and 95% quantiles across 100 replicates unless
otherwise stated.

3.2 Simulation results
3.2.1 Comparison to MCMC

To assess how well the variational posterior matches the target
(computationally challenging) posterior from (5), we compare the
performance of our approach against the approximate yet asymptot-
ically exact posterior obtained via MCMC. To do so, data is gener-
ated as described in Section 3.1, taking ðn; p; sÞ ¼ ð200;1000; 10Þ
and c 2 f0:25; 0:4g, where we have kept n and p small so we can
run our MCMC sampler in a reasonable amount of time. The
MCMC sampler (described in Supplementary Section SC.1) was run
for 10;000 iterations with a burn-in period of 1; 000 iterations. For
both methods, we used prior parameters k ¼ 1; a0 ¼ 1 and b0 ¼ p.
Results are presented in Table 1.

Regarding the point estimates, for both the MCMC and the vari-
ational posteriors we took bb ¼ ðbb1; . . . ; bbpÞ 2 R

p as the posterior
mean, which for the latter is given by bbj ¼ cjlj. Promisingly, both
methods produce similar results, with near identical performance in
all settings (Table 1). In particular, the similarity of the ‘2-error and
‘1-error suggests the posterior means are near identical. In terms of
variable selection, both methods performed similarly. In particular,
the TPR is comparable across the different settings, suggesting both
methods are selecting a similar set of truly associated features.
However, the upper quantile for the FDR is slightly larger for the
variational posterior, meaning the MCMC posterior selects fewer
spurious variables.

Finally, we examine the uncertainty quantification of each
method via 95% marginal credible sets Sj; j ¼ 1; . . . ; p, which are
given by: Sj ¼ Ij if the posterior inclusion probability is greater than
0.95, Sj ¼ f0g if the posterior inclusion probability is <0.05, and
Sj ¼ Ij [ f0g otherwise, where Ij is the smallest interval from the
continuous component of our posterior such that Sj contains 95% of
the posterior mass. As expected, for the non-zero coefficients, the
coverage of the MCMC posterior is slightly better than the coverage
of the variational posterior (Table 2), meaning the credible sets of
the variational posterior are sometimes not large enough to capture
the true non-zero coefficients. This is further reflected by the smaller
set sizes, highlighting the well-known fact that VI can underestimate
the posterior variance (Blei et al., 2017; Carbonetto and Stephens,
2012; Ray et al., 2020; Zhang et al., 2019). Promisingly, the cover-
age of the zero coefficients is equal to one for both methods, mean-
ing the credible sets contain zero, and typically, as reflected by the
set size, contain only zero.

Overall, the variational posterior displays similar performance
to the MCMC posterior in key aspects for this setting with p¼1000
and can be computed orders of magnitude faster (Table 1). Our
results highlight that the variational posterior is particularly good at
capturing the key features (posterior means and inclusion probabil-
ities) and provides reasonable uncertainty quantification for individ-
ual features.
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3.2.2 Comparison to other methods

We perform a large-scale simulation study to empirically compare
the performance of our method to two Bayesian variable selection
methods. Within our study, data is generated as described in Section
3.1, taking ðn; p; sÞ ¼ ð500;5000; 30Þ and c 2 f0:25;0:4g for all set-
tings. Notably, under such a setting running MCMC would be com-
putationally prohibitive, as highlighted in the previous section.

We compare against BhGLM (Tang et al., 2017), a spike-and-
slab LASSO method that uses a mixture of Laplace distributions
with one acting as the spike and the other the slab, and BVSNLP

(Nikooienejad et al., 2020), which uses a mixture prior composed of
a point mass at zero and an inverse moment prior. Notably, both
BhGLM and BVSNLP use Cox’s partial likelihood in the posterior
and return a MAP estimate for b as well as posterior inclusion prob-
abilities for each feature. Finally, for each method we use the default
hyperparameters and let k¼1, a0 ¼ 1 and b0 ¼ p for SVB.

Generally, all methods produced excellent point estimates, with
SVB obtaining the smallest median ‘2-error and ‘1-error in Settings
1 and 2, and BhGLM in Setting 4 (Table 3). Notably, SVB obtained
the smallest lower (5%) quantile for the ‘2-error and ‘1-error in
Settings 3 and 4, meaning the method can perform better than
BhGLM but may be sensitive to the design matrix.

