
923

NEURAL REGENERATION RESEARCH www.nrronline.org

RESEARCH ARTICLE

Inhibition of retinal ganglion cell apoptosis: 
regulation of mitochondrial function by PACAP

*Correspondence to: 
Juan Deng, Ph.D. or Yong Ding, 
Ph.D., viviadeng@163.com or 
dingyongjnu@163.com.

#These authors contributed 
equally to this paper.

orcid: 
0000-0002-1536-1840 
(Juan Deng) 
0000-0003-0538-9951 
(Yong Ding)

doi: 10.4103/1673-5374.232489

Accepted: 2017-10-27         

Huan-Huan Cheng1, #, Hui Ye1, #, Rui-Ping Peng1, Juan Deng1, *, Yong Ding2, *

1 Department of Ophthalmology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
2 Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
  
Funding: This study was supported by grants from the Medical Scientific Research Foundation of Guangdong Province of China, No. 
A2016271; the Natural Science Foundation of Guangdong Province of China, No. 2016A030313208; and the Science and Technology Plan-
ning Project of Guangdong Province of China, No. 2014A020212393.

Abstract  
Pituitary adenylate cyclase-activating polypeptide (PACAP) is an endogenous peptide with neuroprotective effects on retinal neurons, but 
the precise mechanism underlying these effects remains unknown. Considering the abundance of mitochondria in retinal ganglion cells 
(RGCs), we postulate that the protective effect of PACAP is associated with the regulation of mitochondrial function. RGC-5 cells were 
subjected to serum deprivation for 48 hours to induce apoptosis in the presence or absence of 100 nM PACAP. As revealed with the Cell 
Counting Kit-8 assay, PACAP at different concentrations significantly increased the viability of RGC-5 cells. PACAP also inhibited the 
excessive generation of reactive oxygen species in RGC-5 cells subjected to serum deprivation. We also showed by flow cytometry that 
PACAP inhibited serum deprivation-induced apoptosis in RGC-5 cells. The proportions of apoptotic cells and cells with mitochondria 
depolarization were significantly decreased with PACAP treatment. Western blot assays demonstrated that PACAP increased the levels of 
Bcl-2 and inhibited the compensatory increase of PAC1. Together, these data indicate protective effects of PACAP against serum depriva-
tion-induced apoptosis in RGCs, and that the mechanism of this action is associated with maintaining mitochondrial function.

Key Words: nerve regeneration; pituitary adenylate cyclase-activating polypeptide; pituitary adenylate cyclase-activating polypeptide receptor 
type 1; serum deprivation; apoptosis; retinal ganglion cell; retinal ganglion cell-5; glaucoma; mitochondria; neural regeneration 

Graphical Abstract   

PAC1 mediates the protection of pituitary adenylate cyclase-activating polypeptide (PACAP) against 
retinal ganglion cell apoptosis via mitochondria pathway

Introduction 
Glaucoma can cause permanent loss of vision and is char-
acterized by initial changes to retinal ganglion cell (RGC) 
axons and secondary death of RGC cell bodies (Calkins et 
al., 2012). Glaucoma is typically associated with intraocular 
pressure (IOP). However, even with treatment to reduce 
IOP, the symptoms of a substantial fraction of glaucoma pa-
tients worsen with time. Furthermore, the IOP of some glau-
coma patients never rises beyond the normal range (Pascale 
et al., 2012). Although the etiology of glaucoma is complex 
and enigmatic, RGC apoptosis is recognized as the ultimate 

reason for loss of vision (Tian et al., 2015). Neuroprotective 
treatments that directly target the injured RGCs are still in 
early stages of development. Therefore, there is an urgent 
need to develop therapeutic agents for glaucoma neuropathy 
and neurotrophic factors are promising candidates. 

