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Cell-free DNA (cfDNA) serves as a footprint of the nucleosome occupancy status of

transcription start sites (TSSs), and has been subject to wide development for use

in noninvasive health monitoring and disease detection. However, the requirement

for high sequencing depth limits its clinical use. Here, we introduce a deep-learning

pipeline designed for TSS coverage profiles generated from shallow cfDNA sequencing

called the Autoencoder of cfDNA TSS (AECT) coverage profile. AECT outperformed

existing single-cell sequencing imputation algorithms in terms of improvements to TSS

coverage accuracy and the capture of latent biological features that distinguish sex or

tumor status. We built classifiers for the detection of breast and rectal cancer using

AECT-imputed shallow sequencing data, and their performance was close to that

achieved by high-depth sequencing, suggesting that AECT could provide a broadly

applicable noninvasive screening approach with high accuracy and at a moderate cost.
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INTRODUCTION

Plasma cell-free DNA (cfDNA) is an intensively investigated biomarker that has been widely
used for noninvasive cancer evaluation and prenatal testing (1–4). Because cfDNA predominantly
consists of the nucleosome-protected DNA of apoptosis cells, recently, cfDNA has been proven to
powerfully imply nucleosome positioning, and it can be further used to predict the status of gene
expression based on the nucleosome occupancy level at transcription start sites (TSSs) (3, 5, 6).
Therefore, cfDNA TSS coverage profiles are informative for biological process and regulatory
networks in organisms, and a set of noninvasive cfDNA coverage-based screening methods have
been developed for use in the detection of cancer (7–9), evaluation of therapeutic effects in cancer,
the prediction of pregnancy complications (3, 10), health monitoring in pregnancy (11), and other
uses. However, most of thesemethods require deep whole-genome sequencing data, which limits its
routine clinical usage due to cost (7). Existing methods based on low-coverage cfDNA sequencing
often suffer from the insufficient accuracy of clinical applications (3, 10, 11). Therefore, a new
approach is needed to balance between the cost of cfDNA sequencing and the accuracy of TSS
coverage profiles.

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2021.684238
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2021.684238&domain=pdf&date_stamp=2021-12-03
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:wg@smu.edu.cn
mailto:yxx1214@smu.edu.cn
mailto:jhuang5522@126.com
https://doi.org/10.3389/fmed.2021.684238
https://www.frontiersin.org/articles/10.3389/fmed.2021.684238/full


Han et al. Imputation of cfDNA TSS-Coverage Profile

Computational approaches have been designed to improve the
measurement of genomic or transcriptomic spectra generated
from low-coverage sequencing data, particularly from single-
cell RNA-seq data and single-cell ATAC-seq data (12–15). These
algorithms were designed using a range of principles and models
and perform well enough to impute the missing values caused
by dropouts in single-cell sequencing data. However, it may not
be possible to directly apply these algorithms to TSS coverage
data becausemost were designed for sparse single-cell sequencing
data, while TSS coverage data showmuch less sparsity. Moreover,
the distribution of TSS coverage also differs from that of single-
cell sequencing data, which may not be well fitted to the
algorithms for single-cell data.

Although existing methods may fail to account properly
for TSS coverage data, they highlight the potential to capture
accurate TSS coverage profiles and extract data structures from
shallow sequencing data. One of the most popular such methods,
using autoencoder frameworks, may apply to TSS coverage data
due to its flexibility and scalability (13, 14). An autoencoder is a
deep generative model that learns the latent distribution of the
input data unsupervised through a recognition model (encoder)
and subsequently reconstructs the data with a generative model
(decoder, Figure 1). During deep learning, an autoencoder shares
information across features and thereby recovers the complexity
and nonlinearity of gene–gene relationships. Adjusting the
dimensions of the bottleneck layer in the neural networks
forces the autoencoder to learn only the essential biological
features, and it generates imputed data without the random noise
introduced by low coverage.

Here, we introduce the Autoencoder of cfDNA TSS (AECT)
coverage profile, a method of denoising TSS coverage profiles
generated by shallow cfDNA sequencing. A set of pre-processing
steps for cfDNA sequencing data, including GC bias adjustment
and copy number normalization, are also integrated. The
effectiveness of AECT was validated using multiple datasets.
Outperforming other tools designed for single-cell sequencing
data, AECT generated comparable accuracy of TSS coverage
profiles as high-depth cfDNA sequencing data, and it was
sufficiently powerful to uncover the latent biological features
in shallow cfDNA sequencing generated from healthy donors
and tumor patients. In sum, AECT greatly improves the
performance of shallow sequencing-based cancer detection and
sheds a light on the clinical use of cfDNA sequencing at an
acceptable cost.

