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ABSTRACT

This article describes the creation of the first expert manually curated noncoding RNA interaction networks for S. cerevisiae. The
RNA–RNA and RNA–protein interaction networks have been carefully extracted from the experimental literature and made
available through the IntAct database (www.ebi.ac.uk/intact). We provide an initial network analysis and compare their
properties to the much larger protein–protein interaction network. We find that the proteins that bind to ncRNAs in the
network contain only a small proportion of classical RNA binding domains. We also see an enrichment of WD40 domains
suggesting their direct involvement in ncRNA interactions. We discuss the challenges in collecting noncoding RNA interaction
data and the opportunities for worldwide collaboration to fill the unmet need for this data.
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INTRODUCTION

Macromolecules within an organism performmany different
roles, achieved in a large part through their associations
with multiple interacting partners. Many differing types of
molecular interaction networks have been studied, including
protein–protein interaction (PPI) networks, transcriptional
regulatory networks (DNA–protein), signal transduction
networks, andmetabolic networks. These networks are an es-
sential step in developing a systems-level understanding of an
organism. Comparisons of different biological networks can
give interesting insights into the nature of cellular evolution,
function, and organization. Large-scale RNA sequencing and
transcriptomic analyses have revealed that, in contrast with
previous hypotheses, most of the genome is transcribed
into coding or noncoding RNAs (ncRNAs) (Storz 2002;
Clark et al. 2011). Functional studies have shown that
ncRNAs are involved in complex regulatory networks, which
theymodulate by interacting with proteins, nucleic acids, and
small molecules.
Any RNAmolecule that functions without being translated

into a protein is, by definition, a ncRNA, and they have been
organized into families with markedly different structural
or functional roles (Nawrocki et al. 2015). In addition to
the well-characterized ribosomal RNAs and transfer RNAs,
several other broad classes have been defined, including
microRNAs (miRNA), long noncoding RNAs (lncRNA),
and small nuclear and nucleolar RNAs (snRNA and

snoRNA) (Amaral et al. 2011; Yoshihama et al. 2013;
Kozomara and Griffiths-Jones 2014). These classes are still
being continuously added to and enlarged by newly discov-
ered molecules. The whole spectrum of ncRNA function is
far from being elucidated. It is likely that they participate in
signaling networks, modulating the main cellular processes
and regulating gene expression, and also play additional roles
via specific RNA–DNA, RNA–RNA, or RNA–protein recog-
nition events (Woolford and Baserga 2013; Yamashita et al.
2016). The sheer quantity of reported data leaves no doubt
as to the relevance of ncRNAs in a broad spectrum of signal-
ing pathways, and on the multitude of interactions in which
they are involved.
Several high-throughput techniques based on UV cross-

linking such as CLASH, CRAC, iCLIP, and PAR-CLIP, have
been developed for the in vivo identification of RNA–protein
as well as RNA–RNA interactions (Granneman et al. 2009;
Hafner et al. 2010; Kudla et al. 2011; Modic et al. 2013).
With the help of quantitative mass spectrometry, hundreds
of new RNA binding proteins have been recently discovered,
gaining novel insights into the nature of RNA–protein recog-
nition specificity and the complexity of the RNA–protein
networks (Castello et al. 2012; Mitchell et al. 2013;
Beckmann et al. 2015).
The curation of these interactions into the public domain,

making them available for query or for network analyses, is
therefore of critical importance. However, unlike protein–
protein interaction data, no systematic manual curation of
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the published literature in this area has yet been undertaken.
Recently, a few resources have gathered RNA interactions and
made them available on the web, such as Clipdb (Yang et al.
2015), NPinter (Hao et al. 2016), RAIN (Junge et al. 2017),
and RAID (Yi et al. 2017). An important issue that previously
made it difficult for interaction databases to capture and or-
ganize ncRNA interactions was the lack of a single central
resource providing unambiguous identifiers for each RNA
molecule, and linking that identifier to the sequence of that
RNA. Over the years, particular ncRNA categories have been
collected and classified in specialized databases (miRbase,
gtRNAdb, tRNAdb, lncRNAdb, etc.), while other RNAs
were still only identified by the gene entry name (Chan and
Lowe 2009; Jühling et al. 2009; Amaral et al. 2011; Kozomara
and Griffiths-Jones 2014; Li et al. 2014). To consistently iden-
tify all ncRNAs, the RNAcentral platform was developed
(http://rnacentral.org/), with the aim of incorporating and
combining the numerous ncRNA databases to create a uni-
fied reference resource that allows the search or comparison
of any ncRNA of interest (The RNAcentral Consortium 2015,
2017). RNAcentral is now available and acts as an external
reference resource for all ncRNA molecules, as UniProtKB
(The UniProt Consortium 2015) does for proteins and
ChEBI (Hastings et al. 2016) for small molecules. The linking
of identifier to sequence enables the precise mapping of point
mutation data, which researchers generate to experimentally
demonstrate the effect of these mutants on the interactions of
ncRNA with other molecules.

