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Abstract The vast therapeutic potential of cannabinoids

of both synthetic and plant-derived origins currently makes

these compounds the focus of a growing interest. Although

cannabinoids are still illicit drugs, their possible clinical

usefulness, including treatment of acute or neuropathic

pain, have been suggested by several studies. In addition,

some observations indicate that cannabinoid receptor

antagonists may be useful for the treatment of alcohol

dependence and addiction, which is a major health concern

worldwide. While the synergism between alcohol and

cannabinoid agonists (in various forms) creates undesirable

side effects when the two are consumed together, the

administration of CB1 antagonists leads to a significant

reduction in alcohol consumption. Furthermore, cannabi-

noid antagonists also mitigate alcohol withdrawal symp-

toms. Herein, we present an overview of studies focusing

on the effects of cannabinoid ligands (agonists and antag-

onists) during acute or chronic consumption of ethanol.
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Abbreviations

AEA Anandamide

2-AG 2-Arachidonoylglycerol

eCBs Endocannabinoids

FAAH Fatty acid amide hydrolase

Introduction

Cannabis is a term used to describe the psychoactive

preparations of the plant Cannabis sativa that is native to

mild to tropical regions of Southeast Asia, the Mediter-

ranean, Central America, and South America. Cannabis is

also known as marijuana or ganja, however, this refers to

cannabis leaves or other crude plant material, and hashish

is a resin extracted from the flower clusters and top leaves

of the hemp plant. Each of these products contains a

number of biologically active substances of which the most

important is delta-9-tetrahydrocannabinol (D9-THC).

Cannabinoids, both those from cannabis extracts and

synthetic preparations, are the most frequently used psy-

choactive drugs around the world. According to World

Health Organization estimates, approximately 147 million

people (i.e., 2.5–5 % of the world population) use or abuse

cannabis compared with 0.3–0.4 % who take cocaine and

0.3–0.5 % who use opioids (WHO 2012). This high

prevalence of cannabis abuse results from the fact that

cannabis preparations are not always considered harmful

drugs, and thus, are typically admitted to official trading.

However, cannabis use is not restricted in every country in

the world, for example, marijuana and other cannabis

preparations are legal in the Netherlands. The Dutch leg-

islation, where cannabis preparations are considered to be

of low social and personal risk associated, voted for a

& Magdalena Bujalska-Zadrozny

magdalena.bujalska@wum.edu.pl; mbujalska@gmail.com

1 Department of Pharmacodynamics, Centre for Preclinical

Research and Technology (CEPT), Medical University of

Warsaw, Banacha 1B, 02-097 Warsaw, Poland

2 Department of Toxicology, Faculty of Pharmacy,

Jagiellonian University, College of Medicum, Medyczna 9,

30-688 Kraków, Poland

3 Laboratory of Drug Addiction Pharmacology, Department of

Pharmacology, Institute of Pharmacology, Polish Academy

of Sciences, Smętna 12, 31-343 Kraków, Poland

123

DOI 10.1007/s12640-015-9555-7

Neurotox Res (2016) 29:173–196

Received: 17 March 2015 / Revised: 4 August 2015 / Accepted: 6 August 2015 / Published online: 9 September 2015

http://crossmark.crossref.org/dialog/?doi=10.1007/s12640-015-9555-7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12640-015-9555-7&amp;domain=pdf


lenient approach and legalization of cannabis distribution.

Additionally, the law in the Czech Republic permits to use

cannabis for medical purposes, especially in terminally ill

people, including AIDS patients and cancer patients treated

for chemotherapy-induced nausea and vomiting (Machado

Rocha et al. 2008). Furthermore, cannabis has been found

to provide relief from spasticity in multiple sclerosis

patients (Sastre-Garriga et al. 2011). A variety of applica-

tions of cannabis are also observed in United States of

America. Despite prohibition by U.S. federal law,

approximately 20 states and the District of Columbia allow

the use of marijuana for personal, recreational, or medical

use. However, the popularity of cannabinoids is still

associated with their use as recreational drugs.

Cannabis products, either smoked or taken orally,

induce several behavioral effects that may vary depending

on the route of administration, emotional state, dose level,

and individual vulnerability to certain effects. While

euphoria is the most prominent and dominating effect of

cannabis use (Ameri 1999), it can also often lead to

tachycardia (Lapoint et al. 2011), antinociception (Chiou

et al. 2013), as well as memory and cognitive impairment

(Abush and Akirav 2012). Several publications showed

that use of cannabinoids, especially marijuana, results in a

higher (2–6 times) risk of causing road accidents (Masten

and Guenzburger 2014). Furthermore, prolonged exposure

to plant-derived, synthetic, or endogenous cannabinoid

agonists is associated with the development of pharmaco-

logical tolerance (Gonzalez et al. 2005).

In spite of so many undesirable side effects exerted by

cannabinoids, it is commonly known that these drugs are

also used to intensify pleasure in combination with other

psychoactive substances, such as alcohol. In fact, it has

been observed that heavy cannabis abusers frequently

abuse alcohol as well. Co-consumption of these two sub-

stances may be highly inadvisable, especially considering

that alcohol might compound the undesirable effects of

cannabinoids. The effect of alcohol on our brain and body

depends on blood alcohol level and duration of drinking.

Interestingly, moderate drinking appears to have health

benefits, as it may reduce coronary heart disease risk

(Baum-Baicker 1985; Kannel and Ellison 1996; Pinder and

Sandler 2004). In addition, alcohol can modify people’s

emotional state by inducing euphoria, anxiety, or calming

effects (Morgan and Badway 2009). However, prolonged

regular exposure to alcohol is detrimental to brain cells and

may result in serious brain changes associated with brain

cell death (Söderpalm et al. 2009). Indeed, like cannabis,

chronic alcohol consumption results in detectable impair-

ments in memory (Saults et al. 2007; White 2003) and

serious and persistent changes in the brain (e.g., cerebellar

degeneration, Marchiafava-Bignami disease, and Wer-

nicke–Korsakoff syndrome) (Ironside et al. 1961; Victor

et al. 1971). Additionally, alcohol use can adversely affect

the other parts of the body (e.g., liver cirrhosis) (Victor

et al. 1959). The development of alcohol tolerance is

widely observed in alcohol addicts and can lead to the

development of withdrawal symptoms (AWS) when alco-

hol use is terminated or significantly reduced. Of note, it

has been shown that homicide rates rise and fall in accor-

dance with the rise and fall of alcohol consumption (Nor-

strom 1998; Pridemore 2004).

