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Abstract

Microstructural changes associated with degeneration of dopaminergic neurons of

the substantia nigra pars compacta (SNc) in Parkinson's disease (PD) have been stud-

ied using Diffusion Tensor Imaging (DTI). However, these studies show inconsistent

results, mainly due to methodological variations in delineation of SNc. To mitigate

this, our work aims to construct a probabilistic atlas of SNc based on a 3D

Neuromelanin Sensitive MRI (NMS-MRI) sequence and demonstrate its applicability

to investigate microstructural changes on a large dataset of PD. Using manual seg-

mentation and deformable registration we created a novel SNc atlas in the MNI

space using NMS-MRI sequences of 27 healthy controls (HC). We first quantitatively

evaluated this atlas and then employed it to investigate the micro-structural abnor-

malities in SNc using diffusion MRI from 133 patients with PD and 99 HCs. Our

results demonstrated significant increase in diffusivity with no changes in anisotropy.

In addition, we also observed an asymmetry of the diffusion metrics with a higher dif-

fusivity and lower anisotropy in the left SNc than the right. Finally, a multivariate

classifier based on SNc diffusion features could delineate patients with PD with an

average accuracy of 71.7%. Overall, from this work we establish a normative baseline

for the SNc region of interest using NMS-MRI while the application on PD data

emphasizes on the contribution of diffusivity measures rather than anisotropy of

white matter in PD.
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1 | INTRODUCTION

Parkinson's disease (PD) is a chronic, progressive disorder typically

characterized by bradykinesia, rigidity, and tremor, and these symp-

toms have been implicated to degeneration of dopaminergic neurons

in the substantia nigra pars compacta (SNc). These dopaminergic neu-

rons contain neuromelanin, loss of which manifests as depigmentation

of the SNc. This has been well established as an early histological fea-

ture of PD (Fearnley & Lees, 1991). Degeneration of these nigral,

dopaminergic neurons may lead to alterations in microstructural orga-

nization of the regional gray matter, white matter and local mye-

lination of the SNc in PD.

To gain understanding of the underlying microstructural changes

in the SNc, studies have relied upon anisotropy and diffusivity

Received: 14 March 2019 Revised: 24 October 2019 Accepted: 16 November 2019

DOI: 10.1002/hbm.24878

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.

Hum Brain Mapp. 2020;41:1323–1333. wileyonlinelibrary.com/journal/hbm 1323

https://orcid.org/0000-0002-4809-8559
mailto:head@scmia.edu.in
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/hbm


measures computed from diffusion tensor magnetic resonance imag-

ing (DT-MRI or DTI). Typically, these studies initially delineate the

SNc and then perform analysis on the computed ROI. Table 1 pro-

vides a brief review of existing studies that provides the reported DTI

findings in PD and is classified based on the technique used for SNc

localization. Majority of these studies (Chan et al., 2007; Du et al.,

2011; Knossalla et al., 2018; Langley et al., 2016; Loane et al., 2016;

Peran et al., 2010; Rolheiser et al., 2011; Schwarz et al., 2013;

Vaillancourt et al., 2009; Zhan et al., 2012) demonstrate a significant

difference between PD and HC groups in at least one of the diffusion

measures of SNc such as fractional anisotropy (FA), mean diffusivity

(MD), radial diffusivity (RD) and axial diffusivity (AD). Contradictory to

these findings, some studies (Aquino et al., 2014; Gattellaro et al.,

2009; Menke et al., 2010; Schuff, 2015) report no significant changes

in any of these diffusion measures in PD.

Taken together, the findings have been widely heterogeneous

and perhaps could be implicated to inconsistencies in stages of dis-

ease severity as well as to variable sample sizes. More importantly,

the techniques employed for delineating the SNc may have a signifi-

cant bearing on the variability in the reported results. For example,

studies have employed T2 weighted, proton density weighted spin

echo and inversion recovery based contrasts to precisely localize the

SNc ROIs (Atasoy et al., 2004; Duguid, De La Paz, & DeGroot, 1986;

Geng, Li, & Zee, 2006; Hutchinson & Raff, 2000; Oikawa, Sasaki,

Tamakawa, Ehara, & Tohyama, 2002; Pujol, Junque, Vendrell, Grau, &

Capdevila, 1992; Stern, Braffman, Skolnick, Hurtig, & Grossman,

1989; Tuite, Mangia, & Michaeli, 2013). However, in a conventional

T2 weighted MRI, there is variability in the hypo-intensity associated

with the SNc as a result of increased iron deposition, in addition to

the reduction in neuromelanin content (Deng, Wang, Yang, Li, & Yu,

2018; Langley et al., 2015; Langley et al., 2016; Wypijewska et al.,

2010). This often leads to an inaccurate marking of SNc boundaries

and a false pathological representation of dopamine degeneration

(Langley et al., 2016). To obtain more precision in SNc delineation,

recent studies have relied upon more sophisticated MRI protocols

such as DTI where fiber tracking is employed to extract the SNc.