Pituitary adenylate cyclase-activating polypeptide (PA-
CAP) exists in two forms (namely 27- or 38-amino acid 
neuropeptides) and belongs to the vasoactive intestinal poly-
peptide/glucagon/secretin family (Bourgault et al., 2009). 
PACAP and its receptors are expressed in various neural 
tissues and it exerts potent neuroprotective effects both 
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Figure 1 The effect of PACAP on the viability of RGC-5 cells 
subjected to serum deprivation for 48 hours. 
Serum deprivation for 48 hours reduced the viability of RGC-5 cells to 
approximately 50% compared to control. This negative effect of serum 
deprivation was attenuated by treatment with 1 nM to 10 µM PACAP 
for 48 hours. *P < 0.05, vs. serum deprivation group (mean ± SD, one-
way analysis of variance followed by the Student-Newman-Keuls test). 
Each experiment was conducted six times. PACAP: Pituitary adenylate 
cyclase-activating polypeptide; RGC: retinal ganglion cell. 

exogenously and endogenously (Endo et al., 2011). Most 
of PACAP’s effects are mediated through the activation of 
its specific receptor, PAC1 (Zhou et al., 2002). PACAP is a 
pleiotropic molecule exerting effects on a wide array of phys-
iological processes, including cell survival in neurodegener-
ative conditions, the stress response and cell division (Cas-
torina et al., 2010; Giunta et al., 2012; D’Amico et al., 2013, 
2015; Maugeri, et al., 2016). It also acts as a neurotransmitter 
and/or a neuromodulator in both the peripheral and central 
nervous systems (Jóźwiak-Bębenista et al., 2015; Yang et al., 
2015; Shioda et al., 2016). The protective effects of PACAP 
in the retina have been investigated by numerous studies, 
including diabetic retinopathy induced by streptozotocin 
(Szabadfi et al., 2012), transient ischemia following high IOP 
(Seki et al., 2011) and ultraviolet-light-induced retinal dam-
age (Atlasz et al., 2010). We have previously demonstrated 
that a PACAP derivative attenuates the apoptosis of RGC-5 
cells induced by ultraviolet B irradiation and retinal excito-
toxicity induced by N-methyl-D-aspartic acid (Cheng et al., 
2014). However, the in vitro effects of PACAP and PAC1 on 
the apoptosis of RGCs and the underlying mechanism re-
main largely unknown. In the current study, the neuropro-
tective effects of PACAP against serum deprivation (SD)-in-
duced apoptosis of RGC-5 cells were further explored.
  
Materials and Methods
RGC-5 cell culture
The RGC-5 cell line (Li et al., 2011) was provided by Dr. 
Neeraj Agarwal from the Department of Cell Biology and 
Genetics, UNT Health Science Center, Fort Worth, TX, 
USA. The RGC-5 cell line is a transformed RGC line that 
has been widely used, expresses RGC markers, and exhibits 
ganglion cell-like behavior in culture (Wood et al., 2010). 
Cells were cultured in Dulbecco’s Modified Eagle’s Medium 
(DMEM) containing 10% (v/v) heat-inactivated fetal bovine 
serum (FBS) in a humidified incubator at 37°C for 24 hours. 
The culture medium was then exchanged for DMEM con-
taining normal 10% FBS or FBS-free DMEM with or without 
PACAP1–38 at different concentrations (1 nM, 10 nM, 100 
nM, 1 µM, 10 µM PACAP). Cells were further incubated for 
48 hours only because a previous study (Fuma et al., 2016) 
demonstrated an approximately 50% loss of cell viability 
after serum withdrawal for 48 hours. After determining the 
optimal concentration of PACAP, cells were divided into 
three groups: control, serum deprivation (SD) and SD + PA-
CAP groups. In the SD + PACAP group, cells were exposed 
to SD and 100 nM PACAP for 48 hours, while SD group was 
exposed to SD without PACAP. 

Cell viability assay
Forty-eight hours after treatment with SD or SD + PACAP, 
cell viability was assessed with Cell Counting Kit-8 (Dojindo, 
Japan). Briefly, cells were stained with 10 μL Cell Counting 
Kit-8 solution for 3 hours. Optical density (OD) of each 
well was measured with a microplate reader (Tecan Safire2, 
Männedorf, Switzerland) at 450 nm. Wells with only culture 
medium were used as the blank control. Cell viability was 

equal to (ODSD group or SD + PACAP group – ODblank control)/(ODcontrol group 
– ODblank control) × 100%.