The above facts suggest that the combination of alcohol

and cannabinoids, especially with chronic consumption,

may be extremely harmful to the body and mind. However,

in contrast to the action of cannabimimetics, several studies

have shown that cannabinoid antagonists are efficient in

decreasing consumption of alcohol beverages. Thus, com-

bining alcohol consumption with cannabinoid antagonists

might provide a new method to treat alcoholism by which

the inhibitory action on cannabinoid receptors decreases or

blocks alcohol intake by alcohol addicts.

A Brief History of the Endocannabinoid (eCB)
System and Discovery of Its Endogenous Ligands

Several studies concerning pharmacological effects of

cannabinoids in the early 1990s led to the discovery of the

endogenous cannabinoid system (Devane et al. 1988, 1992).

This unique system consists of two cannabinoid receptors,

cannabinoid receptor 1 (CB1) and cannabinoid receptor 2

(CB2), their endogenous ligands (anandamide, AEA and

2-arachidonoylglycerol, 2-AG) (Fig. 1), and the enzymes

that catalyze endocannabinoid (eCB) formation and degra-

dation, such as fatty acid amide hydrolase (FAAH) and

monoacylglycerol lipase (Smaga et al. 2014b). The discov-

ery of the first endogenous cannabinoid ligand, which was

the ethanol amide of arachidonic acid, took place in 1992. It

was named Ananda after a Sanskrit word for pleasure or

happiness, and amide due to its chemical structure that dis-

tinguishes this endogenous compound from the exogenous

agonists (Devane et al. 1992).

In 1995, the second cannabinoid receptor agonist, 2-AG,

was discovered (Sugiura et al. 1995). Following this, sev-

eral other arachidonic acid derivatives were also suggested

to be eCBs, including 2-arachidonoylglycerol ether (noladin

ether, 2-AGE), O-arachidonoyl ethanolamine (virod-

hamine), N-arachidonoyl dopamine (NADA), N-arachi-

donoyl glycine (NAGly), and cis-9,10-octadecanoamide

(ODA) (Huang et al. 2001; Leggett et al. 2004; Porter et al.

2002). Unlike other neurotransmitters, AEA and 2-AG are

not stored in secretory vesicles but are synthesized ‘‘on

demand’’ in the postsynaptic neurons (Ahn et al. 2008).

Most of the actions of eCBs are mediated through the

G-protein-coupled receptors, CB1 and CB2, which are
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characterized by distinct distributions throughout the body.

CB1 receptor expression is diffuse and widespread mainly

in the periaqueductal gray matter of the brain (Wilson-Poe

et al. 2012). Markedly high expression also exists in the

substantia nigra, limbic areas (hippocampus, amygdala,

cingulate cortex), and the cerebral cortex, especially the

frontal cortical areas (Herkenham et al. 1991). Because of

their wide distribution on neurons, CB1 receptors may play

an important role in regulating several physiological pro-

cesses. For example, CB1 receptors are present on axonal

terminals, thus having contacts with the GABAergic neu-

rons of the nucleus accumbens (NAc). Consequently, this is

Fig. 1 Chemical structures of

putative endogenous

cannabinoids
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found to result in the inhibition of synaptic glutamate

release independently of cAMP levels (Rubbie et al. 2001).

The presence of CB1 receptors in the dorsal root ganglia is

also well known (Morisset et al. 2001), which may con-

tribute to the analgesic effectiveness of cannabinoid agents.

Furthermore, co-localization experiments show that CB1

receptors may be present in somatostatin-positive neurons

of the lateral septum (Hohmann and Herkenham 2000).

In contrast to CB1 receptors, CB2 receptors are pre-

dominately found in cells of the immune system; however,

they are present on both microglia and on neurons in the

nervous system (Onaivi et al. 2006). Importantly, although

several papers demonstrated CB2 receptor expression in

almost all of the neurons of a healthy mouse brain, these

reports did not include the required negative controls for

assessing immunostaining specificity (Gong et al. 2006;

Onaivi et al. 2006). Other than these two well-characterized

cannabinoid receptors, the existence of a third putative

cannabinoid receptor has also been postulated (Ryberg et al.

2007). This orphan G-protein-coupled receptor, known as

GPR55, is known to bind to a range of endogenous, plant-

derived and synthetic cannabinoid ligands. Despite some

similarities with CB1 and CB2 receptors, the function of this

third cannabinoid receptor seems to be far more complex.

Other Cannabinoid Receptor Ligands (Natural

and Synthetic)

Naturally occurring cannabinoids derived from the cannabis

plant constitute a group of chemically related 21-carbon

alkaloids, of which D9-THC is the principal active ingredi-

ent, belonging to the herbal cannabinoid family. The activ-

ities of D9-THC and a non-psychoactive cannabinoid of

marijuana, cannabidiol (CBD), arewell characterized. These

compounds may be useful for the treatment of many dis-

eases; CBD has demonstrated neuroprotective and neuro-

genic effects whereas D9-THC is widely used as an

antinociceptive drug (Consroe et al. 1986; Formukong et al.

1988; Müller-Vahl et al. 1999). Information on the phar-

macology and toxicology of the other cannabinoids (Fig. 2)

is available, especially regarding their possible roles in

treating several diseases (Borrelli et al. 2013) and enhance-

ment of D9-THC-induced effects (Karniol et al. 1975).

To date, many cannabinoid receptor agonists and

antagonists have been synthesized and intensively investi-

gated. Most of them are structurally based on D9-THC

(especially agonists) or mimic its effects. The number of

such synthetic agonists has dramatically increased due to

the continuously evolving market that is full of synthetic

cannabinoid products containing D9-THC-like ingredients,

such as ‘‘Spice,’’ ‘‘K2,’’ ‘‘Clockwork Orange,’’ ‘‘Black

Mamba’’ (Zawilska and Wojcieszak 2014). The European

Monitoring Centre for Drugs and Drug Addiction

(EMCDDA) reported that by March 31st, 2014, almost 110

new synthetic cannabinoids have been detected in ‘‘Spice’’

products available in Europe (Zawilska and Wojcieszak

2014). However, according to the instructions found on the

packaging of these products, they are not meant to be

consumed by humans, and many users reported smoking or

taking such products orally as ‘‘speed.’’