Regarding the variables selected, all methods performed excep-
tionally well achieving the ideal values for the TPR, FDR and AUC

in Settings 1 and 2 (Table 3). Within Settings 3, BhGLM obtained
the best TPR, FDR and AUC closely followed by SVB and BVSNLP.
Within Setting 4, all three methods obtained the ideal values when

the censoring was low (c¼0.25) and BhGLM performed best under
moderate censoring (c¼0.40). Further, BhGLM best controlled the
FDR in Settings 3 and 4, obtaining the lowest upper (95%) quantile,

closely followed by SVB. Finally, we note, SVB is the only method
that provides uncertainty quantification, a direct application of

which is demonstrated in Section 4.2.

4 Application

4.1 TCGA ovarian cancer data
The first dataset we analyzed is a transcriptomic dataset where the
outcome of interest is overall survival. The dataset was collected
from patients with ovarian cancer and has a sample size of n¼580,

of which 229 samples are right censored and 351 samples are uncen-
sored, corresponding to a censoring rate of 39:5% (TCGA, 2022).
Within the dataset there are p ¼ 12; 042 covariates, which we

Table 1. Comparison of variational to MCMC posterior taking ðn;p; sÞ ¼ ð200; 1000; 10Þ and c 2 f0:25; 0:4g, presented is the median and

ð5%; 95%Þ quantiles

Setting c Method ‘2-error ‘1-error TPR FDR AUC Runtime

Setting 1 0.25 SVB 0.368 (0.21, 0.70) 1.000 (0.52, 1.86) 1.000 (0.90, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00) 18.5 s (13.5 s , 25.6 s)

MCMC 0.412 (0.20, 0.75) 1.017 (0.48, 2.01) 1.000 (0.90, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00) 1 h 24 m (1 h 7 m , 1 h 50 m)

0.4 SVB 0.428 (0.23, 0.89) 1.138 (0.63, 2.45) 1.000 (0.90, 1.00) 0.000 (0.00, 0.00) 1.000 (0.95, 1.00) 21.9 s (14.5 s , 30.5 s)

MCMC 0.506 (0.26, 0.98) 1.300 (0.69, 2.74) 1.000 (0.80, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00) 1 h 28 m (1 h 25 m , 1 h 30 m)

Setting 2 0.25 SVB 0.376 (0.20, 0.73) 1.031 (0.58, 2.07) 1.000 (0.90, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00) 18.9 s (14.4 s , 25.4 s)

MCMC 0.405 (0.21, 0.81) 1.059 (0.58, 2.18) 1.000 (0.90, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00) 1 h 14 m (1 h 6 m , 1 h 17 m)

0.4 SVB 0.472 (0.23, 1.08) 1.176 (0.61, 2.96) 1.000 (0.90, 1.00) 0.000 (0.00, 0.00) 1.000 (0.95, 1.00) 24.0 s (17.3 s , 33.1 s)

MCMC 0.520 (0.25, 1.08) 1.319 (0.62, 2.91) 1.000 (0.90, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00) 1 h 38 m (1 h 25 m , 2 h 4 m)

Setting 3 0.25 SVB 0.392 (0.18, 1.40) 1.079 (0.53, 3.28) 1.000 (0.90, 1.00) 0.000 (0.00, 0.09) 1.000 (0.95, 1.00) 29.2 s (16.9 s , 44.9 s)

MCMC 0.418 (0.21, 1.01) 1.092 (0.54, 2.58) 1.000 (0.90, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00) 1 h 45 m (1 h 24 m , 1 h 49 m)

0.4 SVB 0.470 (0.24, 1.57) 1.263 (0.63, 4.16) 1.000 (0.80, 1.00) 0.000 (0.00, 0.10) 1.000 (0.95, 1.00) 21.7 s (13.7 s , 33.2 s)

MCMC 0.508 (0.23, 1.26) 1.236 (0.61, 3.45) 1.000 (0.80, 1.00) 0.000 (0.00, 0.09) 1.000 (1.00, 1.00) 1 h 36 m (1 h 30 m , 1 h 45 m)