Cell cycle analysis
RGC-5 cells were deprived of serum with or without 100 
nM PACAP for 12 or 24 hours. The phase distribution of 
DNA content in the cells was then detected with propidium 
iodide (PI) staining and flow cytometry. Following 100 nM 
PACAP treatment for 12 or 24 hours, RGC-5 cells were col-
lected, fixed in 70% ethanol and stored overnight at −20°C. 
The next morning, cells were washed and stained with PI 
staining solution (50 μg/mL PI and 10 μg/mL RNase) for 30 
minutes in the dark. The cell cycle was then analyzed by flow 
cytometry using Cell-Quest software (FACSAriaTM, BD, San 
Jose, CA, USA). The percentages of cells in S, G0/G1 and 
G2/M phases were analyzed by pairwise comparisons.

Annexin V/PI staining and JC-1 assays
RGC-5 cells (5 × 105) were collected following treatment for 
48 hours and suspended in 200 µL binding buffer. Then cells 
were stained with 10 µL Annexin V-FITC and 10 µL PI for 
15 minutes. The apoptosis of cells was subsequently detected 
by flow cytometry (FACSAriaTM, BD). 

After SD treatment with or without PACAP for 48 hours, 
cells were incubated with 200 µL JC-1 solution for 15 min-
utes. Then cells were washed with phosphate buffered saline 
(PBS), pelleted by centrifugation, resuspended in 500 µL 
PBS and analyzed with a flow cytometer (FACSAriaTM, 
BD). The percentage of apoptotic cells with mitochondrial 
depolarization was analyzed.

Hoechst 33342 staining
Briefly, RGC-5 cells were seeded on 6-well plates at a density 
of 5 × 104 cells/mL. After treatment, cells were washed with 
PBS and fixed with 4% paraformaldehyde for 20 minutes. 
After removing paraformaldehyde, cells were stained with 
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S            G0/G1                    G2/M S            G0/G1                    G2/MA B Figure 2 Effects of 100 nM 
PACAP on the cell cycle of 
RGC-5 cells at various time 
points using flow 
cytometric analysis.
(A, B) 100 nM PACAP in-
duced a marked increase 
in the percentage of cells in 
S phase compared to cells 
subjected to SD only at both 
12 hours (A) and 24 hours 
(B). Each experiment was 
conducted six times. PA-
CAP: Pituitary adenylate cy-
clase-activating polypeptide; 
RGC: retinal ganglion cell; 
SD: serum deprivation.

Figure 3 Representative dot plots determined by flow cytometry following Annexin V/PI staining. 
(A) Lower-left quadrant (Q3), living cells; upper-left quadrant (Q1), necrotic cells; lower-right quadrant (Q4), apoptotic cells. (B) Dot plots of JC-1 
staining: lower-right quadrant (Q4), apoptotic cells with mitochondrial depolarization; upper-right quadrant (Q2), living cells. PI: Propidium io-
dide; PACAP: pituitary adenylate cyclase-activating polypeptide; SD: serum deprivation.

Figure 4 Representative micrographs of RGC-5 cells stained with Hoechst 33342. 
(A–C) Normal control cells show normal nuclear morphology (A). Cells subjected to serum deprivation show nuclear shrinkage and condensation 
(B). 100 nM PACAP reduced this negative effect (C). White arrows point to apoptotic cells showing high intensity blue fluorescence and nuclear 
condensation. Scale bar: 20 μm. PACAP: Pituitary adenylate cyclase-activating polypeptide; RGC: retinal ganglion cell.
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Figure 5 Effect of PACAP on ROS levels in RGC-5 cells subjected to SD for 48 hours.
RGC-5 cells exposed to SD exhibited intense fluorescence. 100 nM PACAP clearly blunted the accumulation of ROS in serum-deprived cells. *P < 0.05, 
vs. SD + PACAP group (mean ± SD, one-way analysis of variance followed by Student-Newman-Keuls test). Each experiment was conducted six times. 
PACAP: Pituitary adenylate cyclase-activating polypeptide; RGC: retinal ganglion cell; SD: serum deprivation; ROS: reactive oxygen species.
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10 µM Hoechst 33342 solution (Sigma, Shanghai, China) for 
20 minutes and observed under a fluorescence microscope 
(BZ X700, Keyence, Osaka, Japan).