Due to the continuously increasing list of synthetic

cannabinoid compounds and a variety of chemical struc-

tures they contain, Howlett et al. (2002) suggested a clas-

sification of the synthetic cannabinoids based on their

chemical structure. Namely, they described classical, non-

classical (HU-308), and hybrid cannabinoid (AM919,

AM4030) groups. Additionally, this classification includes

aminoalkylindoles (AAIs), which can be further divided

into naphthoylindoles (e.g., JWH-018, JWH-073, JWH-

398, JWH-015, JWH-210, JWH-081, JWH-200, WIN-

55,212; AM2201), phenylacetylindoles (e.g., JWH-250,

JWH-251), naphthylmethylindoles (JWH-185, JWH-199),

and benzoylindoles (e.g., pravadoline, AM-694, RSC4);

– eicosanoids (eCBs such as AEA, and their synthetic

analogs, e.g., methanandamide);

– and others, including diarylpyrazoles (selective CB1

antagonist Rimonabant�), naphtoylpyrroles (JWH-

307), naphthylmethylindenes, and derivatives of naph-

thalene-1-yl-(4-pentyloxynaphthalen-1-yl)methanone

(CRA-13).

The pharmacological properties of some of the pre-

sented cannabinoid ligands have been well examined, and

many of these compounds appeared to be selective CB1

receptor agonists or antagonists. Moreover, some, such as

nabilone, have been used for medical purposes, which is

currently used for treatment of nausea and vomiting caused

by cytotoxic chemotherapy that is unresponsive to con-

ventional antiemetics. More detailed information about the

nature of several existing cannabinoid receptor agonists

and antagonists is summarized in the next chapters.

Agonists

The discovery of D9-THC and the knowledge of its prop-

erties and availability opened a new path to developing

highly selective and potent cannabinoid receptor agonists.

The intensive synthesis of new compounds, the structures

of which are based on the active principal of cannabis,

resulted in a great number of active cannabimimetics.

Interestingly, several of these novel ligands have a much

greater potency than D9-THC, suggesting that other com-

pounds that are present in herbal marijuana (or other herbal

extracts) may influence D9-THC activity.

Dronabinol is a synthetic D9-THC formulation and one

of the first cannabinoid receptor agonists that displays
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affinity for CB1 and CB2 receptors. However, it behaves

only as a weak agonist for CB2 receptors and is used as an

appetite stimulant in HIV patients with anorexia. As shown

by Beal et al. (1995), administration of capsules containing

2.5 mg of dronabinol twice a day caused an average weight

gain of 0.1 kg versus an average loss of 0.4 kg in the

placebo group (Beal et al. 1995). Additionally, several

papers have demonstrated that this novel compound is an

efficient analgesic and is a useful therapy for chronic non-

cancer pain patients who take stable doses of opioids

(Narang et al. 2008). Finally, agonist substitution has been

an effective strategy for promoting abstinence from many

substances of abuse (e.g., nicotine, opioids), and dronabi-

nol has been proposed to serve as a replacement drug in

cannabis addiction (Vandrey et al. 2013), especially in

cases where withdrawal can be a significant barrier to

cessation. Like nabilone it is used as an antiemetic drug in

vomiting induced by cytotoxic agents (Tramèr et al. 2001).

Nabilone (Cesamet�) is another synthetic cannabinoid

characterized by an affinity of 2.2 nM for human CB1 and

1.8 nM for CB2 receptors. This compound is used to treat

nausea associated with cancer chemotherapy (Maida et al.

2008). Nabilone also appears to be a promising candidate

agonist for substitutive medication for cannabinoid agonist

replacement treatment of cannabis use disorders (Lile et al.

2010). In addition, consumption of nabilone resulted in

drug-appropriate responses in subjects who learned to

discriminate from D9-THC (Lile et al. 2010). Several other

studies have indicated that nabilone is a potent and effec-

tive drug for the treatment of various disorders, mainly

related to pain. For example, in a randomized, double-blind

placebo-controlled trial, nabilone suppressed pain and

increased functional capacity in fibromyalgia patients

(Skrabek et al. 2008).

Similar analgesic properties are also observed with

Sativex, a cannabinoid extract oral spray containing both

D9-THC and CBD, which is commercially available for

neuropathic pain and spasticity in 25 countries primarily in

Europe (Myers and Shetty 2008; Nurmikko et al. 2007;

Palmer 2014). A selective CB2 cannabinoid receptor ago-

nist, O-3223, is an additional compound that can reduce

pain and inflammation without apparent cannabinoid-like

behavioral effects (Kinsey et al. 2011).

Considering the pharmacological profile of other

cannabinoid ligands, WIN 55,212-2 appears to be very

interesting. Aside from its antinociceptive activity, this

nanomolar affinity cannabinoid receptor agonist (Ki values

of 62.3 and 3.3 nM at the human recombinant CB1 and

CB2 receptors, respectively) has also been reported to

reduce endothelial cell (EC) inflammatory responses

induced by bacterial lipopeptide and TNFa as well as to

promote neural repair processes after neonatal hypoxia–

ischemia (Fernandez-Lopez et al. 2010; Wilhelmsen et al.

2014). Importantly, such a neuroprotective activity was

also observed in both global and focal cerebral ischemia

and was blocked by a selective CB1 receptor antagonist,

SR141716A (Nagayama et al. 1999; Shen et al. 1996).

Unfortunately, this antagonist also caused several side

effects and enhanced locomotor responses when combined

with other psychoactive drugs (e.g., heroin, amphetamine)

(Lamarque et al. 2001). On the contrary, CP-55,940,

another cannabimimetic, did not enhance sensitivity to the

behavioral effects of cocaine. Moreover, its co-adminis-

tration with cocaine reduced the locomotor hyperactivity

produced by the psycho-stimulant (Arnold et al. 1998).

Despite the fact that this compound is found to be almost

45 times more potent than D9-THC and is considered to be

a full agonist at both CB1 (Ki = 0.58 nM) and CB2

Fig. 2 Representative plant-

derived cannabinoids
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(Ki = 0.68 nM) receptors, it has not yet been approved for

human medical use, as the adverse effects and long-term

damage and addiction potential of CP-55,940 are not yet

known.

The list of potent agonists at either CB1 or CB2 receptors

is relatively long. Despite their reported efficacy in many

biological conditions, most cannabinoid agonists are not

currently used in clinic and are instead used as tools for

cannabinoid research.

Antagonists

SR141716A, also known as rimonabant, is the most potent

and orally active antagonist of the CB1 receptor. This

compound, discovered by the laboratory of Rinaldi-Car-

mona, displays nanomolar affinity for CB1 (Ki = 1.98 nM)

and micromolar for human CB2 receptors expressed in CHO

cells (Rinaldi-Carmona et al. 1994). Intensive studies have

suggested its anorectic activity (Freedland et al. 2000).