Setting 4 0.25 SVB 0.393 (0.18, 1.12) 1.067 (0.50, 2.54) 1.000 (0.90, 1.00) 0.000 (0.00, 0.10) 1.000 (0.95, 1.00) 17.0 s (9.2 s , 24.9 s)

MCMC 0.382 (0.17, 0.95) 1.007 (0.44, 2.47) 1.000 (0.90, 1.00) 0.000 (0.00, 0.10) 1.000 (1.00, 1.00) 1 h 5 m (1 h 3 m , 1 h 8 m)

0.4 SVB 0.425 (0.18, 1.38) 1.171 (0.50, 2.85) 1.000 (0.90, 1.00) 0.000 (0.00, 0.10) 1.000 (0.95, 1.00) 25.8 s (14.8 s , 39.9 s)

MCMC 0.486 (0.21, 1.13) 1.158 (0.53, 3.17) 1.000 (0.80, 1.00) 0.000 (0.00, 0.00) 1.000 (0.95, 1.00) 1 h 38 m (1 h 14 m , 1 h 46 m)

Note: Simulations were ran on Intel
VR

Xeon
VR

E5-2680 v4 2.40 GHz CPUs.

Table 2. Coverage and set size for variational and MCMC posterior

Set. c Meth. Cov. b0 6¼ 0 Set size b0 6¼ 0 Cov. b0 ¼ 0 Set size b0 ¼ 0

1 0.25 SVB 0.770 (0.202) 0.320 (0.013) 1.000 (0.000) 0.000 (0.000)

MCMC 0.928 (0.138) 0.506 (0.039) 1.000 (0.000) 0.000 (0.000)

0.4 SVB 0.774 (0.208) 0.355 (0.021) 1.000 (0.000) 0.000 (0.000)

MCMC 0.914 (0.127) 0.570 (0.054) 1.000 (0.000) 0.000 (0.000)

2 0.25 SVB 0.703 (0.227) 0.306 (0.028) 1.000 (0.001) 0.000 (0.000)

MCMC 0.904 (0.161) 0.522 (0.053) 1.000 (0.000) 0.000 (0.000)

0.4 SVB 0.683 (0.262) 0.333 (0.039) 1.000 (0.001) 0.000 (0.000)

MCMC 0.845 (0.218) 0.567 (0.101) 1.000 (0.000) 0.000 (0.000)

3 0.25 SVB 0.626 (0.288) 0.251 (0.020) 1.000 (0.000) 0.000 (0.000)

MCMC 0.903 (0.140) 0.482 (0.047) 1.000 (0.000) 0.000 (0.000)

0.4 SVB 0.619 (0.278) 0.276 (0.028) 1.000 (0.000) 0.000 (0.000)

MCMC 0.873 (0.197) 0.540 (0.078) 1.000 (0.000) 0.000 (0.000)

4 0.25 SVB 0.672 (0.224) 0.252 (0.021) 1.000 (0.000) 0.000 (0.000)

MCMC 0.921 (0.144) 0.483 (0.047) 1.000 (0.000) 0.000 (0.000)

0.4 SVB 0.660 (0.249) 0.277 (0.025) 1.000 (0.001) 0.000 (0.000)

MCMC 0.906 (0.156) 0.547 (0.059) 1.000 (0.000) 0.000 (0.000)

Note: Presented are means and std. dev.
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pre-processed by removing features with a coefficient of variation
below the median value (Mar et al., 2011), leaving 6021 covariates
which we centered before fitting our method.

When applying our method, we set a0 ¼ p=100 and b0 ¼ p,
reflecting our prior belief that few genes are associated with the
response. As we had no prior belief for k, we performed 10-fold
cross-validation to select the value, exploring a grid of values K ¼
f0:05; 0:1; 0:25;0:5; 0:75; 1:0; 1:25; 1:5; 1:75; 2:0; 2:5; 3:0; 4:0;
5:0g. To evaluate model fit we compute the: (i) ELBO¼
EQ½log Lp� � KLðQjjPÞ, (ii) expected log-likelihood under the
variational posterior (ELL ¼ EQ½log LpðD; bÞ�) and (iii) c-index,
reporting the mean and standard deviation across the 10 folds for
the training and validation sets in Supplementary Table S2.
Notably, no single hyperparameter value stands out as being best,
meaning the model is not particularly sensitive to the value of k.