Now that an external reference resource exists for ncRNA
molecules, the capture of functional annotations for those
molecules has become feasible, and it is possible that infor-
mation held in disparate databases can be combined.
Protein–protein interaction data has been made publicly
available in a consistent data format thanks to the combined
work of multiple interaction databases and the molecular in-
teraction workgroup of the Human Proteome Organisation
Proteomics Standards Initiative (HUPO PSI-MI) (Hermja-
kob et al. 2004). The community standard data formats en-
able users to download interaction from multiple resources
and readily combine these into a single data set. Members
of the IMEx Consortium (Orchard et al. 2012) have gone fur-
ther than this, managing curation across multiple separately
funded resources to give the user a single, consistently anno-
tated data set and make optimum use of public funds by
avoiding repetitive capture of the same papers and reducing
parallel database and tool development. Members of the
IMEx Consortium have already extended their activities
into the capture of protein–small molecule data, and the
IntAct database also collates transcription factor/transcribed
gene interactions.

We present here a study focused on the curation of ncRNA
interactions in the IntAct molecular interaction database, and
on the analysis of the network subsequently produced. We
have selected Saccharomyces cerevisiae—a well-studied model
organism—for this work, in order to demonstrate that we

can identify those processes and functions we would expect
to see in such a network. We have curated over 120 articles
and built yeast RNA–protein and RNA–RNA networks.
Details concerning the experimental methodology, the inter-
acting molecules’ detection methods, the features of the pro-
tein and RNA molecules (tags, point mutations, deletion
mutations, etc.), and the organism used to produce or ex-
press the molecules, can all be captured by the IntAct data
model, and the curation rules and controlled vocabulary
(CV) terms have been expanded to encompass this new
data type. The use of standard formats and CVs has allowed
us to use the existing MIscore algorithm to calculate a confi-
dence score for each interaction, and also has enabled a more
detailed characterization of the resulting interaction network
(Orchard et al. 2014).
The results of this pilot study demonstrate the value of the

expert curation of ncRNA networks, allowing the subsequent
analysis both of overall network properties and the detailed
interactions between individual molecules. As stated above,
Saccharomyces cerevisiae was chosen as an appropriate model
organism for this initial work because it contains a limited
number of genes that encode ncRNAs. While we are not
claiming this network is complete, we have achieved good
coverage of the existing literature and keeping the network
up to date with new findings will be a relatively easy task.
The real value of this work is to highlight the importance
of starting to tackle the collection of such data in more com-
plex organisms, such as human. The required data resources
and data exchange formats exist; the analysis tools originally
developed for PPIs have been shown to be applicable to other
molecule types, but funding and expert input from the
ncRNA community will be required to tackle this important
data collection effort.

RESULTS

General network properties

Protein–protein interaction (PPI) networks have long been
studied in detail in various organisms, either as complete
proteomes or as specific modules (proteins that belong to a
certain pathway or complex). RNA–protein interaction
(RPI) networks have been described in detail for very few or-
ganisms, with the exception of human and yeast (Nishtala
et al. 2016), and little information is available regarding net-
work analysis of RNA–RNA interactions. One of the reasons
noncoding RNA–RNA interaction (RRI) networks are less
well studied could be the limited availability of experimental-
ly validated large-scale RNA–RNA interaction data.
Here we have taken a comparative approach to studying

various network properties of PPI, RPI, and RRI networks
to identify any similarities or differences between them.
The yeast PPI network modeled in this study comprises

77,620 unique interactions among 6091 proteins. The RPI
network consists of 596 interactions between 105 ncRNAs
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and 153 proteins, and the RRI network comprises 195 inter-
actions among 102 ncRNAs.
We computed the degree distribution to measure the

probability of nodes to interact with k, other nodes. As seen
in Figure 1, the degree distribution of the PPI network
follows a power law P(k)∼ k−γ, wherein a large number of
nodes interact with a few partners, and a small number of
nodes, called hubs, interact with a large number of partners.
We observe a similar trend in RPI and RRI networks. Hub
proteins are critical for the functioning of a network and their
removal can result in failure of the system (Jeong et al. 2001).
On average there are 12.74 interactions per node in the PPI
network and 651 hubs identified that interact with more
than 50 proteins; the major hubs include heat shock proteins
Ssb1 (UniProt: P11484), Ssa1 (UniProt: P10591), and Ssa2
(UniProt: P10592) with 3493, 2751, and 2444 interactors, re-