Indeed, several papers demonstrated that intake of different

diets seemed to be sensitive to dose-dependent, antagonist-

induced cannabinoid receptor blockade, which does not

significantly alter other normal behaviors (Freedland et al.

2000; Tucci et al. 2006). Accordingly, other well-known

antagonists are able to exert similar effects as rimonabant,

including AM251 [N-(piperidin-1-yl)-5-(4-iodophenyl)-1-

(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxam-

ide], which is a selective and potent CB1 receptor antagonist

with well-characterized anorectic effects in freely fed ani-

mals (Hildebrandt et al. 2003); and novel antagonists LH21

(Pavon et al. 2006), and URB477 (LoVerme et al. 2009).

Due to the anti-obesity activity of CB1 receptor antago-

nists, they may be considered to be promising tools to treat

obesity disorders. However, application of these compounds

leads to several serious adverse effects. For instance, the

study by Moreira and Crippa (2009) showed that CB1

receptor blockade impaired fear elimination (Moreira and

Wotjak 2010). Additionally, an increased incidence of

depression and aggression has been reported, including an

increase in suicidal thoughts (Christensen et al. 2007).

On the contrary, the first CB2 receptor antagonist

SR144528, having Ki values of 0.6 nM at CB2 and 400 nM

at CB1 (Rinaldi-Carmona et al. 1998), as well as other

recently discovered CB2 receptor antagonists (e.g., JTE-

907) can markedly reduce ear swelling in chronic contact

dermatitis induced either by repeated challenge with oxa-

zolone (Oka et al. 2006) or by repeated exposure to dini-

trofluorobenzene in mice (Ueda et al. 2005). However, in

comparison with some of the CB1 receptor agonists and

antagonists, none of the existing CB2 receptor antagonists

are listed as controlled substances worldwide.

Of importance, because many CB1 antagonists are, in

fact, partial or inverse agonists (e.g., AM281, AM251,

SR141716A), they may produce significantly different

effects via different mechanisms of action. These effects

may also depend on the state of endocannabinoid signaling

pathway. Therefore, further studies are warranted to

establish the complete pharmacological profile of such

compounds.

The Endocannabinoid System and Alcohol

The eCB system is involved in the modulation of emotional

responses, memory, learning, and reward systems. Impor-

tantly, there are many indications that this system is

involved in alcohol-induced impairments, namely CB1

receptor function is implicated in functional modulation of

the mesocorticolimbic dopaminergic pathway and moti-

vation for drug seeking (Bystrowska et al. 2014; Parolaro

et al. 2007; Smaga et al. 2014a, b). Several biochemical

studies revealed changes within the components of the eCB

system after acute and chronic alcohol intake (Basavara-

jappa and Hungund Basavarajappa and Hungund 1999a,

1999b; Basavarajappa et al. Basavarajappa et al. 2000a,

2000b; Gonzáles et al. Gonzalez et al. 2002a, b and Gon-

zalez et al. 2002c). Pharmacological studies using CB

ligands found alterations in alcohol-related behavior while

genetic studies demonstrated changes in different rodent

strains (Erdozain and Callado 2011).

The effects of Ethanol Exposure on the eCB System

Preclinical Studies

Preclinical experiments demonstrated that acute exposure

to alcohol reduced tissue concentrations of AEA in several

rat brain structures including limbic and subcortical areas

(Ferrer et al. 2007; Rubio et al. 2007) and the level of 2-AG

in the prefrontal cortex (Rubio et al. 2007) (see Table 1).

Interestingly, the reduction in eCB levels following acute

alcohol administration was correlated with a decrease in

glutamate release, which can modulate the release of other

neurotransmitters (Ferrer et al. 2007). In contrast with tis-

sue levels, eCBs levels increased in dialysates and in hip-

pocampal cell cultures, (Basavarajappa et al. 2008)

whereas 2-AG levels increased in the nucleus accumbens

(Caille et al. 2007) after acute alcohol treatment. The

increased 2-AG levels in limbic structures may be involved

in the elevated alcohol consumption and preference in

methamphetamine-lesioned mice that serve as a model of

enhanced alcohol intake (Gutierrez-Lopez et al. 2010).

Fatty acid amide hydrolase (FAAH) activity was reduced

in the hypothalamus, prefrontal cortex (Rubio et al. 2009),

and hippocampus (Ferrer et al. 2007) after acute adminis-

tration of alcohol. However, the levels of FAAH protein
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were increased, probably as a compensatory response to the

primary effect of alcohol on its enzyme function (Rubio

et al. 2009). In line with the reduced FAAH activity and

enhanced AEA levels, CB1 receptor density decreased in

the prefrontal cortex and amygdala (Rubio et al. 2009)

(Table 1).

Chronic alcohol intoxication evoked a reduction in eCB

levels in the midbrain and an increase in AEA levels in the

limbic forebrain in rats (Gonzalez et al. 2002a). The

increased AEA levels in the limbic area, which is a key

region for drug reinforcement processes, may be involved

in the eCB-induced elevation of synaptic transmission,

which leads to the addictive properties of alcohol. At the

same time, reduced eCB levels in the midbrain may be a

compensatory response induced by the activation of the

negative feedback regulatory loop from the limbic fore-

brain to the ventral tegmental area (Gonzalez et al. 2002a).

In another study, AEA levels increased in the cortex in

mice simultaneously with decreasing cortical FAAH

activity (Vinod et al. 2006). The rise in AEA levels may be

associated with the activation of phospholipase A2 (PLA2),

which is a crucial enzyme for eCB formation as shown in

an animal model of chronic alcohol consumption

(Basavarajappa et al. 1998b). It was also documented that

chronic alcohol exposure might increase the levels of eCBs

by inhibiting the AEA transporter in neurons exposed to

chronic alcohol, and chronic alcohol additionally prevented

AEA inactivation (Basavarajappa et al. 2003).

It was speculated that a rise in the levels of eCBs led to

down-regulation of the CB1 receptors. In fact, chronic

exposure to alcohol evoked a reduction in CB1 receptor

density in mice (Basavarajappa et al. 1998a; Basavarajappa

and Hungund 1999b; Vinod et al. 2006) and in rats (Ortiz

et al. 2004). However, this phenomenon was not observed

in earlier research in the rat brain (Gonzalez et al. 2002b;

Rimondini et al. 2002) likely due to differences between

the two experimental designs (alcohol intake, experimental

time, etc.).