To assess the model’s convergence diagnostics we examine the fit
for k¼1, and examine the change in: (i) ELBO, (ii) ELL and (iii) KL
between the variational posterior and the prior, as we iterate our co-
ordinate ascent algorithm (Fig. 1). Note the ELBO and ELL are
computed for the training and validation sets, whereas KLðQjjPÞ
need only be computed for the training set. Notably, across the dif-
ferent folds the ELBO is increasing as the co-ordinate ascent algo-
rithm is iterated (Fig. 1A and B), suggesting that the model fit is
improving. Interestingly, the training ELL is decreasing (Fig. 1C),
whereas the inverse is true for the validation ELL (Fig. 1D), mean-
ing, initially the model is overfitting to the training data, and as we
iterate begins to fit better to the unseen validation set. Further, the
KLðQjjPÞ is decreasing (Fig. 1E), therefore a greater degree of spars-
ity is enforced as we iterate, excluding more features and preserving
the ones that best explain the variation in the response.

As we are using our model for variable selection, we examine the
genes selected across the different values of k and folds. Table 4
reports the names and selection proportion of genes, where the selec-
tion proportion is the number of times a particular gene has poster-
ior inclusion probability greater than

Table 3. Comparison of Bayesian variable selection methods, taking ðn;p; sÞ ¼ ð500; 5000;30Þ and c 2 f0:25; 0:4g, presented is the median

and ð5%; 95%Þ quantiles

Setting c Method ‘2-error ‘1-error TPR FDR AUC

Setting 1 0.25 SVB 0.378 (0.26, 0.89) 1.747 (1.16, 4.17) 1.000 (1.00, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00)

BhGLM 1.206 (0.79, 1.78) 9.590 (7.22, 12.88) 1.000 (1.00, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00)

BVSNLP 0.456 (0.33, 0.96) 2.007 (1.41, 4.57) 1.000 (1.00, 1.00) 0.000 (0.00, 0.03) 1.000 (1.00, 1.00)

0.4 SVB 0.449 (0.31, 0.99) 2.056 (1.37, 4.87) 1.000 (1.00, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00)

BhGLM 0.807 (0.53, 1.35) 6.458 (4.52, 9.31) 1.000 (1.00, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00)

BVSNLP 0.518 (0.35, 1.44) 2.231 (1.52, 6.85) 1.000 (0.96, 1.00) 0.000 (0.00, 0.03) 1.000 (0.99, 1.00)

Setting 2 0.25 SVB 0.405 (0.29, 0.80) 1.823 (1.28, 3.78) 1.000 (1.00, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00)

BhGLM 0.596 (0.45, 1.04) 4.494 (3.51, 6.89) 1.000 (1.00, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00)

BVSNLP 0.475 (0.33, 0.90) 2.130 (1.47, 4.01) 1.000 (1.00, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00)

0.4 SVB 0.491 (0.33, 1.05) 2.208 (1.45, 5.03) 1.000 (0.97, 1.00) 0.000 (0.00, 0.03) 1.000 (1.00, 1.00)

BhGLM 0.551 (0.44, 0.86) 3.716 (2.98, 5.36) 1.000 (0.97, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00)

BVSNLP 0.515 (0.37, 1.47) 2.238 (1.54, 6.71) 1.000 (1.00, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00)

Setting 3 0.25 SVB 1.040 (0.30, 3.17) 3.881 (1.36, 15.37) 0.967 (0.83, 1.00) 0.000 (0.00, 0.14) 0.983 (0.92, 1.00)

BhGLM 0.590 (0.36, 1.57) 3.279 (2.23, 6.73) 1.000 (0.93, 1.00) 0.000 (0.00, 0.03) 1.000 (0.97, 1.00)

BVSNLP 3.107 (1.74, 9.73) 12.262 (6.88, 47.67) 0.967 (0.53, 1.00) 0.000 (0.00, 0.53) 0.983 (0.78, 1.00)