(Menke et al., 2010; Sasaki et al., 2006; Zhang et al., 2015). However,

this technique is highly dependent upon the choice of diffusion MRI

protocol and the fiber tracking algorithm as well as is susceptible vari-

ations in manual fiber tracking. Nonetheless, direct visualization and

segmentation of the SNc, is therefore, a simpler yet a precise option

to ensure superior accuracy in analysis of PD. To this end, a novel MR

TABLE 1 Review of articles that have performed diffusion MRI analysis on the substantia nigra pars compacta in Parkinson's disease

Author (year)
Sample size
(DTI/NM-MRI)

ROI
placement ROI image

DTI results of PD in comparison
to HC

DTI studies with T1/Neuromelanin based SN contrast:

Langley et al. (2016) 20:17/11 (PD: HC /HC) Manual NM-T1, T2w FA#, MD" for NM-T1

Menke, Jbabdi, Miller, Matthews, and Zarei

(2010)

10:10 (PD: HC) Semiautomatic T1w, DTI

tracks

No significance

DTI studies with T2w/ T2*w image based SN contrast:

Schwarz et al. (2013) 32:27 (PD: HC) Manual T2w MD"
Du et al. (2011) 16:16 (PD: HC) Semiautomatic T2w FA#, R2*"
Prakash et.al (2012) 11:12 (PD: HC) Manual T2w FA asymmetry in SNc subregion in

PD

Rolheiser et al. (2011) 14:14 (PD: HC) Manual T2w + V1

maps

FA#, RD"

Peran et al. (2010) 30:22 (PD: HC) Manual T2*w images FA#, R2*"
Vaillancourt et al. (2009) 14:14 (PD: HC) Manual T2w FA#
DTI studies with DTI based SN contrast:

Knossalla et al. (2018) 10:10 (PD: HC) Manual FA maps FA#
Asymmetry in SNc subregion

Loane et al. (2016) 18:14 (PD:HC) Manual FA, MD maps FA#, MD"
Schuff et al (2015) 67:153 (PD:HC) Manual FA maps, T1w FA# in rostral SNc, AD", RD

No significance

Aquino et al. (2014) 42:20 (PD:HC) Manual Axial IR No significance

Zhan et al. (2012) 12:20 (PD:HC) Semiautomatic FA maps FA#
Gattellaro et al. (2009) 10:10 (PD:HC) Manual DTI tracks No significance

Chan et al. (2007) 73:78 (PD:HC) Manual FA maps FA#

Abbreviations: ": Increase; #: Decrease; DTI: Diffusion Tensor Imaging; FA: Fractional Anisotropy; HC: Healthy Controls; MD: Mean Diffusivity; NM-MRI:

Neuromelanin Magnetic Resonance Imaging; NM-T1: Neuromelanin sensitive T1; PD: Parkinson’s disease; RD: Radial Diffusivity; ROI-Region Of Interest;

SNc: Substantia Nigra pars compacta; T1w: T1 weighted; T2w: T2 weighted.
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sequence known as “neuromelanin-sensitive MRI” (NMS-MRI) has

demonstrated encouraging results.

NMS-MRI which is a 3 T T1-weighted high-resolution fast spin-

echo sequence is highly sensitive to the neuromelanin contained in

the SNc and therefore renders the SNc as a hyper intense structure

(Sasaki et al., 2006; Sasaki et al., 2008). This sequence is based on the

paramagnetic properties of neuromelanin, a neuronal pigment which

is a by-product of dopamine synthesis. Owing to the dopaminergic

neuron loss in patients with PD, this normally hyper intense structure

shows loss of normal signal intensity on NMS-MRI and therefore can

be considered as a biomarker for PD. Multiple studies have demon-

strated the clinical utility and accuracy of this sequence in patients

with PD (Castellanos et al., 2015; Ohtsuka et al., 2013; Ohtsuka et al.,

2014; Schwarz et al., 2011). To quantify these differences, the

processing techniques that are currently used are based on visual

inspection, or manual region of interest drawing followed by computa-

tion of volumes, contrast ratios or radiomics features and are arduous

and time-consuming (Isaias et al., 2016; Kashihara, Shinya, & Higaki,

2011; Matsuura et al., 2013; Matsuura et al., 2016; Ogisu et al., 2013;

Ohtsuka et al., 2014; Reimao et al., 2015; Sasaki et al., 2006; Schwarz

et al., 2011; Shinde et al., 2019). To overcome this, NMS-MRI

sequence can be employed to accurately localize and create a tem-

plate of the SNc that can be utilized for analysis in parkinsonian disor-

ders. Delineating the SNc in healthy controls and creating a template

will not only offer better anatomical context to future studies but also

provide a normative baseline and a ground-truth for comparison of

multiple populations.