Moreover, chronic alcohol consumption may inhibit

some processes related to gene expression. In Marchigian

Sardinian alcohol-preferring (msP) rats, CB1 receptor

mRNA expression was increased and chronic alcohol

consumption reduced CB1 receptor mRNA levels in the

caudate-putamen and pituitary, the brain areas relevant to

the processing of reward and reward-associated behaviors

(Cippitelli et al. 2005). In C57Bl/6J mice, chronic alcohol

consumption induced a decrease in CB1 receptor density in

the hypothalamus and an increase in CB1 density in the

ventral tegmental area (Pava et al. 2012). Ten-day treat-

ment of mice with alcohol also resulted in a reduction in

the hypolocomotive, antinociceptive, and hypothermic

effects of an acute dose of the CB1 agonist WIN 55,212-2,

while a 10-day withdrawal period reversed this effect (Pava

et al. 2012). Together, these data suggest that CB1 recep-

tors play an important role in the neurochemical processes

related to alcohol consumption.

Additionally, Agudelo et al. (2013) was the first to

provide evidence of up-regulation of CB2 and GPR55 (the

third putative cannabinoid receptor) in monocyte-derived

dendritic cells from alcohol abusers. Ethanol-treated cells

demonstrated higher levels of CB2 and GPR55 mRNA.

Furthermore, it was observed that alcohol significantly

modulated dendritic cells to produce higher levels of the

pro-inflammatory cytokine IL-1b (Agudelo et al. 2013).

Thus, these receptors may play an immunoprotective role

during alcohol-induced immune dysfunction. It has also

been reported that CB2 receptor agonists have the ability to

positively regulate Kupffer cells, which result in liver

injury when activated by endotoxins in alcohol drinking

individuals, and CB2 receptors play a role in alcohol-in-

duced inflammation (Louvet et al. 2011).

In vitro studies showed increased AEA (Basavarajappa

et al. 2003) and 2-AG (Basavarajappa et al. Basavarajappa

et al. 2000a, b) levels in cerebellar granule neurons with

reduced FAAH activity (Basavarajappa et al. 2003) and

increased AEA levels in neuroblastoma SK-N-SH cells after

chronic alcohol exposure (Basavarajappa and Hungund

1999a) (Table 1). A rise in these lipid mediators may serve as

a neuronal compensatory adaptation in the chronic presence

of alcohol, and it should be noted that this increase was not

dependent on alcohol-induced AEA transporter inhibition.

Alcohol abstinence also provoked changes within the

eCB system. The increase in AEA levels was reversed in

the mouse cortex (Vinod et al. 2006) and in the rat

amygdala and caudate-putamen (Rubio et al. 2008). The

reduced level of AEA was accompanied by a low gluta-

mate concentration in the amygdala, and thus, it appears to

be related to reduced NAPE-phospholipase D activity that

depends on glutamate-mediated calcium influx (Hansen

et al. 2000; Rubio et al. 2008). Another study indicated that

eCB levels increased in the hippocampus after 40 days of

abstinence. Specifically, increased 2-AG levels were

rapidly observed only after 2 days of abstinence. Interest-

ingly, CB1 receptor levels were reduced after 2 days and

increased after 40 days of alcohol abstinence (Mitrirat-

tanakul et al. 2007). The increased eCB production was the

result of chronic increases in hippocampal excitability on

the terminals of GABAergic interneurons and in conse-

quence may have reduced long-term increases in CB1

activation on GABA release (Mitrirattanakul et al. 2007).

An increase in CB1 receptors was also observed in the

cortex (Rimondini et al. 2002) and hippocampus (Vinod

et al. 2006), while alcohol abstinence reversed the reduced

levels of CB1 in the cortex, striatum, and cerebellum in rats

(Vinod et al. 2006). On the other hand, a reduction of CB1

receptors was found in the globus pallidus and substantia
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nigra (Rubio et al. 2008). In C57Bl/6J mice, 10-day

abstinence evoked normalization in CB1 protein expression

in the hypothalamus and ventral tegmental area (Pava et al.

2012). Apart from the present review, there is another

excellent paper showing in details the preclinical interac-

tions between alcohol and the brain eCB system (Pava and

Woodward, 2012). Moreover, the effects of drugs of abuse

(particularly cocaine) on the eCB system are described in

the recent review paper of Vlachou and Panagis (2014).

Based on the above preclinical knowledge of the role of the

eCB system in processes related especially to alcohol

consumption further studies on alcohol use disorder in

which the eCB system plays a crucial role are urgently

required.

Clinical Studies

In postmortem studies, elevated levels of eCBs were

observed in the dorsolateral prefrontal cortex of alcoholic

suicide victims and were suggested to inhibit GABAergic

signaling and provoke impulsivity (Vinod et al. 2005). The

increased eCBs levels may also play a role in reinforcing the

effects of alcohol or may act more directly as a neuropro-

tective adaptation to chronic alcohol abuse. Although CB1

receptors were increased in the dorsolateral prefrontal cortex

(Vinod et al. 2005) and in the ventral striatum (Vinod et al.

2010) of alcoholic suicide victims, the latter changes were

not associated with alcohol dependence, as a down-regula-

tion of CB1 receptors was noted in alcohol-dependent non-

suicide victims (Smaga et al. 2014b; Vinod et al. 2010). An

increase in FAAH activity was identified in the ventral

striatum of alcohol-dependent suicide victims compared

with alcohol-dependent non-suicide victims (Vinod et al.

2010). Another study showed a decrease in AEA levels in

the nucleus accumbens and frontal cortex of Cloninger type

1 alcoholics with a reduced dopaminergic transmission in

the accumbal reward system (Lehtonen et al. 2010).

The effects of eCB system modulation on alcohol

consumption

Preclinical Studies

A large body of data suggested that a genetic predisposition

to alcohol abuse depends on a disturbance of the eCB sys-

tem. In fact, CB1 receptor knockout mice generated on a

CD1 genetic background (outbred CD1 mouse strain)

demonstrated a reduction in alcohol-induced conditioned

place preference (CPP) (Houchi et al. 2005; Thanos et al.

2005) and a decrease in consumption of alcoholic solution in

the two-bottle choice test (Naassila et al. 2004). The same

decreased voluntary intake of alcohol was demonstrated in

C57BL/6J mice with genetic deletion of the CB1 receptor

gene (Lallemand and de Witte 2005; Poncelet et al. 2003;

Vinod et al. 2008b; Wang et al. 2003). Additionally, genetic

deletion of FAAH in C57BL/6J mice provoked an increase

in voluntary alcohol intake in the two-bottle choice protocol

(Basavarajappa et al. 2006; Blednov et al. 2007; Vinod et al.