0.4 SVB 1.379 (0.36, 3.47) 5.728 (1.55, 17.47) 0.933 (0.77, 1.00) 0.033 (0.00, 0.13) 0.967 (0.88, 1.00)

BhGLM 0.796 (0.41, 2.18) 4.035 (2.25, 10.92) 0.967 (0.87, 1.00) 0.000 (0.00, 0.07) 1.000 (0.95, 1.00)

BVSNLP 3.867 (1.98, 11.44) 15.874 (7.99, 51.07) 0.967 (0.20, 1.00) 0.033 (0.00, 0.69) 0.983 (0.65, 1.00)

Setting 4 0.25 SVB 0.603 (0.29, 2.02) 2.298 (1.21, 8.84) 1.000 (0.90, 1.00) 0.000 (0.00, 0.08) 1.000 (0.95, 1.00)

BhGLM 0.503 (0.35, 1.36) 3.141 (2.25, 5.59) 1.000 (0.93, 1.00) 0.000 (0.00, 0.03) 1.000 (0.97, 1.00)

BVSNLP 2.946 (1.96, 8.72) 11.426 (6.98, 36.46) 1.000 (0.90, 1.00) 0.000 (0.00, 0.07) 1.000 (0.95, 1.00)

0.4 SVB 1.092 (0.32, 2.83) 3.878 (1.40, 14.06) 0.967 (0.83, 1.00) 0.000 (0.00, 0.08) 0.983 (0.92, 1.00)

BhGLM 0.674 (0.40, 1.64) 3.610 (2.28, 7.72) 1.000 (0.93, 1.00) 0.000 (0.00, 0.04) 1.000 (0.97, 1.00)

BVSNLP 3.163 (2.14, 10.53) 12.227 (8.14, 45.64) 1.000 (0.73, 1.00) 0.000 (0.00, 0.32) 1.000 (0.87, 1.00)
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k� ¼ argmax
k2½0;1�

Pp
j¼1ð1� cjÞIfcj > kgPp

j¼1 Ifcj > kg
< a

( )
(11)

Notably, k� is computed for each fit and is a threshold used to con-
trol the Bayesian FDR at significance level a, which we have set as
a ¼ 0:10 (Newton et al., 2004). Promisingly, the most frequently
selected gene, PI3, has a known, albeit limited, role in ovarian can-
cer, a disease characterized by copy number aberration. Clauss et al.
(2010) reported the first link of PI3 gene product (elafin) to ovarian
cancer (Clauss et al., 2010). Elafin, a serine proteinase inhibitor
involved in inflammation and wound healing, is overexpressed in
ovarian cancer and overexpression is associated with poor overall
survival and is due, in part, to genomic gains on chromosome
20q13.12, a locus frequently amplified in ovarian carcinomas.
There is less known about the gene encoding the alpha isoform of
the calcineurin catalytic subunit (PPP3CA) in ovarian cancer. A re-
cent report indicates that higher expression of calcineurin predicts
poor prognosis in ovarian cancer, particularly those of serous hist-
ology (Xin et al., 2019). It is also plausible that other know func-
tions of calcineurin/nuclear factor of activated T cells, in controlling
adaptive T-cell function or innate immunity (Fric et al., 2012), in
this cancer that warrants further investigation. Finally, CCR7, the
third most abundant gene was recently reported, in single cell RNA-
seq analysis, to be emphasized in high-grade serous ovarian cancer
(Izar et al., 2020).

4.2 Breast cancer dataset
The second dataset we analyzed is a transcriptomic dataset collected
from patients with breast cancer, where the outcome of interest is
overall survival (Yau et al., 2010). The dataset consists of n¼682
samples and p¼9168 features which we preprocessed as before,
leaving p¼4, 584 features. Within the dataset 454 observations are
right censored, corresponding to a censoring rate of 66.5%.

As in the previous section, we set a0 ¼ p=100 and b0 ¼ p, and
tuned the prior parameter k via 10-fold cross validation using the
same set K. Supplementary Table S3 reports the ELBO, ELL and c-
index averaged across the validation and training sets. We note that
the model is not particularly sensitive to the value of k.
Furthermore, an assessment of the convergence diagnostics for
k ¼ 2:5, presented in Supplementary Figure S12, carries a similar in-
terpretation as with the TCGA data.