To this end, our work aims to generate a probabilistic atlas of the

SNc from NMS-MRI and endeavors to apply the atlas on a large group

of patients with PD to gain deeper insights into the diffusion MRI

based microstructural abnormalities of the SNc. The generated proba-

bilistic atlas of the SNc will provide a simple method for localization of

the SNc, mitigating the methodological lack of uniformity in future

studies.

2 | METHODS

2.1 | Subject recruitment and clinical evaluation

A total of 133 subjects with PD and 99 healthy controls were recruited

from two studies that were conducted at the Department of Neurol-

ogy, National Institute of Mental Health and Neurosciences

(NIMHANS), Bangalore, India. The diagnosis of idiopathic PD was

based on the UK Parkinson's Disease Society Brain Bank criteria

(Hughes, Daniel, Kilford, & Lees, 1992) and confirmed by a trained

movement disorder specialist (author PKP). Patients included in this

study have been part of other studies (Lenka et al., 2018; Shah et al.,

2017) from this group and all patients and controls provided informed

consent prior to recruitment in the original projects. Data usage for this

study was reviewed and approved by the review board at NIMHANS.

Demographic and clinical details such as gender, age at presenta-

tion, age at onset of motor symptoms, disease duration, Mini Mental

State Examination (MMSE), and Unified Parkinson's Disease Rating

Scale (UPDRS-III) OFF-state scores, and levodopa equivalent daily

dose (LEDD) were recorded. The OFF state was defined as 12 hr after

the last dose of levodopa, and 48 hr after the last dose of a dopamine

agonist. Age and gender matched healthy controls with no family his-

tory of Parkinsonism or other movement disorders were recruited.

Another group of 27 healthy controls (Age = 38.67 ± 11.01, gen-

der [M:F] =18/9) whose NMS-MRI sequence was acquired as part of

a different study (Prasad et al., 2018) of the same group, was used in

the construction of our probabilistic atlas.

2.2 | Image acquisition

All subjects were scanned on a 3 T Philips Achieva MRI scanner using a

32-channel head coil. Diffusion weighted images (DWI) for these sub-

jects were acquired using a single-shot spin-echo EPI sequence with rep-

etition time (TR) = 8,583–9,070 ms, echo time (TE) = 60-62 ms, field of

view (FOV) = 128 × 128 × 70m, voxel size = 1.75 × 1.75 × 2mm, slice

thickness = 2 mm. Diffusion gradient was applied in 15 directions, with

b value =1000 s/mm and a single b = 0 s/mm. T1-weighted images were

acquired using TR = 8.06 ms, TE = 3.6 ms, voxel-size = 1 × 1 × 1mm,

FOV = 256 × 256 × 160mm, slice thickness = 1 mm, voxel size = 1 ×

1 × 1mm and flip angle = 8.

For creating a probabilistic atlas of SNc, a different set of controls

were scanned on the same scanner. T1-weighted images were

acquired using the above-mentioned protocol. Neuromelanin contrast

sensitive sequences were acquired using a fast spin echo 3D T1 acqui-

sition with TE: 2.2 ms, TR: 26 ms; flip angle: 20�; reconstructed matrix

size: 512 × 512; field of view: 180 × 180 × 50mm; voxel size:

0.9 × 0.9 × 1mm; number of slices: 50; slice thickness: 1 mm; and

acquisition time: 4 min 12.9 s. These images covered only the areas

between the posterior commissure and inferior region of pons.

2.3 | Atlas construction

Probabilistic atlas was built from NMS-MRI images of 27 subjects as

shown in Figure 1. For each subject, bilateral substantia nigra ROIs

(snROIs) were created from NMS-MRI scans by manual segmentation.

An author with expertise in the NMS-MRI sequence (rater1 [R1]-author

SP), delineated the right and left SNc on the axial slices and created a

3D binary mask (snROIs) for all 27 subjects. The NMS-MRI images were

then linearly registered to the T1 image of the same subject by per-

forming affine transformation using FLIRT in FSL (Smith et al., 2004).