2008a). These studies confirmed the involvement of CB1

receptors in alcohol abuse, and pharmacological blockade of

these receptors seems to be a rational approach to the

treatment of alcohol addiction.

Accumulated experimental data on cannabis and alcohol

interactions have suggested that cannabinoids may act either

as substitutes in alcohol withdrawal by counteracting with-

drawal symptoms such as tremor and nausea, or as thera-

peutic agents to help in alcohol cessation. Indeed, it has been

demonstrated that stimulation of eCB signaling using the

cannabinoid receptors agonists CP55,940 (Colombo et al.

2002; Gallate et al. 1999; Vinod et al. 2008b) and WIN

55,212-2 (Alen et al. 2009; Colombo et al. 2002; Linsen-

bardt and Boehm 2009; Lopez-Moreno et al. 2004), the

selective AEA reuptake inhibitor AM404 (Cippitelli et al.

2007) or the FAAH inhibitor URB597 (Blednov et al. 2007;

Cippitelli et al. 2008; Hansson et al. 2007; Vinod et al.

2008a) influences alcohol intake. It was reported that acti-

vation of the eCB system increased alcohol consumption.

Specifically, acute administration of non-selective CB1/CB2

receptor agonists CP55,940 (Colombo et al. 2002; Gallate

et al. 1999; Vinod et al. 2008b) and WIN 55,212-2 (Alen

et al. 2009; Colombo et al. 2002; Linsenbardt and Boehm

2009; Lopez-Moreno et al. 2004) decreased the development

of alcohol CPP (Lopez-Moreno et al. 2004). The develop-

ment and enhancement of alcohol preference was also

observed after chronic treatment with the CB2 agonist JWH

015 in stressed mice, but not in controls (Onaivi et al. 2008).

Regarding WIN 55,212-2, it should be noted that higher

doses of this drug injected systemically or into the ventral

tegmental area provoked reduction of alcohol intake in mice

(Linsenbardt and Boehm 2009). Increased AEA levels

induced by inhibition of FAAH by URB597 evoked either a

rise in alcohol consumption (Blednov et al. 2007; Hansson

et al. 2007; Vinod et al. 2008a) or no effect in Marchigian

Sardinian alcohol-preferring (msP) rats, and this treatment

additionally had potent anxiolytic-like properties (Cippitelli

et al. 2008). Interestingly, the increased levels of AEA after

acute administration of the selective AEA reuptake inhibitor

AM404 reduced the number of active lever responses in rats

during alcohol self-administration. Additionally, AM404 did

not affect the relapse induced by contextual cues associated

with alcohol (Cippitelli et al. 2007). It should be noted that

these effects were not mediated via CB1, CB2, or TRPV1

receptors but via other targets in the eCB system. On the

whole, facilitation of brain eCB signaling seemingly con-

tributes to alcohol consumption (Table 2).
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In contrast with cannabinoid agonists, cannabinoid

antagonists produce opposite effects, which mediate

reduction in alcohol consumption. This conclusion is based

on several observations using cannabinoid antagonists.

SR141716A (rimonabant), a potent and selective CB1

antagonist, is one of the most well studied compounds and

presents a link between cannabinoid receptors and alcohol

consumption. The strong ability of this compound to inhibit

or reduce the consumption of ethanol has been reported in

alcohol-preferring rat strains, such as Sardinian alcohol-

preferring (sP) rats (Colombo et al. 1998; Serra et al. 2002),

Marchigian Sardinian alcohol-preferring (msP) rats (Cip-

pitelli et al. 2005), alcohol-preferring AA rats (Hansson

et al. 2007), and Warsaw High-Preferring rats (Dyr et al.

2008). Furthermore, in alcohol-preferring AA rats, a

microinjection of SR141716A into the medial prefrontal

cortex reduced alcohol self-administration, while microin-

jections into the dorsal striatum did not change the number

of active lever responses for alcohol (Hansson et al. 2007).

In another study, a reduction of alcohol self-administration

was observed upon microinjection of SR141716A into the

nucleus accumbens (Caille et al. 2007). Alcohol-preferring

mice (C57BL/6J) with a genetic deletion of the functional

copies of the CB1 gene demonstrated a decrease in vol-

untary alcohol intake comparable to pharmacological

blockade using SR141716A administration in these mice

(Vinod et al. 2008b; Wang et al. 2003). The reduced

alcohol self-administration was also observed in rats after

acute SR141716A administration (Cippitelli et al. 2005;

Economidou et al. 2006; Freedland et al. 2001; Rodriguez

de Fonseca et al. 1999) with reduced conditioned rein-

statement of alcohol-seeking behavior (Cippitelli et al.

2005; Economidou et al. 2006). The recent study by

Marinho et al. (2014) revealed that rimonabant abolished

total and peripheral locomotion only at the dose of 10 mg/

kg, while lower doses did not affect alcohol-induced

hyperlocomotion (Marinho et al. 2014). Nevertheless,

similar inhibitory activity and effectiveness was also

observed after administration of other CB1 receptor

antagonists: i) SVL330, which attenuated alcohol self-ad-

ministration and reinstatement to alcohol-seeking behav-

iors in rats (de Bruin et al. 2011); and ii) SR147778, which

reduced alcohol preference during cessation of chronic

ethanol intoxication but not when co-administered with

alcohol (Lallemand and De Witte 2006). This opposing

behavior of SR147778 seemed to be similar to that

observed for rimonabant. However, significant differences

(e.g., induction of a shorter transient increase of alcohol

intake) were noted. Additionally, Vasiljevik et al. (2013)

reported that two of analogs of a monohydroxylated

metabolite of the synthetic aminoalkylindole cannabinoid

JHW-073 were shown to decrease alcohol self-adminis-

tration and alcohol CPP, and, unlike rimonabant, they did

not alter body weight during the treatment period (Vasil-

jevik et al. 2013). However, the ability to inhibit alcohol

consumption was not reported for a novel CB1 receptor

antagonist, PF514273, which did not reduce the acquisition

or expression of alcohol-induced CPP (Pina and Cun-

ningham 2014). On the other hand, LH-21 reduced alcohol

self-administration (Pavon et al. 2006). Although the main

interest is focused on the inhibitory activity of cannabi-

noids on alcohol abuse, their other potential therapeutic

properties have been presented. The study conducted by

Jeong’s group (2008) has indicated that a CB1 antagonist

may slow down the development of alcohol fatty liver

disease and thus prevent or delay its progression to more

severe and irreversible forms (Jeong et al. 2008). Yang

et al. (2014) proposed administration of CBD to prevent the

liver damage caused by alcohol abuse. Additionally, eCB

stimulation produced a neuroprotective effect on excito-

toxicity induced by the cessation of chronic alcohol con-

sumption (Rubio et al. 2011). Indeed, it has been reported

that administration of HU-210, a CB1 receptor agonist,

induced a significant protection against NMDA-induced

cell death during either alcohol withdrawal or alcohol

exposure, while chronic administration of a CB1 antagonist

aggravated neuronal death induced by NMDA (Rubio et al.