spectively. In comparison, the RPI and RRI networks are
sparsely connected with an average 2.13 and 1.90 interactions
per node, respectively. The Gar1 protein, a subunit of the
H/ACA ribonucleoprotein complex (UniProt: P28007), and
the small nucleolar RNA U3a (IntAct: EBI-10821792,
RNAcentral: URS0000444F9B) form the major protein and
RNA hubs in the RPI network with 32 and 51 edges, respec-
tively. On the other hand, the 18S and 25S ribosomal RNAs
(rRNAs) dominate the RRI network (Fig. 2). Comparison of
yeast networks with human networks show similar trends of
degree distribution (Supplemental Fig. S1). The nodes in the
three networks are closely linked with a mean shortest path
length of 2.58, 3.27, and 2.35 between any two nodes in
PPI, RPI, and RRI networks, respectively.
Other network properties, such as clustering coefficient

and neighborhood connectivity, show similar trends between

FIGURE 1. Degree distribution of a random interaction network (nodes: 6091, edges 77620), protein–protein interaction network (PPI), RNA–pro-
tein interaction network (RPI), and RNA–RNA interaction network (RRI). Degree distribution of all three biological networks exhibits a power law.
The degree exponent γ is shown in red text.
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the PPI, RPI, and RRI networks (Table 1). The betweenness
and closeness centrality of PPI, RPI, and RRI networks were
also found to show similar distributions (not shown).

Node centrality measures such as betweenness and close-
ness centrality evaluate the crucial role of a node as amediator
of interactions within the network. A node is central to the
network if the shortest paths of a large number of nodes
pass through it. Hubs cover a large number of paths that con-
nect nodes within a network and therefore tend to show
high betweenness and closeness centralities. Interestingly,
both the PPI and RRI networks contain nodes that have low
connectivity (degree) but relatively higher betweenness cen-
tralities. In the RRI network these nodes are represented by
snoRNAs SNR8 (RNAcentral: URS00001F7017) and SNR81
(RNAcentral: URS00003377F1). SnoRNAs guide chemical
modifications of ribosomal, transfer, and other small nuclear
RNAs. In the RRI network (Fig. 2), snoRNAs SNR8 and
SNR81 interact with nodes from both the ribosomal and spli-
ceosomal RNA subnetworks. The H/ACA box SNR81 guides
pseudouridylation of the 25S rRNA subunit and U2 (LSR1)
snRNA (Schattner et al. 2004; Wu et al. 2011). Two distinct

hairpin sites of SNR81modify 25S rRNA and U2; the 3′ pseu-
douridylation pocket guides the pseudouridylation of 25S
rRNA at position 1051 (Schattner et al. 2004), whereas the
5′ pseudouridylation pocket guides pseudouridylation of U2
snRNA at positions 42 (Ma et al. 2005) and 93 (Wu et al.
2011). SnoRNA SNR8 modifies the large ribosomal subunit
and the actin pre-mRNA. The two snoRNAs form a structural
link between the ribosomal subnetwork and the spliceosome
module of the RRI network. The five snRNAsU1, U2, U4, U5,
and U6 comprise the spliceosome module.
“High betweenness but low connectivity” nodes were

identified in a previous study of the yeast proteome (Joy
et al. 2005). It was shown that nodes in the PPI network
with “high betweenness but low connectivity” tend to be im-
portant connectors that link various modules (or clusters)
within the network and are essential proteins of recent evolu-
tionary origin (Joy et al. 2005). It has been proposed that
“high betweenness but low connectivity” nodes in PPI net-
works evolve by the addition of nodes with edges and random
rewiring of these edges, as a result of gene duplication and
point mutations (Joy et al. 2005). Although node addition

FIGURE 2. The yeast noncoding RNA–RNA interaction network (RRI) shows ribosomal RNA subunits as the major hubs interacting with tRNAs
and snoRNAs. The spliceosomal module comprising spliceosomal RNAs is circled in red. The ribosomal RNAs are highlighted in pink and tRNAs are
highlighted in yellow. The snoRNA nodes SNR8 and SNR81, with high betweenness but low centrality, are shown in orange.
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(gene duplications) and random rewiring (mutations) may
explain the presence of “high betweenness low connectivity”
nodes in PPI networks, the same evolutionary model cannot
be extended to RPI and RRI networks. Protein-coding genes
and noncoding genes evolve by different mechanisms and
under different evolutionary constraints; while duplication
and divergence are suggested as the major mechanism for
expanding the protein-coding gene repertoire (Guan et al.
2007; Dujon 2010), mechanisms such as retroposition
(Weber 2006; Schmitz et al. 2008), intragenic duplications
(Shao et al. 2009), and de novo emergence (Meunier et al.
2013) are suggested to drive the expansion of short ncRNA
genes. Moreover, mutation rates of protein-coding genes
and noncoding RNAs, which potentially can rewire interac-
tions in the network, are different, thereby affecting edge dy-
namics of the networks.