The T1 images of all subjects were preprocessed by performing motion

correction, intensity inhomogeneity correction and skull stripping using

Freesurfer 6.0 (Fischl, 2012) and were transformed to the MNI space,

by employing a deformable registration using Advanced Normalization

Tools (ANTS), wherein a symmetric diffeomorphic transformation

model (SyN) was applied and optimized using mutual information. The

SyN is a large deformation registration algorithm, which performs a bidi-

rectional diffeomorphism and regularization using Gaussian smoothing

SAFAI ET AL. 1325



of the velocity fields and has shown to outperform other nonlinear reg-

istration algorithms in preserving brain topology (Avants, Epstein,

Grossman, & Gee, 2008). The transformations from NMS-MRI to T1

and from T1 to MNI were concatenated and were applied to the snROIs

to transform them to MNI space. Along with visual inspection of each

registered image, mean and variance of registered images was com-

puted for quality check of registration. A probabilistic atlas of SNc in

MNI space was then created, such that the voxel contained in all the

27 snROIs, was labeled with a probability of 1 and voxels not contained

in any of the 27 ROIs were labeled with a 0 probability. For all further

analysis, the atlas was thresholded at probability of 0.5 in order to

largely accommodate all voxel and to avoid over estimation of SNc in

the atlas and as shown in Figure 1b.

2.4 | Quantitative validation of atlas

Two additional sets of snROI markings were generated, one was by

manual segmentation (by rater 2 [R2]-author A.S) and the other was

generated by a fully automated deep learning model known as U-Net

(Ronneberger, P, & Brox, 2015) was used for segmentation of SNc.

Out of the dataset of 27 NMS-MRI images, 10 were used as training

dataset and 17 were used for testing. A 128 × 128 × 4 sized patch of

the NMS-MRI image was given as input to the model and their

corresponding manually extracted SNc ROIs were used as target

labels for segmentation (considered as rater 3 [R3]).

Dice coefficient, a standard measure of validation used in various

atlas construction studies (Ariz et al., 2018; Pauli, Nili, & Tyszka, 2018;

Visser et al., 2016) was computed to assess inter-rater variability in

SNc markings and validity of the constructed atlas. For R3, dice score

with other raters and atlas was computed on the testing data with an

exclusion of two data points that were outliers. Initially dice coeffi-

cient was calculated between the three raters to measure the amount

of variability between SNc markings from different raters. To quanti-

tatively validate the atlas, dice coefficient was computed between

SNc atlas in subject space and snROIs from all three raters. The tem-

plate SNc was brought into the subject space using an inverse trans-

formation of the concatenated NMS-MRI to T1 and T1 to MNI

deformations. The registration details have been provided in the ear-

lier Section 2.3.

F IGURE 1 (a) Schematic for
probabilistic atlas construction of
substantia nigra in MNI space
with thresholding. i: ith subject; n:
number of subjects; tx1:
transformation matrix of NMS-
MRI to T1 registration, tx2:
transformation matrix of T1 to
MNI registration. (b) Probabilistic

and thresholded substantia nigra
atlas in subject space
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To further investigate whether the overlap amongst SNc markings

significantly differs from the overlap of atlas and raters markings, we

evaluated the statistical significance by testing for the means of dice

coefficient scores of raters (R2 and R3) and combined dice scores of

atlas with raters R2 and R3 using a Student's t test.

2.5 | DTI preprocessing and analysis

DWI images of patients with PD and healthy controls were manu-

ally visualized for quality assessment. All preprocessing steps were

done using FSL5.0.9 (Smith et al., 2004) which included removing

the nonbrain regions, correction for head movement and eddy cur-

rent induced distortions using “eddy correct” tool that performs an

affine transformation between baseline b0 image and gradient

images. The resulting rotating parameters of the affine transforma-

tion were used to rotate the gradients back, to align them with

the transformed images. Least square approximation method was

implemented to reconstruct the diffusion tensor images using

“dtifit”, and the tensor fitting was checked for anatomical alignment.

Diffusion maps such as fractional anisotropy (FA), mean diffusivity

(MD), radial diffusivity (RD) and axial diffusivity (AD) were obtained

by fitting the diffusion tensor model. FA maps of all subjects were

registered to a standard FA map in MNI space-FMRIB58 image

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FMRIB58_FA) using SyN algo-

rithm and mutual information similarity index in ANTS. The transfor-

mation matrix of this registration was used to transform the MD,

RD, and AD maps to MNI space. Diffusion measures of bilateral

SNc were extracted for all subjects using MNI registered diffusion

maps and the atlas described in earlier, which was thresholded at a

0.5 probability.

2.6 | Statistical analysis

Statistical analysis on diffusion measures between PD and HC was

performed using multivariate analysis of covariance (MANCOVA)

model, with FA, MD, RD, AD of left, and right SNc as dependent vari-

ables, PD and HC as grouping variables and age and gender as

covariates. In addition, an independent t test was performed between

diffusion measures of HC and PD groups. The asymmetric pathologi-

cal nature of PD is a key feature which aids in differentiating it from

atypical parkinsonian disorders. In order to ascertain if this asymmetry

is also reflection in diffusion metrics, an independent t test was

implemented between DTI measures of left and right SNc for PD

patients and separately for HC. All these t-tests were corrected for

multiple comparisons using false discovery rates (FDR) threshold

of 0.05.