2011) (Table 2). On the whole, these data point to the

potential therapeutic application of CB antagonists in

alcohol abuse.

Clinical Studies

As described above, preclinical studies provide a vast body of

evidence suggesting the potential use of theCB1 antagonists in

the treatment of alcohol abuse. Unfortunately, the response of

alcoholic patients to rimonabant treatment was not so bene-

ficial. Soyka et al. (2008) examined the effect of rimonabant

(20 mg per day for 12 weeks) on the rate of relapse among

recently detoxified alcoholic individuals and found that

rimonabant was ineffective in preventing relapse (Soyka et al.

2008). In the line with this trial, another study using rimona-

bant (20 mg per day for 2 weeks) in non-treatment-seeking

heavy alcohol drinkers demonstrated no effect of this drug on

alcohol consumption (George et al. 2010). These two groups

failed to find significant differences between rimonabant and

placebo in the experiments determining drug impact either on

the time to first drink and relapse to heavy drinking or on

overall consumption. Several aspects of this lack of effec-

tivenesswere considered, such as incorrect administration and

small numbers of clinical subjects. However, in consequence,

considering an analogical studywith naltrexone used at higher

doses of 50–150 mg/day, which significantly decreased the

consumption of alcohol (Weerts et al. 2008), and the fact

that both cannabinoids and naltrexone are inhibitors of the

mesolimbic dopamine reward system, it has been suggested
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that rimonabant used at a dose 20 mg/day only partially

blocked the CB1 receptor. Therefore, a suggestion was put

forth that a significant decrease in the motivation to drink

alcohol canoccur only as a result of a complete blockadeof the

signaling associated with the reward system (Cippitelli et al.

2005).

In human clinical studies, marijuana was found to exert

some beneficial effects. A prospective study of heavy

drinkers revealed that administration of cannabis (mari-

juana) reduced alcohol consumption faster than in non-

cannabis users (Metrik et al. 2011). Marijuana and some

cannabinoid ligands are known to have influence not only

on the consumption of alcohol but also on several effects

related with alcohol. Marijuana has been shown to decrease

the risk of head neck cancer among moderate tobacco

smokers and light alcohol drinkers (Liang et al. 2009).

Adverse Effects Induced by a Combination
of Cannabinoid Ligands and Alcohol

Alcohol abuse is one of the main causes of death and

disability in developed countries. Together with cannabi-

noids, it is considered to be one of the most popular drugs

among recreational users. There are explicit similarities

between acute effects of ethanol and cannabinoids (Hun-

gund and Basavarajappa 2000). At low doses, both stim-

ulate activity and euphoria, whereas at high doses they

produce sedation, and lack of motor coordination (Hun-

gund and Basavarajappa 2000), even if the levels of the

consumed doses at which these effects take place differ.

Several behavioral and pharmacological effects induced by

alcohol have been shown to be the same as those produced

by THC. An intake of these substances induces a disruption

of spatial learning (Cha et al. 2006), motor dysfunction

(Dar 2014), and analgesia (Chiou et al. 2013).

Alcohol and cannabinoids consumed separately lead to

several undesirable side effects. Alcohol is found to produce

various effects depending on the dosage and duration of its

consumption. Low doses of alcohol elicit appetitive gusta-

tory responses that improve the taste of beverages, such as

beer or wine (Lemon et al. 2004). In addition, small amounts

of alcohol improve mood and generally reduce anxiety. On

the contrary, long-term drinking of higher doses of alcohol

results in memory impairment, sedation, motor incoordina-

tion, confusion, hypothermia, and sometimes vomiting

(Gordon and Devinsky 2001; White 2003; Zoethout et al.

2011). Some individuals who are heavy chronic drinkers are

at risk of coma and death caused mainly by respiratory

depression (Vonghia et al. 2008). Additionally, alcohol is a

well known substance most strongly associated with

aggression (Hoaken and Stewart 2003), liver diseases, as

well as cardiomyopathy (Klatsky 2007).

Similar to alcohol, both endogenous cannabinoids and

synthetic CB1 receptor agonists are well known to impair

learning skills and memory (Croft et al. 2001). Moreover,

acute intoxication with cannabis leads to transient episodes

of confusion, depersonalization, paranoid delusions, hal-

lucinations, blunted affect, anxiety, and agitation (Fernan-

dez-Espejo et al. 2009). In addition to these variety of

effects, the consumption of cannabis affects psychomotor

activity (McLaughlin et al. 2000).

Although some have found no acute addictive effects of

co-administered cannabinoids and alcohol, it is postulated

that such a combination may enhance some of their

inherent adverse effects.

Preclinical Studies

There are several lines of evidence confirming a synergic

action of D9-THC and alcohol, which increase the risk of

their co-administration. One study reporting side effects

resulting from concomitant alcohol and marijuana use was

presented by Ciccocioppo et al. (2002), who demonstrated

that memory disturbances might be aggravated by a co-

administration of cannabinoids and alcohol. In fact, a sig-

nificant impairment of object recognition was observed in

msP rats injected with D9-THC (at a dose of 10 mg/kg, i.p.)

after alcohol intake, while lower doses did not change this

parameter (Ciccocioppo et al. 2002). It was also observed

that intracerebellar injection of D9-THC antagonized

alcohol-induced ataxia following alcohol consumption in

mice (Dar 2014).

Clinical Studies

It has been shown that both alcohol and marijuana use

resulted in significant changes in brain structures as well as

abnormal brain functioning, which were much more seri-

ous than those produced by each substance separately.