MATERIALS AND METHODS

Overview of the AECT Algorithm
AECT is a deep neural network autoencoder, implemented
with the Keras framework and TensorFlow in the backend.
It uses TSS profiles as its input layer and predicts imputed
profiles as the output layer. By default, five fully connected
hidden layers with 128, 64, 32, 64, and 128 neurons are used
to compress and reconstruct the data using the MSE loss
function (Figure 1). The rectified linear unit (ReLU) is used
as an activation function for hidden layers, and mini-batch
sizes of 32 are used to train the neural network. The training

stops if it reaches 500 epochs or if validation loss does not
improve for 15 epochs. It is worth mentioning that the default
hyperparameters work well for datasets in this study; however,
there might be a better parameter combination in another
dataset. Hence, we provided a set of parameters in AECT software
for model tuning.

Related Work
A few related studies review to our study. A set of deep
learning-based denoising model for single cell sequencing
data, including DCA (13), DeepImpute (15), and SCALE
(14), inspired us for developing an autoencoder model
for shallow cfDNA sequencing data. And a set of studies
(3, 11, 16, 17) also provide the theoretical basis for
physiology and pathology status prediction using cfDNA-based
nucleosome footprint.

Human Cancer and Normal Samples
The samples used in the study have been described in previous
studies (16, 17). The first study collected plasma cfDNA
sequencing data of breast cancer patients, benign breast
lesion patients, and healthy donors (17). The other study
collected plasma cfDNA sequencing data of rectal cancer
patients (16). After discarding samples with insufficient data
size and incomplete information, a total of 635 samples
were used: 168 from breast cancer patients, 140 from benign
breast lesion patients, 168 from rectal cancer patients, and
159 from healthy donors. Detailed sample information,
including age, sex, tumor stages and subtypes, is presented in
Supplementary Table 1.

Data Preprocessing
Single-end sequencing data were generated from the Ion
Proton platform (ThermoFisher Scientific, USA). After low-
quality sequencing reads were removed, high-quality reads
were aligned to the hg19 human reference genome using
TMAP (v5.4), and PCR duplication was removed. Because
AECT uses the read frequencies of each TSS region, AECT
users could also use hg38 as reference genome. GC-bias
correction and copy number change normalization were
performed with the deepTools correctGCBias algorithm (18,
19), and DNAcopy R package, respectively. Similar to what
was done previously (3), the raw read counts and GC-
corrected read frequencies for each TSS region [defined as
the region ranging from −1 to +1KB around the TSS,
a total of 41,784 TSSs annotated in RefSeq database were
used in the analysis] were calculated using bedtools (20),
and then were divided by the relative copy numbers of
each region. The TSS coverage profiles for each sample were
subsequently normalized using the reads per kilobase per million
mapped reads method and were submitted as the input for
imputation algorithms.

Downstream Functional Analyses
To compare the coverage of TSSs between groups, p-values
were calculated using the Wilcoxon rank-sum test and then
were adjusted to the FDR, using the Holm procedure. TSSs
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FIGURE 1 | Overview of the AECT framework. AECT is an autoencoder-based framework that has an encoder and a decoder. The autoencoder is a five-layer fully

connected neural network with 128, 64, 32, 64, and 128 neurons. It uses discrete raw TSS coverage generated from shallow cfDNA sequencing data as input, and it

outputs imputed coverage profiles.

with FDR < 0.1 were selected as altered TSSs for downstream
functional analyses, and gene-set annotation and functional
enrichment analysis (on GO database) were performed using
Metascape with default parameters (21). To measure the gene–
gene relationships raised by imputation, the correlations for TSSs
were calculated using the Pearson correlation coefficient, and
PCAs were used to visualize sample similarity, based on the
TSS profiles.

Prediction Model Construction and
Validation
To compare cancer detection performance for TSS profiles
generated by imputation algorithms, we used a penalized logistic
model to select variables for model construction. The training
procedure was kept consistent between raw and imputed datasets
to enable comparison. The R package glmnet was used to
perform the least absolute shrinkage and selection operator
(LASSO), and lambda values were determined by 10-fold cross-
validation. For each model, 1,000-times bootstrapping was used
to test the robustness of the candidate genes chosen by the
model. To reduce overfitting, we constructed the final prediction
model using 100 candidate genes that were most often seen
in the bootstrapping. The performance of the classifiers was
evaluated on the training cohort and validation cohorts using
receiver operating characteristics generated by the pROC R
package (22).

Third-Party Imputation Algorithms
For ease of comparison, we used the latest version of
MAGIC (v1.5.5) (12), DCA (v0.2.3) (13), DeepImpute
(v1.0.0) (15), and SCALE (v1.0.2) (14) at the
default parameters.