To evaluate associations between the microstructural changes to

the severity of the disease, the residuals from the diffusion measures

after regressing out age and gender were correlated to the UPDRS-III

OFF scores (where available), the age of onset of disease (AoO), dura-

tion of illness (DoI) and LEDD of patients with PD.

2.7 | Classifier for differentiating PD patients
from HC

Further, to understand the discriminative power of these diffusion

measures, a multivariate random forest (RF) was implemented to

delineate PD from the HC. RF is a popular decision tree based

machine-learning algorithm (Breiman, 2001). At each node of a tree,

different subset of randomly selected predictors are considered, of

which the best predictor is selected for further splits. Each tree is built

using a different random bootstrap sample, which consists of approxi-

mately two-thirds of the total observations.

In this study, RF model was implemented on a total dataset of

232 subjects, out of which 75% was used for training and 25% for

testing. A total of eight normalized diffusion measures comprising AD,

FA, MD, RD for left and right SNc were used as feature set for the

classifier.

Number of predictors or features sampled for splitting at each

node and the number of trees in the forest were the two primary

tuning parameters in the model (Liaw & Wiener, 2002). The RF

model was tuned on the following parameters—number of trees

(between 500 to 1,500), number of samples at each leaf (1 to maxi-

mum samples) and number of samples at each split (2 to maximum

samples). Gini impurity was used as the criterion for selecting the

best split at each node. Features were ranked based on their feature

importance. Further, in order to eliminate any possible bias in the

obtained feature rankings due to correlated diffusion features, a RF

model using Recursive Feature Elimination (RF-RFE) with Cross Vali-

dation was also implemented on the training dataset. The RFE

model was iteratively trained, wherein the first run was initiated

from the basic RF model, followed by (a) recursive elimination of

features with lowest importance score until only one feature is left.

(b) At every step, fivefold cross validation was performed on the

training data and the average accuracy across all folds was noted.

(c) At each step, features were ranked based on the order in which

they were removed along with their relative feature importance.

This process was repeated 10 times to ensure stability in classifica-

tion performance. The average accuracy, sensitivity and specificity

and feature ranking from all repetitions were used to evaluate the

model performance.

3 | RESULTS

3.1 | Demographic and clinical details

Table 2 provides the complete demographic and clinical information

for the dataset under consideration. There were no differences

observed between the age and gender of the patient and control

group. UPDRS-III OFF scores were available for 110 out of 135 sub-

jects. With the exception of a single subject of PD, all others were

right-handed. The mean duration of illness was 5.08 ± 3.11, with a

UPDRS III OFF score of 34.68 ± 8.80, and LEDD of 598.39

± 238.50.
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3.2 | Atlas construction and quantitative validation

The probabilistic and thresholded (0.5) atlas of the SNc computed

from NMS-MRI images of 27 controls is shown in Figure 1. A box plot

of dice coefficient scores signifying inter-rater variability and valida-

tion of atlas in shown in Figure 2a,b respectively. The average dice

coefficient scores for snROIs amongst raters were as follows -R1R2

(left: 0.739 ± 0.066; right: 0.761 ± 0.050), R1R3 (left: 0.601 ± 0.191;

right: 0.631 ± 0.199), and R2R3 (left: 0.636 ± 0.205; right: 0.644

± 0.203). The average dice coefficient for atlas vs. raters were as fol-

lows: ATLAS_R1 (left: 0.60 ± 0.106; right: 0.61 ± 0.101), ATLAS_R2

(left: 0.58 ± 0.105; right: 0.6 ± 0.109), and ATLAS_R3 (left: 0.53

± 0.163; right: 0.56 ± 0.181) as is displayed in Figure 2b. No

significant difference (left_snROI: t = 1.342, p-value = .196; right_

snROI: t = 1.247, p-value = .310) was found between overlap of

rater's SNc marking and overlap of atlas and rater's markings, thus

providing additional support to the reproducibility and validity of the

atlas.

3.3 | Diffusion changes in SNc between PD and
HC group

MANCOVA results showed significantly higher AD (left snROI:

f = 17.28, p = .00004; right snROI: f = 6.470, p = .011), MD (left

snROI: f = 21.56, p = .000006; right snROI: f = 11.15, p = .00098), RD

(left snROI: f = 19.48, p = .000016; right snROI: f = 11.36, p = .00088)

in SNc of PD patients as compared to controls. As shown is Figure 3a,

FA showed no significant differences (left snROI: f = 0.621, p = .431:

right snROI: f = .470, p = .493). The mean and SD of all diffusion mea-

sures in HC and PD groups along with their t-stats and FDR corrected

p-values are shown in Table 3. No significant correlations were

obtained between clinical scores and diffusion measures; however, a

correlation trend was observed between UPDRS and FA, duration of

illness and FA, MD, RD and between FA and age of onset of disease

as shown in supplementary Figure S1.