ROS quantification 
Following treatment, RGC-5 cells were stained with 10 μM 
DCFH-DA for 15 minutes in the dark at 37°C. Cells were 
then washed with PBS and analyzed within 30 minutes by 
flow cytometry (FACSAriaTM, BD, equipped with an air-
cooled argon laser at 488 nm). The intensity of green fluo-
rescence, which indicates the level of intracellular ROS accu-
mulation, was detected and compared between groups.

Western blot assay 
To control cell number, RGC-5 cells were seeded at a density 
of 5 × 104 cells/mL in 6-well plates and then subjected to var-
ious treatments. Forty-eight hours after treatment with SD in 
the presence or absence of 100 nM PACAP, cells were collect-
ed, lysed with RIPA buffer sup-plied with protease and phos-
phatase inhibitor cocktail and sonicated on ice. The sonicated 
cell samples were then centrifuged for 20 minutes at 15,000 × 
g at 4°C. After centrifugation, the supernatant was collected. 
Proteins (10 μg) were then separated by 10% sodium dodecyl 
sulfate polyacrylamide gel electrophoresis and transferred 
to polyvinylidene fluoride membranes. Membranes were 
incubated at 4°C with primary antibodies as follows: mouse 
monoclonal anti-Bcl-2 antibody (1:1000; Santa Cruz Biotech-
nology, Santa Cruz, CA, USA), rabbit polyclonal anti-PAC1 
antibody (1:1000; Santa Cruz Biotech nology), and mouse 
monoclonal anti-β-actin antibody (1:3000; Cell Signaling, 
Danvers, MA, USA). After over-night incubation with prima-
ry antibodies, secondary an-tibodies conjugated with horse-
radish peroxidase (1:3000; Santa Cruz Biotechnology) were 
applied for 1 hour at room temperature. The signals were 

detected with enhanced chemiluminescence (BeyoECL Plus). 
Protein levels were evaluated by measuring the optical value 
ratios of Bcl-2 and PAC1 to β-actin, and then normalized to 
the control group. The immunoblot band of each protein was 
quantified and normalized to that of β-actin.

Statistical analysis
Data were analyzed with SPSS 17.0 software (SPSS, Chica-
go, IL, USA) and are presented as the mean ± SD. One-way 
analysis of variance and the Student-Newman-Keuls test 
were used to determine statistical comparison. P < 0.05 was 
considered statistically significant. 

Results
PACAP increased the viability of RGC-5 cells
The cell viability of RGC-5 cells deprived of FBS was signifi-
cantly increased by 1 nM to 10 µM PACAP38 (Figure 1). 
The optimum protection was achieved with 100 nM PACAP. 
DNA content analysis showed that 100 nM PACAP treat-
ment resulted in remarkably more cells at S phase compared 
to cells subjected to SD only. As shown in Figure 2, PACAP 
increased the percentage of cells in S phase and reduced the 
percentage of cells in G0/G1 phase compared to RGC-5 cells 
subjected to SD only. The proportion of cells in S-phase was 
significantly higher in the SD + PACAP group than in the 
SD group at both 12 hours (49.65 ± 1.17%, vs. 41.85 ± 4.13%) 
and 24 hours (47.80 ± 2.78%, vs. 38.00 ± 4.94%). 