Network features

The IMEx curation process captures the full contextual details
of experiments generating molecular interactions data, and
this resource has previously been successfully used for com-
putational analyses of PPI interactomes (Porras et al. 2015).
Most of the controlled vocabulary (CV) terms that describe
PPIs were also applicable to RPI and RRI interactions; howev-
er, new CV terms were introduced, when required, to enable
the curation of specific interaction detection methods or par-
ticipant detectionmethods. As shown in Figure 3B,more than
50% of the curated RNA–protein interactions were detected
by affinity chromatography, anti-tag or anti-bait coimmuno-
precipitation, and tandem affinity purification; however, new
approaches developed to specifically capture protein-binding
RNAs, such as CRAC and PAR-CLIP (Granneman et al. 2009;
Hafner et al. 2010), were included to describe 19% and 1% of
the RPI interactions, respectively. The yeast RNA–RNA inter-
actions were demonstrated by cosedimentation (19%), EMSA
(5%), pull down (5%), and cross-linking (5%), but the ma-
jority (55%) of these interactions were shown with RNA–
RNA specific techniques, such as CLASH (Kudla et al.
2011). RNA–RNA interactions are often derived from se-
quence complementarity that can be predicted with bioinfor-
matics analyses and confirmed by genetic interference. This
approach was used to demonstrate most of the yeast

snoRNA–rRNA interactions, using methodology that leads
to a chemical modification of the ribosomal RNA. To formal-
ize the representation of this approach, the term “chemical
RNAmodification plus base pair prediction” (Fig. 3A)was in-
troduced into theCV. Information concerning the techniques
used to identify the molecules participating in each interac-
tion are annotated into the PSI-MI data exchange format as
“participant identification methods.” Figure 3C shows that
most of the RNAs were identified by sequence analysis
(17%), Northern blot (29%), or primer extension assay
(42%).
Moreover, to assess the validity of each interaction pair, a

confidence score is calculated in IntAct (MIscore) that is re-
liant on the annotation of experimental, predicted, or in-
ferred data, from which each interacting binary pair is
supported (Villaveces et al. 2015). MIscore, as implemented
in IntAct, provides a normalized score between 0 and 1 cal-
culated from the weighted sum of the three different sub-
scores: the number of publications, the experimental
detection methods, and the interaction types found for the
interaction. The higher the score, the more reliable the inter-
action is seen as being. According to this scoring system,
more than 20% of the RNA–protein interactions have a score
greater than 0.5, while most of the RNA–RNA interactions
scores are in the range of 0.2–0.5, and only 8% of the inter-
actions have a score higher than 0.5 (Fig. 3D). These low val-
ues are presumably due to the limited characterization of the
RNA interactomes.
Using the Cytoscape software (Shannon et al. 2003), inter-

actions can be filtered according to confidence values to limit
the visualization only to the most reliable interactions or to
those validated with a specific method. Figure 4 shows a sub-
graph of the RPI network, including only high-confidence in-
teractions with a score higher than 0.5.

Gene Ontology analysis of ncRNA interactome

One important use of interaction data is to enable producers
of large-scale Omics data to perform network analysis, look-
ing for proteins that cluster in the interactome of a particular
organism, or a given cell type, and that are all up- or down-
regulated. Clusters of interacting proteins are often involved
in the same biological process or are present in the same

TABLE 1. Summary of network properties

Network property

PPI (nodes:
6091, edges:

77,620)

Random PPI network
(nodes: 6091, edges:

77,620)

RPI (nodes:
258, edges:

596)

RRI (nodes:
102, edges:

195)
Downsampled PPI

network (edges: 195)

Degree distribution exponent (γ) 2.69 9.45 2.73 2.64 3.50
Clustering coefficient exponent (γ) 2.42 20.9 – 1.68 2.82
Neighborhood connectivity exponent (γ) 3.43 180.60 5.95 2.72 5.61
Average shortest path 2.58 2.96 4.27 2.44 1.61

Network properties of PPI, RPI, RRI, and a random PPI network are compared.
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macromolecular complex. Gene Ontology is commonly used
to identify commonalities of function and process. This relies
on the proteins in the network having first been annotated to
the appropriate GO terms, an ongoing process that has been
the work of many curation teams for almost 20 years (The
Gene Ontology Consortium 2015). The GO was designed
for the annotation of gene products, and the inclusion of
RNA within the scope of the GO project was always intended
and predates our current understanding of the size and com-
plexity of such an undertaking. The annotation of ncRNAs
into interaction networks, and the ability to include their
functional annotations into analyses will improve the analyt-
ical power of our current algorithms (Huntley et al. 2016);
and the existence of RNAcentral to provide reference molec-
ular identifiers for GO term curation of ncRNAs now makes
this possible. We have evaluated the occurrence of GO terms
of both proteins and ncRNAs of the yeast RPI interactome.
Unfortunately, most analytical tools do not perform yeast
RNA GO terms enrichment analyses as yet, so for ncRNAs