These changes mostly affect the hippocampus, which when

damaged, may lead to deficits in verbal and visual memory,

working memory, visuospatial functioning, gait/balance,

reasoning, response perseveration, and processing speed

(Aasly et al. 1993; Gillet et al. 2001; Lisdahl et al. 2013;

Medina et al. 2007; Tapert et al. 2002). Recent studies by

Winward et al. (2014) have shown that concomitant use of

marijuana and alcohol during adolescence evoked decre-

ments in cognitive functioning and poor performance in

specific cognitive domains. Additionally, differences in

verbal recall as well as in cognitive flexibility were

observed even after a month of abstinence from concomi-

tant use of marijuana and alcohol in comparison with the

control group (Winward et al. 2014). Surprisingly, con-

sidering the structural changes of the hippocampus, it was

reported that individuals using a combination of these two
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substances did not differ from non-substance using controls

in hippocampal asymmetry or volume, which was

explained by the specific mechanism of marijuana alone

(Medina et al. 2007). Such buffering action of cannabi-

noids on the negative effects of alcohol on the brain was

also shown by Mahmood et al. (2010) who indicated no

relation between visual learning or memory performance

and alcohol hangover/withdrawal in cannabis-using ado-

lescents (Mahmood et al. 2010). Additionally, cumulative

acute effects of D9-THC or CBD and alcohol in perceptual

and motor function have been found (Belgrave et al. 1979;

Bramness et al. 2010; Chait and Perry 1994; Consroe et al.

1979). The combination of these drugs is also well known

to increase reaction time and the number of incorrect

responses to emergencies (Bramness et al. 2010). Several

studies have found additive or multiplicative effects of

marijuana and alcohol on causing road accidents (Bram-

ness et al. 2010; Ramaekers et al. 2000). Dubois et al.

(2014) reported that drivers positive for both substances

had a greater likelihood of making errors than drivers

positive for either alcohol or cannabis alone (Dubois et al.

2014). This was observed in parallel with the study by

Bramness et al. (2010), who revealed that simultaneous

application of both substances impaired driving ability,

thus markedly increasing the risk of being judged impaired

(Bramness et al. 2010). Additionally, Ronen et al. (2010)

reported that during driving tests, either heart rate remained

higher or greater sensations of fatigue and sleepiness over

time were observed after administration of the combination

of these two drugs (Ronen et al. 2010). However, it has

been suggested that driving performance affected by both

alcohol and THC consumption depends on the doses of

both substances as well as on the drug-use history of the

individual, and thus, this issue still remains inconclusive. It

is worthwhile to note that a combination of cannabinoids

and cannabis-like substances with alcohol may induce

aggressive behavior. This assumption is based on the

findings of Pennings et al. (2002) who reported that

aggressive behavior may be magnified when alcohol and

other illicit drugs (such as cocaine) are combined (Pen-

nings et al. 2002). On the other hand, Easton et al. (2007),

while examining the differences between an alcohol alone

group and an alcohol ? drug (cocaine or marijuana) group,

noticed that the participants who combined alcohol with

another drug had problems with anger management (in-

creases in angry feelings and anger expression such as

slamming doors). However, this did not result in physical

violence against their partners or other people (Easton et al.

2007). Indeed, a recent study by Korcha et al. (2014)

confirmed these assumptions by showing that in subjects

who reported using a combination of alcohol and drugs

(marijuana), men were seven times more likely and women

were four times more likely to report a violence-related

injury compared with those reporting no use of either

alcohol or drugs prior to injury (Korcha et al. 2014). A

recently published article by Kelly et al. (2015) has sug-

gested that mid-adolescent subjects (14–15 years old)

characterized as polydrug users (mainly alcohol and can-

nabis users) are at an elevated risk of school non-comple-

tion (Kelly et al. 2015).

Interestingly, while cannabinoid ligands may serve as a

useful tool for reduction of alcohol withdrawal symptoms,

it has been revealed that cannabis abstinence leads to sig-

nificant increases in alcohol consumption among those

with a previous alcohol dependence diagnosis or those with

low alcohol consumption at baseline (Allsop et al. 2014;

Peters and Hughes 2010). This was in agreement with the

previous findings of Midanik et al. (2007) who reported

that concurrent alcohol and marijuana users were not only

characterized by a greater alcohol dependence but also

experienced greater social consequences and depression

(Midanik et al. 2007). Furthermore, Osilla et al. (2014)

have shown that people using both marijuana and alcohol

reported increased alcohol consumption, both with regards

to frequency and quantity, as well as greater alcohol-re-

lated consequences and prescription drug misuse (Osilla

et al. 2014).

Conclusions

In this review, we focused on beneficial and adverse effects

resulting from a combination of well-known and widely

used psychoactive stimulants: alcohol and cannabinoids.

According to presented data, the magnitude of potential

side effects induced by these two substances seems to

dominate,. There are several reports demonstrating that a

co-administration of cannabinoid receptor antagonists and

alcohol may be a highly effective therapy for alcohol

abuse. However, this effect only applies to animal studies

because rimonabant, for example, failed to be active in

human studies. While its administration to animals resulted

in a significant reduction in alcohol consumption and an

attenuation of alcohol-induced hyperlocomotion, the

application of rimonabant to patients (either detoxified or

non-treated heavy alcohol drinkers) revealed to have no

effect on drinking. Importantly, rimonabant has been

withdrawn from the market due to potentially serious side

effects. Therefore, even if its intake were proved to be

beneficial in terms of reduction of alcohol consumption or

inhibition of alcohol withdrawal symptoms, this drug

would require supervised use. Interestingly, the use of

cannabinoid receptors antagonists in animals is unclear. It

has been shown that different antagonists exert different,

and sometimes opposite, effects (see: AM630, PF514273,

and LH-21). Additionally, drug distribution and affected
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brain area were found to be of a great importance. Moreover,

with regard to cannabinoid receptor agonists, data presented

for clinical and preclinical studies indicated a surprising

difference in action. A great example is marijuana, which

intensifies the desire to drink alcohol in animals but reduces

alcohol consumption in human cannabis users. This is

consistent with the overall sentiment based on various pre-

clinical studies in rodents that the pharmacological blockade

or genetic ablation of CB1 receptors decreased operant self-

administration of alcohol and its voluntary consumption.

Furthermore, the activation of CB1 receptors facilitates

alcohol consumption while antagonism of CB1 receptor

reduces the motivational properties of alcohol.

In light of this highly inconsistent information and the

fact that results obtained in animals do not necessary

translate into human studies, it is very difficult to unani-

mously say that cannabinoid drugs may be useful in human

therapy. This, however, may change thanks to novel

pharmacological strategies involving the use of CB2

receptor agonists. Although, their role in the treatment of

alcohol dependence is still under investigation and a

development of a drug that possesses the same activity both

in animals and human is greatly needed, CB2 agonists

(particularly highly selective ones) may be much more

useful than CB1 ligands due to the lack of psychotropic

effects mediated by cannabinoid 1 receptors, despite the

fact that CB1 antagonism appeared to be favorable for the

treatment of alcohol dependence.
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