PACAP inhibited SD-induced apoptosis in RGC-5 cells
PACAP treatment significantly decreased the rate of apop-
tosis, which was 10.50 ± 1.23% in the SD + PACAP group 
and 25.14 ± 1.84% in the SD group. With JC-1 staining, we 
discovered that PACAP treatment remarkably decreased 
the proportion of cells with mitochondrial depolarization to 

Figure 6 Densitometric analysis of PAC1 and Bcl-2 levels in RGC-5 cells exposed to SD with or without 100 nM PACAP.
SD caused a significant decrease in the level (optical value ratio) of Bcl-2 (B) and a concomitant increase of PAC1 (A), which was counteracted by 
PACAP treatment. #P < 0.05, ##P < 0.05, vs. SD group (mean ± SD, one-way analysis of variance followed by the Student-Newman-Keuls test). 
Each experiment was conducted three times. PACAP: Pituitary adenylate cyclase-activating polypeptide; RGC: retinal ganglion cell; SD: serum 
deprivation.
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22.57 ± 2.24%, while the percentage of depolarized cells in 
the SD group was 64.17 ± 1.70% (Figure 3). Hoechst 33342 
staining showed that the nuclei of serum-deprived cells were 
shrunken and condensed, while PACAP treatment attenuat-
ed nuclei change (Figure 4). 

ROS, PAC1 and Bcl-2 levels
The mean intensity of ROS fluorescence was elevated over 
5-fold in RGC-5 cells subjected to SD but was considerably 
decreased with 100 nM PACAP treatment (Figure 5).

To further investigate the protective mechanism of PA-
CAP, we analyzed the expression levels of PAC1 and Bcl-
2. Forty-eight hours after SD, a significant increase in PAC1 
and a simultaneous decrease in Bcl-2 levels were seen. 
Treatment with PACAP dramatically inhibited such changes 
(Figure 6). 

Discussion
PACAP is an important growth factor capable of preventing 
apoptosis in neuronal cells (Maino et al., 2015). Protection 
against RGC apoptosis by PACAP has been investigated 
using ultraviolet B irradiation (Ding et al., 2012), N-meth-
yl-D-aspartic acid excitotoxicity (Cheng et al., 2014), isch-
emic retinal degeneration (Szabadfi, 2012) and experimental 
diabetic retinopathy (Szabadfi et al., 2014, 2016). On the ba-
sis of our previous in vivo and in vitro studies (Cheng et al., 
2014), the question emerged as to whether PACAP can at-
tenuate RGC apoptosis induced by other unexplored insults. 
Protective effects of PACAP on serum deprived neuronal 
cells have been reported for cerebellar granule cells (Maino 
et al., 2015), schwannoma cells (Castorina et al., 2008) and 
rat cortical neurons (Frechilla et al., 2001). SD is a well-es-
tablished model to investigate apoptosis in RGCs (Sun et al., 
2012; Majid et al., 2013; Miki et al., 2013). However, to our 
knowledge, no previous study has assessed the protection 
of PACAP on RGC apoptosis induced by SD. The present 
study demonstrated that PACAP attenuates SD-induced 
apoptosis in RGC-5 cells. 

PACAP is neuroprotective in the retina and 100 nM was 
the optimal concentration (Seki et al., 2008). In our study, 
the anti-apoptotic effect of PACAP was not dose-dependent 
and peaked at a concentration of 100 nM. The SD + PACAP 
group exhibited a higher percentage of cells in S-phase com-
pared with the SD group, indicating that PACAP promoted 
cell viability partly by accelerating the cell cycle. Neuronal 
damage in glaucoma has been associated with increased 
free radical production and to a low level of endogenous 
antioxidant defense (Izzotti et al., 2006). In the present re-
search, SD led to ROS over-generation. The over generation 
of ROS is indicative of compromised antioxidant capacity 
and makes cells vulnerable to injury (Kang et al., 2010). Nu-
merous stressors capable of causing excessive ROS produc-
tion are involved in glaucoma (Pinazo-Durán et al., 2012). 
Mitochondria are the major site for superoxide production, 
and are vulnerable to direct attack by ROS (Orrenius, 2007). 
Mitochondrial dysfunction leads to increased production 
of ROS, which in turn aggravates oxidative stress (Jezek et 

al., 2005). PACAP prevents the decrease of mitochondrial 
activity in astroglial cells (Masmoudi-Kouki et al., 2011) and 
inhibits the excessive generation of ROS in ultraviolet B ir-
radiated RGC-5 cells (Cheng et al., 2014). However, whether 
PACAP reduces ROS production in serum-deprived RGC-
5 cells has not been elucidated. Our study revealed that the 
rise in ROS levels in response to SD was markedly quenched 
by 100 nM PACAP treatment. 