Table 5 reports the names and selection proportions of the genes
within the dataset. The most frequently selected gene, Rho GTPase
activating protein 28 (ARHGAP28) is a negative regulator of RhoA.
There is paucity of data on this gene in cancer generally, however, a
report by Planche et al. (2011) identified the gene as downregulated
in reactive stroma of prostate tumors. Further assessment of this
gene in breast cancer is warranted. Notably, NEK2, GREM1 and
ABCC5 have been examined in the biomedical literature and have
been associated with cancer cell proliferation and metastasis. More
specially, overexpression of NEK2 induces epithelial-to-mesenchymal

transition, a process which leads to functional changes in cell inva-
sion, overexpression of GREM1 has been associated with metastasis
and poor prognosis, and ABCC5 has been associated with breast can-
cer skeletal metastasis (Mourskaia et al., 2012; Park et al., 2020;
Rivera-Rivera et al., 2021). As with the TCGA data, it is encouraging
that genes with pre-existing biological interpretation have been
selected by our model.

Finally, we want to highlight that our method, in contrast to the
methods compared in Section 3.2.2, quantifies the uncertainty of b.
Crucially, the availability of uncertainty serves as a powerful infer-
ential tool for computing (variational) posterior probabilities with
respect to risk scores (b>xÞ. Such probabilities can be useful in com-
paring patients between one another, or assessing the risk of patients
against chosen benchmarks (depending on the aims of the
practitioner).

To demonstrate, we opt to compute the posterior probability
that one patient is at greater risk than another, formally,
~Pðb>xi � b>xjÞ, where i 6¼ j. To illustrate the application, we split
patients into low- and high-risk groups based on the estimated prog-
nostic index, bg i ¼ bb>xi, where bb is the posterior mean. Patients with
prognostic index less than the median (computed for the training
set) are considered low risk, whilst patients with prognostic index
greater than or equal to the median are considered high risk. The
Kaplan–Meier curves for these groups are shown in Figure 2A.
Critically, Bayesian approaches that only compute the MAP of b are
only able to provide a point estimates for bg. In turn, our method is
able to provide uncertainty around this quantity and therefore with
respect to the ranking of the patients. For instance, in Figure 2B, we
present the posterior probabilities comparing the risks between
patients. We observe that the highest risk patients in the low-risk
group are comparable to the lowest risk patients in the high-risk
group, and that the highest risk patients within the high-risk group
are with high probability more at risk than the patients within the
low-risk group.

5 Discussion

Variable selection and effect estimation for high-dimensional sur-
vival data has been an issue of great interest in recent years, particu-
larly given the ever growing production of large scale omics data.
However, the high-dimensionality and heterogeneity in the predic-
tors, alongside the censoring in the response, makes the analysis a
non-trivial task. While many recent methods have tackled these
issues through a Bayesian approach, due to long compute times they
often only produce point estimates rather than the full posterior and
thereby fall short in providing the full Bayesian machinery.

We have bridged this gap and developed a scalable and interpret-
able mean-field variational approximation for Bayesian PHMs with
a spike-and-slab prior. We have demonstrated that the resulting
variational posterior displays similar performance to the posterior
obtained via MCMC whilst requiring a fraction of the compute

Table 5. Gene names and selection proportions for the breast cancer dataset

ARHGAP28 NEK2 ABCC5 GREM1 DUSP4 ITGA5 CCL2 IGFBP7

0.386 0.25 0.2 0.2 0.193 0.193 0.164 0.143

NFE2L3 TRPC1 PKMYT1 DDX31 EMILIN1 SSPN ABO HSPC072

0.114 0.114 0.1 0.086 0.086 0.086 0.079 0.079

Table 4. Gene names and selection proportions for ovarian cancer dataset

PI3 PPP3CA CCR7 SDF2L1 D4S234E VSIG4 DAP IL7R

0.7 0.379 0.293 0.286 0.229 0.171 0.136 0.136

TBP ACSL3 SLAMF7 UBD IL2RG GALNT10 FLJ20323 RNF128

0.121 0.114 0.1 0.1 0.064 0.057 0.05 0.05
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time. Furthermore, we have demonstrated via an extensive simula-
tion study that our proposed method performs comparably to state-
of-the art Bayesian variable selection methods.