we have used GO SLIM terms associated with the molecules
based on curation undertaken by SGD (Cherry et al. 2012),
and have analyzed the frequencies of the most represented
terms. Protein GO terms enrichment analysis was carried
out using BiNGO (Maere et al. 2005). As expected, nucleic
acid/RNA binding molecular function was largely overrepre-
sented in the RPI in respect to the yeast proteome, as well as
enzymatic activities involved in RNAmetabolism (see Fig. 5),
while RNA processing, ribosome biogenesis, and maturation
of RNAs are the most common biological processes terms.
Notably, a significant enrichment of metabolic enzymes

was observed in yeast mRNA binding proteins (Matia-
Gonzalez et al. 2015), including glycolytic enzymes not
directly involved with RNA metabolism, which may affect
RNA stability. Most of the ncRNAs in RPI function as guides
for methylation and pseudouridylation of rRNA during its
maturation process, or have triplet codon adaptor activity,
so that rRNA methylation and pseudouridylation are among
the most represented biological processes terms (see Fig. 6).

FIGURE 3. Distribution of experimental methods used to demonstrate the yeast RRI and RPI interactions (A,B) or the identity of the RNAmolecules
(C). In D the percentage of curated interactions for each MIscore interval is reported for RPI (orange bar) and RRI (blue bar).

Panni et al.

1484 RNA, Vol. 23, No. 10



These terms are also the most represented in the RRI interac-
tome (not shown), probably due to the lack in Saccharomyces
of a relevant set of regulatory ncRNAs.

RNA binding proteins analysis

RNA–protein interactions are often mediated by a small
number of protein domains (RBD) that specifically recognize
RNA structures and/or sequences (Lunde et al. 2007; Cook et
al. 2015). We analyzed the proteins associated with ncRNAs
in the yeast RPI to retrieve the occurrence of RBDs. We in-
cluded in the list both “direct interactions” and “association”
edges, which means that the proteins have been found in
complexes with ncRNAs, but for some of them direct binding
to ncRNA has not been demonstrated.We queried both Pfam
and SMART databases with the list (Letunic et al. 2015; Finn
et al. 2016). As shown in Figure 7, some canonical RBDs,

such as RRM, DEXDC, and S1, were enriched in comparison
with the yeast proteome; however, most of the proteins do
not contain any of them, but contain specific regions selec-
tively found in single proteins (such as Nop10 domain in
Nop10p, UniProtKB: Q6Q547; or Utp8 domain in Utp8p,
UniProtKB: P53276; or Mpp10 domain in Mpp10p,
UniProtKB: P47083; and so forth), or are composed of disor-
dered regions only (such as SF3B1, UniProtKB: P49955 or
UTP9, UniProtKB: P38882, or Nsa1, UniProtKB: P53136),
suggesting the evolution of multiple RNA binding strategies.
It has been recently reported that yeast mRNA binding pro-
teins often lack typical RBDs (Beckmann et al. 2015; Matia-
Gonzalez et al. 2015; Brannan et al. 2016; Castello et al.
2016a). We compared the occurrence of the most common
RNA binding domains in yeast ncRNA binding proteins
(BP) versus a list of yeast mRNA BP (Mitchell et al. 2013),
and we observed that ncRNAs are recognized by

FIGURE 4. RPI subgraph showing interactions with aMIscore value equal or superior to 0.5. Proteins are colored in yellow and ncRNAs in blue. Edge
line width is proportional to the score value.
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unconventional modules similarly to or
even more often than mRNAs (Fig. 7C).
Interestingly, the two most enriched

domains in RPI are SM and WD40. SM
domains (http://www.ebi.ac.uk/interpro/
entry/IPR010920) are known to be asso-
ciated with RNA binding proteins; how-
ever, WD40 repeat domains (http://www.
ebi.ac.uk/interpro/entry/IPR017986) are
mainly described as protein–protein inter-
action modules. This domain has also
been reported to be enriched in mRNA
binding proteins (Castello et al. 2012),
which, together with our observation and
with the characteristics of the domain,
suggest that it may also in some cases me-
diate ncRNA–protein interactions.