SD induces apoptotic cell death of transformed rat RGCs 
via mitochondrial signaling pathways (Charles et al., 2005). 
The number and morphology of mitochondria vary widely 
among cell types and are regulated by intrinsic and extrin-
sic mechanisms (Davis et al., 2014). RGCs probably have 
more mitochondria than any other neuronal cell type and 
efficient intraocular axon mitochondrial function is essential 
to maintain overall function of RGCs (Osborne et al., 2014). 
Mitochondrial stress in individual RGCs has been proposed 
as a major trigger of glaucoma and pharmacological agents 
that maintain mitochondrial functions might, therefore, 
provide a novel way of delaying RGC death (Osborne et al., 
2013). As indicated by JC-1 assays, PACAP compensated 
the loss of mitochondrial membrane potential caused by 
SD in RGC-5 cells. PAC1 is abundant in the retina (Dénes 
et al., 2014) and we have previously reported the expression 
of PAC1 in RGC-5 cells, which was increased in ultravi-
olet B-induced apoptotic cells (Ding et al., 2012). In our 
present study, there is a direct involvement of PAC1 in the 
anti-apoptotic function because PAC1 expression is sig-
nificantly increased in RGC5 cells exposed to SD. Similarly, 
expression of the gene encoding PAC1 increases markedly 
during inflammation and disease to alleviate inflammation, 
oxidative stress and apoptosis (Xu et al., 2016). We suggest 
that the protective effect of PACAP is mediated via PAC1 
and an exogenous PACAP supply counteracts the compen-
sational increase of PAC1 signaling. The activation of PAC1 
by PACAP modulates cell death in the retina through the in-
tracellular cAMP/cAMP-dependent protein kinase pathway 
(Silveira et al., 2002) and the protective effect of PACAP in-
volves complex kinase signaling pathways related to cAMP/
ERK/CREB activation (Racz et al., 2006). PACAP, through 
activation of its receptor, PAC1, and the protein kinase A, 
protein kinase C, and MAP-kinases signaling pathways, pre-
vents accumulation of ROS, which allows the preservation of 
mitochondrial membrane integrity (Han et al., 2014; Douiri 
et al., 2016). Further studies are needed to gain deeper in-
sights into the mechanism underlying the protective effect 
of PACAP against SD-induced apoptosis in RGC-5 cells. 

Bcl-2 levels in RGC-5 cells subjected to SD were signifi-
cantly lower than those in RGC-5 cells. The expression of 
anti-apoptotic Bcl-2 increases greatly in apoptotic RGC-5 
cells in response to other insults like H2O2. Members of the 
Bcl-2 family participate in the initiation of the mitochon-
drial signal pathway, thus regulating cell apoptosis (Wang 
et al., 2013). Therefore, PACAP may inhibit the apoptosis 
of RGC-5 cells via the mitochondrial pathway by reducing 
ROS levels and, at the same time, by increasing Bcl-2 levels. 
Although there is controversy over the validity of RGC-5 
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cells, they are widely accepted as retinal neuronal precursor 
cells (Van Bergen et al., 2009). Furthermore, in our previ-
ous study, the RGC-5 cells that we use have been proven to 
express specific markers for RGCs. Our results suggest that 
PACAP may protect RGCs from apoptotic death by inhib-
iting the mitochondrial apoptosis pathway. However, as in-
tracellular signaling pathways are very complex, the involve-
ment of other pathways cannot be excluded. Furthermore, 
the protective mechanism of PACAP mediated by PAC1 
is complicated and varies among cell types. The protective 
effect of PACAP and its underlying mechanism should be 
further investigated in animal models.

In conclusion, PACAP attenuates SD-induced apoptosis 
in RGCs and might play an important role in the neuropro-
tection of RGCs. Perturbations in the PACAP/PAC1 path-
way are involved in abnormal stress responses underlying 
post-traumatic stress disorder (Ressler et al., 2011). We can-
not help but wonder whether the PACAP/PAC1 pathway is 
associated with glaucomatous neuropathy, which will be the 
direction of our future research.
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