3.4 | Asymmetry in diffusion measures of SNc

Asymmetry of all diffusion measures of bilateral SNc was observed for

both HC and PD group, with PD group showing a higher significance

as shown in Table 3. Left SNc was found to have higher AD, MD and

RD values and lower FA values in both groups. Left SNc showed

higher AD (HC: t = 5.521, p = 1.07E-07; PD: t = 8.725, p = 3.50E-16),

F IGURE 2 (a) Boxplot of dice coefficient scores amongst raters (b) Boxplot of dice coefficient scores between SNc atlas in subject space and
all three raters. Light gray indicates left SNc and dark gray indicates right SNc

TABLE 2 Demographic and clinical characteristics of patients
with Parkinson's disease and healthy controls

Parkinson's

disease (n = 133)

Healthy

controls (n = 99)

p

value

Gender (M: F) 104:29 71:28 0.257

Age 54.19 ± 8.23 52.34 ± 7.94 .08

Age at onset 48.70 ± 9.36 — NA

Duration of

illness

5.08 ± 3.11 — NA

MMSE 27.22 ± 2.51 — NA

UPDRS III (OFF

score) *
34.68 ± 8.80 — NA

LEDD 598.39 ± 238.50 — NA

Abbreviations: F: Female; LEDD: Levodopa equivalent daily dose; M:

Male; MMSE: Mini mental status examination; UPDRS: Unified

Parkinson’s disease rating scale, *: UPDRS III (OFF score) was available for

110 subjects.
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MD (HC: t = 8.075, p = 7.87E-14; PD: t = 9.950, p = 5.81E-20), RD

(HC: t = 8.739, p = 1.17E15; PD: t = 9.728, 2.74E-19) as compared to

right SNc. FA of the left SNc was found to be significantly lower as

compared to right FA in the PD group (HC: t = −2.903, p = 4.13E-03;

PD: t = −3.898, p = 1.24E-04) (HC: t = −2.769, p = 7.98E-05; PD:

t = −4.007, p = 7.98E-05).

3.5 | Classification of PD and HC based on
diffusion measures of SNc

The average classification accuracy, sensitivity and specificity for basic

RF model were 73.4%, 0.736 ± 0.01, and 0.731 ± 0.01, respectively,

whereas that for RF-RFE model was 71.7%, 0.736 ± 0.01, and 0.686

± 0.05, respectively. Average feature ranking was consistent for basic

RF and RF-RFE model wherein MDL, RDR and RDL were found to be

the three topmost ranked features as shown in Table S1. ROC plots

indicating average sensitivity and specificity performance of both clas-

sifier models is shown in Figure 4.

4 | DISCUSSION

We created a probabilistic atlas of the SNc by precisely extracting the

SNc ROIs using NM rich MR sequence and employed it to accurately

delineate the SNc to create a normative atlas that can be used in

future PD studies. We applied this atlas to a large cohort of PD

patients to gain understanding of the microstructural abnormalities.

Our results not only endorsed earlier findings but also facilitated fresh

evidence supporting presence of micro-structural changes in PD

F IGURE 3 Results of independent t test indicating differences in diffusion measures of bilateral substantia nigra in Parkinson's patient and
healthy controls. Blue boxplot indicates healthy controls group whereas orange indicates PD patients group. NS: not significant, * p < .05, **
p < .005, *** p < .0005
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substantia nigra compacta using diffusion MRI analysis. We demon-

strated higher diffusivity values in the SNc in PD, with no changes in

anisotropy and significant asymmetry of the diffusivity values.