DISCUSSION

Expert manual curation of the literature
and high-quality annotation of described
interactions has become a challenge for
interaction databases, made more diffi-
cult by the increase of experimental re-
sults generated by high-throughput
techniques. In the last decade, standard-
ized formats and quality controls have
been developed to help data sharing in
proteomics and protein networks, in or-
der to allow the user to score the reliabil-
ity of each interaction (Orchard and
Hermjakob 2015). In contrast, no specif-
ic standards have yet been developed for
the capture of RNA interactions. This
has meant that databases have collected
RNA interactions using subjective rules
for reliability and scores that do not allow
a direct comparison of the data, while
sometimes the source of the experiment
and the conditions it was carried out
with are not made clear to the reader.
As recalled in the Introduction, the
main issue previously preventing the bio-
curation community from collecting
ncRNA data was the problems in assign-
ing an unambiguous identifier to the
molecules, recently resolved by the crea-
tion of RNAcentral. As a result, however,
RNAmolecules have been extensively an-
notated in only a few model organisms,
and in some cases it can be hard to as-
sociate the transcript referred to in the
article with a specific identifier, with
the result that, for example, different

FIGURE 5. Gene Ontology enrichment analysis of yeast RPI proteins. Statistically significant
overrepresented Gene Ontology terms in the yeast ncRNA–protein interactome were calculated
with the BinGO tool.
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mRNAs transcribed from the same gene cannot always be
distinguished. This is also true for some precursors of
ncRNAs. Another issue has been the classification of different

experimental approaches as to their suit-
ability, or otherwise, for building physi-
cal (as opposed to predicted or genetic)
networks. Members of the PSI-MI com-
munity have defined a controlled vocab-
ulary capable of describing experimental
approaches, transcript metadata, point
mutations, and expression levels that
are extensively used to produce PPI net-
works and are crucial to the assembly
of consistent and reproducible models.
This framework is now being extended
to encompass RNA–RNA and RNA–pro-
tein interactions, allowing the curation of
the yeast ncRNAs interactome according
to the curation principles developed by
the IMEx Consortium. The IntAct data
model has proven able to hold these addi-
tional data via a web-based editing tool to
which one of the authors (S.P.) was given
an account and training. IntAct curators
additionally provided quality control
checks on the resulting annotations. The
interaction data collected in the present
study are publicly available and represent
a bona fide gold standard that can be uti-
lized in prediction analyses.

We have chosen Saccharomyces cerevi-
siae as a model system, which does not
express many ncRNAs with transcription
regulation functions compared to higher
eukaryotes, so the ncRNA network we
built consists mainly of interactions in-
volved in the RNA maturation process
or in the assembly of functional com-
plexes such as the ribosome, spliceo-
some, and telomerase, etc. The RRI
interactome in yeast is relatively small
and most of the ncRNA interactions con-
cern the ribosomal RNA processing. In
comparison, mammalian cells express a
very large number of ncRNAs that inter-
act with both mRNAs and ncRNAs.
While PPI networks have been extensive-
ly studied in the last decade, little is
known about RPI and RRI network char-
acteristics, and this pilot study is one of
the first to allow for a direct comparison
of the three networks. Interestingly, they
show similar parameters, with a few hubs
dominating the networks (Table 1). We
also analyzed ontology frequencies for

ncRNA involved in RRI and RPI (see Fig. 6). The ontological
representation of networks often facilitates functional analy-
ses; however, comprehensive annotation of Gene Ontology

FIGURE 6. Yeast RPI ncRNAs Gene Ontology terms. Slim ncRNAs Gene Ontologies were down-
loaded from SGD (Cherry et al. 2012) and frequencies were calculated as the occurrence of each
term in RPI with respect to the number of considered ncRNAs.
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terms for ncRNAs is still largely incomplete, and common
tools to determine statistically overrepresented GO categories
have not yet been implemented for all ncRNAs (Huntley et al.
2016).

The analysis of ncRNA–protein interactions in yeast re-
veals that the limited number of canonical RNA binding do-
mains classified in 2007 (Lunde et al. 2007) mediates only a
small fraction of them, while in some processes the pro-
tein–ncRNA-sequence recognition is helped by the binding
of a second RNA carrying a complementary region. For ex-
ample, some snoRNAs help Cbf5 in recognizing specific sites
of the ribosomal RNA and modifying them (Reichow et al.
2007). Notably, the occurrence of theWD40 binding domain
in yeast ncRNA binding proteins is clearly overrepresented in
respect to the yeast proteome (see Fig. 7), while no other pro-
tein-binding domain is. The WD40 repeats usually act as a
scaffold for assemblies of complexes, which can explain their
presence in some of the associations. However, the strong en-
richment of WD40 domains suggests that they may also have
a more direct role in ncRNA binding, which is also in agree-
ment with its versatility in binding very different classes of li-
gands. Recently, the crystal structure of gemin5 WD40

domain binding an RNA oligomer was
reported (Xu et al. 2016).
Macromolecular structures provide a