Finally, we have demonstrated that our method can be used for
variable selection on two real world transcriptomics datasets, giving
rise to results with pre-existing biological interpretations, thereby val-
idating the practical utility of our method. We have also shown that
the risk of patients can be compared through (variational) posterior
probabilities, highlighting that the availability of a posterior distribu-
tion can be a powerful inferential tool. For illustrative purposes, we
examined the pairwise probabilities of patients grouped based on the
prognostic index, however, patients could have alternatively been
compared to other baselines, e.g. the feature vector corresponding to
median prognostic index. Furthermore, although this is not an aspect
we have considered, grouping based on: age, cancer status, stage etc.
may yield insightful results for practitioners and bioinformaticians.

A natural extension of our work would be to develop approxima-
tions with relaxed independence assumptions by using a more flexible
variational family (Ning, 2021). Finally, we would like to highlight
that improving the uncertainty quantification is an active area of re-
search in the general VI community, see e.g. (Jerfel et al., 2021).

Acknowledgements

The authors thank the associate editor and reviewers for their constructive

suggestions and comments.

Funding

M.K. gratefully acknowledges funding provided by EPSRC’s StatML CDT,

Imperial’s CRUK center and Imperial’s Experimental Cancer Medicine

center.

Conflict of Interest: none declared.

References

Antoniadis,A. et al. (2010) The dantzig selector in cox’s proportional hazards

model. Scand. J. Stat., 37, 531–552.

Bai,R. et al. (2021) Spike-and-Slab Meets LASSO: A Review of the

Spike-and-Slab LASSO. arXiv preprint arXiv:2010.06451, May 2021.

Banerjee,S. et al. (2021) Bayesian Inference in High-Dimensional Models.

arXiv preprint arXiv:2101.04491, Jan 2021.

Bhadra,A. et al. (2019) Lasso meets horseshoe: a survey. Stat. Sci., 34,

405–427.

Blei,D.M. and Lafferty,J.D. (2007) A correlated topic model of science. Ann.

Appl. Stat., 1, 17–35.

Blei,D.M. et al. (2017) Variational inference: a review for statisticians. J. Am.

Stat. Assoc., 112, 859–877.

Bøvelstad,H.M. et al. (2007) Predicting survival from microarray data—a

comparative study. Bioinformatics, 23, 2080–2087.

Brent,R. (1973) Algorithms for Minimization without Derivatives.

Prentice-Hall, Englewood Cliffs, New Jersey.

Carbonetto,P. and Stephens,M. (2012) Scalable variational inference for

Bayesian variable selection in regression, and its accuracy in genetic associ-

ation studies. Bayesian Anal., 7, 73–108.

Carvalho,C.M. et al. (2010) The horseshoe estimator for sparse signals.

Biometrika, 97, 465–480.

Castillo,I. and van der Vaart,A. (2012) Needles and straw in a haystack: pos-

terior concentration for possibly sparse sequences. Ann. Stat., 40,

2069–2101.

Clark,T.G. et al. (2003) Survival analysis part I: basic concepts and first analy-

ses. Br. J. Cancer, 89, 232–238.

Clauss,A. et al. (2010) Overexpression of elafin in ovarian carcinoma is driven

by genomic gains and activation of the nuclear factor jB pathway and is

associated with poor overall survival. Neoplasia, 12, 161–172.

Cox,D.R. (1972) Regression models and life-tables. J. R. Stat. Soc. B, 34,

187–220.

Cox,D.R. (1975) Partial likelihood. Biometrika, 62, 269–276.

Depraetere,N. and Vandebroek,M. (2017) A comparison of variational

approximations for fast inference in mixed logit models. Comput. Stat., 32,

93–125.

Fric,J. et al. (2012) NFAT control of innate immunity. Blood, 120,

1380–1389.

George,E.I. and McCulloch,R.E. (1993) Variable selection via gibbs sampling.

J. Am. Stat. Assoc., 88, 881–889.

Gui,J. and Li,H. (2005) Penalized cox regression analysis in the

high-dimensional and low-sample size settings, with applications to micro-

array gene expression data. Bioinformatics, 21, 3001–3008.