The SN is anatomically divided into the SNc and the SN pars reti-

culata (SNr), where SNc is further subdivided into nigrosomes and the

nigral matrix. Nigrosomes are the primary sub regions of the SNc

where dopaminergic neurons are degenerated in PD (Blazejewska

et al., 2013; Takahashi et al., 2018). The largest of these, nigrosome

1, is positioned in the lateral SN, and is most affected in PD. As

described by Takahashi et al, the nigrosome is clearly a part of SNc

and hence it is visualized on NMS-MRI sequence. TheT2 weighted

images capture the elevated levels of iron mainly in SNr (Du et al.,

2011; Langley et al., 2015; Langley et al., 2016; Langley, Huddleston,

Sedlacik, Boelmans, & Hu, 2017). A study by Langley et al. demon-

strated that T2-weighted and NMS-MRI are sensitive to different sub

regions of SN (Langley et al., 2016), and the hypo-intensity observed

on T2 images is unreliable in localizing SNc (Deng et al., 2018; Langley

et al., 2016; Wypijewska et al., 2010). A recent study also demon-

strated that increase in T2* weighted hypo intense signal is an indica-

tion of increase in iron deposition related to PD pathology (Langley

et al., 2017). On similar lines, work by Visser et al. employed the

FLASH sequence on 7 T MRI to delineate the substantia nigra. How-

ever, this sequence does not capture the SNc, as it is sensitive only to

the elevated concentrations of ferritin that are prominently observed

in SNr (Visser et al., 2016). Therefore, applying the SNr atlas to PD is

inappropriate in understanding the abnormalities, which occur pre-

dominantly in the SNc owing to the dopaminergic neuronal loss in PD.

To alleviate these limitations, NMS-MRI has been employed to

visualize and quantify the intensity contrast in SNc (Isaias et al., 2016;

Matsuura et al., 2013; Matsuura et al., 2016; Ohtsuka et al., 2013;

Ohtsuka et al., 2014; Reimao et al., 2015; Sasaki et al., 2006; Schwarz

et al., 2011). Earlier studies on NMS MRI (Kitao et al., 2013; Sasaki

et al., 2006), through post mortem analysis, have already demon-

strated correlation between localization of SNc region from NMS MRI

contrast and the histologically delineated SNc. Additionally, compara-

tive study on SNc contrast sequences has shown that higher concen-

tration of neuromelanin in SNc is captured by NMS-MRI (Langley

et al., 2015). Moreover, these studies have corroborated its utility not

only to render the SNc region but also as a volume or contrast ratio-

based biomarker in PD (Isaias et al., 2016; Kashihara et al., 2011;

Matsuura et al., 2013; Matsuura et al., 2016; Ogisu et al., 2013;

Ohtsuka et al., 2014; Reimao et al., 2015; Sasaki et al., 2006; Schwarz

et al., 2011). However, the techniques employed to extract and ana-

lyze the SNc are manual and time-consuming with low reproducibility.

Our work alleviated these issues by creating a SNc template which in

future studies would be crucial to overcome the discrepancies in SNc

localization by providing a normative baseline for comparison of

results across studies.

Our atlas creation was based on uniform and accurate image regis-

tration of all subjects to the MNI space. A review study on 14 different

TABLE 3 FDR corrected (p-value = .05) results of independent t test for diffusion measures between healthy controls and patients with
Parkinson's disease

PD HC p-value p-value p-value

Variable (mean ± SD) (mean ± SD) (PD vs HC) (PDL vs PDR) (HCL vs HCR)

ADL 1.17 × 10−3 ± 6.94 × 10−5 1.13 × 10−3 ± 6.76 × 10−5 .00002 4.67e-16 1.43e-07

ADR 1.1 × 10−3 ± 5.76 × 10−5 1.08 × 10−3 ± 5.93 × 10−5 .0178 — —

FAL 4.06 × 10−1 ± 2.59 × 10−2 4.03 × 10−1 ± 3.07 × 10−2 .5149 1.24e-04 4.13e-03

FAR 4.19 × 10−1 ± 2.96 × 10−2 4.17 × 10−1 ± 3.35 × 10−2 .5149 — —

MDL 8.21 × 10−4 ± 5.12 × 10−5 7.89 × 10−4 ± 4.48 × 10−5 .0000 2.32e-19 1.57e-13

MDR 7.63 × 10−4 ± 4.45 × 10−5 7.42 × 10−4 ± 3.64 × 10−5 .0002 — —

RDL 6.49 × 10−4 ± 4.72 × 10−5 6.21 × −4 ± 3.91 × 10−5 .0000 5.48e-19 4.68e-15

RDR 5.95 × 10−4 ± 4.27 × 10−5 5.76 × −4 ± 3.36 × 10−5 .0002 — —

Abbreviations: AD: Axial diffusivity; ADL: AD of left SNc, ADR: AD of right SNc; FA: Fractional anisotropy; FAL: FA of left SNc; FAR: FA of right SNc; HC:

Healthy controls; HCL: Left SNc of HC; HCR: Right SNc of HC; MD: Mean diffusivity; MDL: MD of left SNc; MDR: MD of right SNc; PD: Parkinson’s
disease; PDL: Left SNc of patients with PD, PDR: Right SNc of patients with PD; RD: Radial diffusivity; RDL: RD of left SNc, RDR: RD of right SNc; SD:

Standard deviation; SNc: Substantia nigra pars compacta.