growing source of ncRNA interaction
data. To date, the PDB contains 1808 en-
tries that represent complexes between an
RNA and a protein. Of those, 137 have S.
cerevisiae listed as one of its source organ-
isms. Most of these structures are large
macromolecular complexes: More than
40 structures are variants of the 80S and
60S ribosome, 10 structures concern the
spliceosome complex, five the preinitia-
tion 40S and 48S complexes, and a few
others the exosome complex, while only
a small number involve tRNA–protein in-
teractions. With the advances in cryoEM
techniques, we hope that an increasing
number of RNA–protein interactions
will be defined at atomic resolution.
This study presents the first attempt at

creating a noncoding RNA network for
yeast in IntAct. Other resources have
started to collect RNA interactions (Li
et al. 2014; Hao et al. 2016; Junge et al.
2017; Yi et al. 2017). However, new inter-
actions are continuously published for
yeast and mammalian mRNAs (Baltz et
al. 2012; Baejen et al. 2014; Farazi et al.
2014; Gerstberger et al. 2014; Castello
et al. 2016b) and for less characterized
classes of ncRNAs such as SUT, CUT,
and XUT (Tuck and Tollervey 2013).

We believe that it is extremely timely to begin to collate
RNA interaction data from the literature and high-through-
put experimental screens. This will be greatly aided through
collaboration between the world’s noncoding RNA interac-
tion databases and the adoption of standards by them. The
widespread availability of protein–protein interaction data
is critical for scientific research and the same must happen
for RNA interaction data to fill the gap in scientific data
provision.

MATERIALS AND METHODS

Data collection and curation: yeast noncoding RNAs

The yeast Saccharomyces cerevisiae cell represents an excellent model
system to perform analyses on ncRNA interaction networks, since it
contains a limited number of ncRNAs, most of which are well-char-
acterized in literature and annotated in databases. As reported in
Table 2, the majority of the yeast ncRNAs belong to the small nucle-
olar/nuclear classes of RNAs, which regulate ribosomal and messen-
ger RNA metabolism. Other well-known classes include the
ribosomal and transfer RNAs, the telomerase RNA component,

FIGURE 7. Putative RNA binding domains in yeast ncRNA binding proteins (BP). Frequencies
were calculated as the percentage of proteins that contain a certain domain in the yeast proteome/
6000 (occurrence in the yeast proteome A,D), proteins that contain a domain in the ncRNA inter-
actome/173 protein nodes (occurrence in yeast RPI B,D), or proteins that contain a domain/120
mRNA BP from Mitchell et al. (2013) (C). (D) Frequencies of the most represented protein
domains in the yeast ncRNA binding proteins. (Note that in A, KH, DSRM, PUMILIO, C3H1,
and S1 are barely visible, due to their frequencies being 0.1% or less, while in B, C3H1 and
Pumilio are absent, and in C, C2H2 is absent.)
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the SRP complex RNA 7S, and the catalytic introns of groups 1 and
2. NomicroRNAs have been reported in S. cerevisiae to date, and few
lncRNA have been described (Martens et al. 2004; Bumgarner et al.
2009; van Werven et al. 2012). Numerous cryptic unstable tran-
scripts (CUT), Xrn1-sensitive unstable transcripts (XUT), and other
noncoding transcripts are synthesized in yeast and immediately tar-
geted for degradation (Neil et al. 2009; van Dijk et al. 2011). They are
still poorly characterized and we did not consider them in our study
(Tisseur et al. 2011). To select the RNAcentral identifier for each
ncRNA, the database was searched with the SGD identifier or, for
tRNAs, with the GTRNAdb identifier. For a few tRNA precursors,
the RNA sequence search was used.
Both transfer and ribosomal RNAs are transcribed as precursor

molecules that undergo a series of post-transcriptional events re-
quired for the biogenesis of the functional molecules, and these pre-
cursors are sometimes not annotated as independent entries in RNA
databases. During the curation process, we considered precursor and
mature RNAs as different interactors whenever it was clearly speci-
fied which molecular form was involved in an interaction (Table 2).
Noncoding RNA interactions were manually curated from the lit-

erature, following the curation standards established by the IMEx
Consortium. First we consulted the Rfam, SGD, the LncRNAdb,
and the yeast snoRNA databases (Piekna-Przybylska et al. 2007;
Cherry et al. 2012; Nawrocki et al. 2015; Quek et al. 2015) in addi-
tion to the published literature, to draw up a complete list of S. cer-
evisiae ncRNAs. We then retrieved relevant articles by searching
PubMed for abstracts containing at least one ncRNA name and
“yeast” or “S. cerevisiae” terms.We also searched PubMed with other
keywords, such as “CLIP,” “CLIP-seq,” “CLASH,” “rna rna interac-
tion” “rna protein interaction,” etc. We collected several hundreds
of papers that weremanually filtered to a final total of approximately
120 actually containing interactions that were manually curated. We
annotated interactions for each type of yeast ncRNAs, although
there were a few exceptions (such as regulatory RNAs Pwr1, Icr1,
and Irt 1) for which we have not found any physical interactions
to date. RNA–RNA and RNA–protein interactions were manually
curated using the IntAct editor, according to the IMEx standard.
All data are available for download from the IntAct home page in
both PSI-MI XML andMITAB tabular format, including all relevant
information about the constructs used, the detection methods, and
the host organism.