Ibrahim,J.G. et al. (2001) Bayesian Survival Analysis. Springer, New York.

Izar,B. et al. (2020) A single-cell landscape of high-grade serous ovarian can-

cer. Nat. Med., 26, 1271–1279.

Jaakkola,T.S. and Jordan,M.I. (1997) A Variational Approach to Bayesian

Logistic Regression Models and Their Extensions. In: Proceedings of the

Sixth International Workshop on Artificial Intelligence and Statistics,

pp. 283–294.

Jerfel,G. et al. (2021) Variational refinement for importance sampling using

the forward Kullback-Leibler divergence. In: Proceedings of the

Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, Vol.

161, PMLR, pp. 1819–1829.

Kalbfleisch,J.D. (1978) Bayesian analysis of survival time data. J. R. Stat. Soc.

B, 40, 214–221.

Klami,A. et al. (2015) Group factor analysis. IEEE Trans. Neural Netw.

Learn. Syst., 26, 2136–2147.

Knowles,D.A. and Minka,T.P. (2011) Non-conjugate variational message

passing for multinomial and binary regression. In: Advances in Neural

Information Processing Systems. Curran Associates, Inc.

Lewin,A. et al. (2019) Bayesian methods for gene expression analysis. In:

Handb. Stat. Genomics, Volume 2. Wiley, pp. 843–40.

Li,F. and Zhang,N.R. (2010) Bayesian variable selection in structured

high-dimensional covariate spaces with applications in genomics. J. Am.

Stat. Assoc., 105, 1202–1214.

Lightbody,G. et al. (2019) Review of applications of high-throughput sequenc-

ing in personalized medicine: barriers and facilitators of future progress in

research and clinical application. Brief. Bioinform., 20, 1795–1811.

Lloyd,K.L. et al. (2015) Prediction of resistance to chemotherapy in ovarian

cancer: a systematic review. BMC Cancer, 15, 1–32.

Logsdon,B.A. et al. (2010) A variational Bayes algorithm for fast and accurate

multiple locus genome-wide association analysis. BMC Bioinformatics, 11,

58.

0 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0

KM curves − validation set

Time (years)

S
ur

v.
 p

ro
b

Low risk group. Patients 1−33
High risk group. Patients 34−68
All

A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

Low risk grouplow risk high risk

H
ig

h 
ri

sk
 g

ro
up

hi
gh

 r
is

k
lo

w
 r

is
k

B

Fig. 2. (A) Kaplan–Meier curves for patients in low- and high-risk groups. (B)

Comparison of patients in the low- and high-risk groups (ordered by bg)—within

each cell the (variational) posterior probability patient in row i is at greater risk

than patient in column j is computed. Samples are taken from the second validation

fold and the fit with k ¼ 2:5 is used

VB for proportional hazards models 3925



Lu,H. et al. (2021) Discovery of a biomarker candidate for surgical stratifica-

tion in high-grade serous ovarian cancer. Br. J. Cancer, 124, 1286–1293.

Maity,A.K. et al. (2020) Bayesian data integration and variable selection for

pan-cancer survival prediction using protein expression data. Biometrics,

76, 316–325.

Mar,J.C. et al. (2011) Variance of gene expression identifies altered network

constraints in neurological disease. PLoS Genet., 7, e1002207.

Mitchell,T.J. and Beauchamp,J.J. (1988) Bayesian variable selection in linear

regression. J. Am. Stat. Assoc., 83, 1023–1032.

Mourskaia,A.A. et al. (2012) ABCC5 supports osteoclast formation and pro-

motes breast cancer metastasis to bone. Breast Cancer Res., 14, 1–16.

Murphy,S.A. and Van Der Vaart,A.W. (2000) On profile likelihood. J. Am.

Stat. Assoc., 95, 449–465.

Newton,M.A. et al. (2004) Detecting differential gene expression with a semi-

parametric hierarchical mixture method. Biostatistics, 5, 155–176.

Nikooienejad,A. et al. (2020) Bayesian variable selection for survival data

using inverse moment priors. Ann. Appl. Stat., 14, 809–828.

Ning,B. (2021) Spike and Slab Bayesian Sparse Principal Component

Analysis. arXiv preprint, arXiv:2102.00305, Jan 2021.
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