F IGURE 4 ROC plots for random forest classifiers
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nonlinear registration algorithms found that ART and SyN algorithms

have consistently performed well across multiple datasets (Klein et al.,

2009). We employed a symmetric diffeomorphic (SyN) registration

using the ANTs toolbox for registering subject T1 images and subse-

quently the SNc masks, created from NM rich sequences of 27 subjects

onto the MNI space as shown in Figure 1. The maximized optimization

of space–time deformation maps in SyN and hierarchical interpolation

performed in ANTs, increased normalization accuracy and preserved

the brain topology, thus enhancing the registration precision of our

probabilistic atlas (Avants et al., 2008; Klein et al., 2009). Each of the

registrations was manually checked for precision in registration. The

probabilistic atlas created, was thresholded at 50% probability, as it

removed the voxels outside the expected SNc region as shown in

Figure 1. A consistent dice coefficient score between SNc atlas in sub-

ject space and SNc markings by each rater provided a quantitative vali-

dation and reproducibility to the atlas.

Our analysis of diffusion measures was performed on a large

cohort of patients with PD where we observed a significantly

increased MD, RD and AD in the patients compared to age and gen-

der matched healthy controls (Figure 3), with no significant differ-

ences in FA. Earlier studies have reported mixed results for significant

differences in FA as shown in Table 1. Study on large cohorts by

Schuff et al and a few others did not report significant changes in FA

(Aquino et al., 2014; Gattellaro et al., 2009; Menke et al., 2010). Our

results corroborate these findings, albeit on a completely different

dataset. The significant changes were obtained only in the diffusivity

measures (MD, RD, AD) as shown in Figure 2b) and were also

reflected in the classifier results where the left MD and RD and right

RD were captured as the most discriminative features of PD with an

accuracy of 71.7% (RF-RFE).

Degree of myelination, axonal diameter and distance between

extracellular membranes drive the changes in radial diffusivity, whereas

diffusion anisotropy implies a directional alignment of white matter

tracts (Beaulieu, 2002). Intuitively, the biological process of fiber disin-

tegration and de-myelination which are associated with neu-

rodegeneration, should lead to an increase in RD and reduction in FA

values. However, neurodegeneration may involve multiple additional

pathological processes such as changes in membrane permeability, res-

tructuring of white matter fibers, glial alterations and damage to the

intracellular compartment. The degree of variation in these processes

may be contributing towards the proportional changes in diffusion ten-

sors in all three dimensions, and thereby reducing the sensitivity of FA

(Acosta-Cabronero, Williams, Pengas, & Nestor, 2010). Nevertheless, it

is important to note that our diffusion protocol was limited to 15 gradi-

ent directions which may not facilitate the best model (Jones,

Knosche, & Turner, 2013) for fiber tractography or connectivity, but is

valid for computing diffusivity and anisotropy measures.

In concurrence with the clinical asymmetry typically reported in

PD, which is implicated to an asymmetrical degeneration of dopami-

nergic nigral neurons, we observed significant asymmetry of diffusion

measures in SNc. Although the FA was not significantly different

between PD and controls, in patients with PD, we observed that the

FA in left SNc was significantly lower when compared to the FA in

right SNc (Figure 3). Similarly, MD, AD and RD also demonstrated sig-

nificantly higher values in the left SNc when compared to right

(Figure 3). We did not have details pertaining to clinical laterality,

owing to which we were unable to ascertain the concordance

between clinical lateralization and diffusion asymmetry. However, ear-

lier work by our group has illustrated the correlation of clinical asym-

metry and laterality with the asymmetry of the SNc using contrast

ratios on NMS-MRI (Prasad, Saini, Yadav, & Pal, 2018).

Our correlation analysis did not demonstrate any significant asso-

ciations of DTI measures with AoO, DoI, UPDRS-III OFF, or LEDD

scores. However, a trend was observed between UPDRS, and FA, DoI

and FA, MD, RD and between AoI and FA (Supplementary Figure S1).

5 | CONCLUSIONS

In conclusion, this study addressed a crucial question of uniform SNc

localization in patients with PD and performed a large-scale robust

assessment of microstructural features of the SNc in PD using diffu-

sion measures. Our standardized SNc atlas based on the NMS-MRI

will be released to the scientific community and will further aid in

eliminating the methodological variability associated with delineation

of SNc. Microstructural abnormalities of the SNc in PD are predomi-

nantly associated with altered diffusion metrics rather than anisot-

ropy, and demonstrate a significant asymmetry which is in

concurrence with clinical lateralization of symptoms. These results

obtained from our large-scale study on an accurately delineated SNc

provide a thorough and reliable profile of the neurodegeneration

associated microstructural abnormalities of the SNc in PD.
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