To download the RNA interactomes, the IntAct database can be
queried with (ptypeA:RNA AND ptypeB:RNA) or [(ptypeA:RNA
AND ptypeB:protein) or (ptypeA:protein AND ptypeB:RNA)] (to
limit the search to yeast, add Saccharomyces cerevisiae in the ad-
vanced search), or it can be queried with the list of ncRNAs
(Supplemental Table S1), using EBI identifiers or URS identifiers
followed by _559292.

Network analysis

Protein–protein, ncRNA–protein, and noncoding RNA–RNA inter-
action data for Saccharomyces cerevisiae (taxonomy ID: 559292) were
downloaded from IntAct database (November 2016). Only a single
edge was kept for examples of duplicate edges and self-interaction
(loops) edges were removed before computing network properties.
The complete yeast proteome PPI network was inferred from 77,620
unique interactions among 6091 proteins, the RPI network was in-
ferred from 596 interactions between 105 ncRNAs and 153 proteins,
and the RRI network from 195 interactions among 102 ncRNAs
(tRNA–rRNA interactions were added to the RNA–RNA interac-
tome). To compare network properties between the RRI network
and the PPI network, the PPI network was downsampled such
that the downsampled network comprised the same number of edg-
es as the RRI network, andmean values from 100 downsampled net-
works were considered. To compare network properties of
biological networks with a random network, a random network
was generated using the Erdös–Renyi model with the same number
of nodes and edges as in the PPI network (nodes: 6091, edges:
77620). Network analyses were carried out using the igraph package
(Csardi and Nepusz 2006) in R.

Degree distribution

The degree of a node n is the number of edges linked to it. Number
of nodes ordered by their increasing degree gives the degree distri-
bution of a network.

Clustering coefficient

The clustering coefficient of a node is n defined as C(n) = 2e/[k(k
−1)], where e is the number of edges between neighbors of node

TABLE 2. Summary of yeast noncoding RNAs and their interactions

ncRNAs Number of RNAs Number of curated RNAs Edges

snRNA/snoRNA 82 81 741
Ribosomal RNAs 4 4 150
Ribosomal RNA precursors 12 10 329
tRNAs 41a 23 81
tRNA precursors 10a 4 15
Scr (SRP) 1 1 13
Nme (MRP) 1 1 14
Rpr1 (RnaseP) 1 1 18
Rpm1 (mit RnaseP) 1 1 1
Tlc1 (Telomerase) 1 1 9
Characterized lncRNA 6 1 3

For each noncoding RNA family, the number of yeast ncRNAs is reported (first column), the number of ncRNAs for which we found interac-
tors in the literature (second column), and the number of interaction evidences (edges) annotated in IntAct (third column).
aAccording to GtRNADB. Gene duplications were not considered.
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n, and k is the number of neighbors of n. The value of the clustering
coefficient lies between values 0 and 1 and is highest if all the neigh-
bors of the node directly interact with each other (i.e., edges form
triangles) and 0 when none of the neighbors are connected with
each other.

Betweenness centrality

Betweenness centrality of a node n is defined as B(n) = Σa≠n≠b
[σab(n)/σab], where σab is the shortest number of paths between
nodes a, b; and σab(n) is the shortest number of paths between nodes
a, b through node n. Betweenness centrality is divided by normaliz-
ing factor (N−1)(N−2)/2, where N is the total number of nodes in
the connected network.

Closeness centrality

Closeness centrality of a node n is defined as the reciprocal of the
average shortest path length, K(n) = 1/average [L(n,a)], where L(n,
a) is the shortest path between two nodes n and a. The closeness cen-
trality measure was computed on subgraphs with the highest num-
ber of interconnected nodes.

Neighborhood connectivity

Neighborhood connectivity of a node n is defined as the average
connectivity (degree) of all its neighbor nodes.

Gene ontology enrichment analysis

The RPI network was downloaded from IntAct database (November
2016) and the BiNGO tool was used to search ontology files. For
proteins, the hypergeometric test with 0.01 significance level was
used to evaluate the statistical significance of enrichment of each
term in comparison to the yeast proteome. No data are available
for the whole-yeast transcriptome to date, so that for ncRNAs we
calculated the occurrence of GO terms in the RPI network with re-
spect to the set of yeast ncRNAs.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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