RESULTS

GC Bias Adjustment Reduces Batch
Effects in TSS Coverage Profiles
GC content bias influences the number of reads that are
mapped to a genomic region, confounds the quantification
of TSS coverage profiles, and is a major cause of batch
effects in cfDNA sequencing data (19). To address this issue,
we developed a deepTools-based (18) pipeline to correct
GC bias at each TSS region (±1 kbps surrounding a TSS).
Noninvasive prenatal testing (NIPT) data generated from
different experimental batches were selected to evaluate
correction performance. As shown in Supplementary Figure 1,
uncorrected NIPT data showed visible batch differences,
but our GC-correcting pipeline reduced batch effects
(Supplementary Figures 1A–D). Moreover, fetal fraction-
enriched NIPT samples with cfDNA fragment length
selection, which have different TSS coverage profiles
with ordinary NIPT samples, were also added to the
analyses. Using principal component analysis (PCA),
GC-corrected NIPT samples were grouped according to
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whether they did or did not have fetal fraction enrichment
(Supplementary Figures 1E–H), suggesting that our GC-
correcting method reduced batch effects without over-correcting
biological variation.

AECT Improves the Accuracy of TSS
Coverage Profile in Low-Coverage Data
We developed AECT to impute precise TSS coverage
(Figure 1). The AECT uses a GC-adjusted TSS coverage
matrix as input data, captures a latent distribution using five
hidden layers with 128, 64, 32, 64, and 128 neurons, and
reconstructs the data using the mean squared error (MSE) loss
function. Detailed information on AECT is presented in the
Methods section.

As a proof-of-principle and to explore the properties of our
approach, we applied AECT to mimic low cfDNA-sequencing
data. Five high-depth sequenced samples (>400M reads) (6),
including three healthy, one breast cancer, and one colorectal
cancer tissues, were randomly down-sampled into simulated
shallow sequencing data (ranging from 1 to 16M reads, 10
samples per depth group). AECT was performed on each
depth group, and the Pearson correlation coefficient and MSE
were used to measure the similarities between AECT-imputed
shallow data and the original high-depth data. As expected,
AECT significantly increased the correlation coefficient
and reduced the MSE of cancer patients (Figures 2A,B)
and healthy donors (Supplementary Figures 2A,B). Even
for simulated data with only 1M reads, it increased the
accuracy (Figures 2A,B; Supplementary Figures 2A,B). AECT-
imputed data presented higher similarity to their original
sources (Figures 2C,D; Supplementary Figures 2C,D) than
other high-depth samples. It is worth noting that shallow
data from healthy donors showed higher similarity with
other healthy donors than with high-depth cancer samples,
which implies that our AECT model captured not only the
features of each sample but also the biological characters
underlying them.

We also used four representative algorithms designed
for single-cell sequencing imputation, namely, MAGIC (12),
DeepImpute (15), DCA (13), and SCALE (14), on shallow
data (Supplementary Figures 3, 4). Of the four algorithms,
MAGIC and SCALE obtained higher correlations and lower
MSEs than AECT; however, these two could not distinguish
sample type or sample resource. The other two algorithms,
DCA and DeepImpute, were comparable to AECT, but they
also failed to identify the origin of shallow data for some
samples. In summary, AECT yielded higher similarity to
original high-depth data and effectively discriminated the
sample origins.

AECT Captures Latent Features in Healthy
Donors
To test whether AECT captured common features in the real
data, we sequenced the cfDNA of 159 healthy donors with
an average of 8.6M reads (range 7.2 to 10.6M). PCA was
performed on GC-adjusted TSS profiles, and samples were into

two groups by donor sex to reflect the differences in TSS
profiles between males and females (Supplementary Figure 5).
However, when performing PCA with TSSs on autosomes,
shallow-sequencing samples cannot be well separated based
on sex (Figure 3A). As previously reported, although the
differences are not as extensive as with the genes located in
sex chromosomes, many autosomal genes have sex-differential
transcription patterns (23). We used AECT to capture small
differences in autosomal TSS profiles, and the latent features
of sex difference were extracted using only the TSS profiles
of autosomal genes (Figure 3A). Other algorithms were also
performed on autosomal TSS profiles, and only MAGIC
successfully distinguished between samples of different sexes
(Figure 3A).

Some gene-based evaluations were also performed. First,
we compared the ability to identify sex-different TSSs of
imputation algorithms. When the TSS profiles were used
without imputation, only 14 TSSs showed significant sex
differences (FDR < 0.1, Wilcox rank-sum test adjusted by Holm
procedure, Figure 3B), and AECT identified 953 sex-different
TSSs (FDR < 0.1, Wilcoxon rank-sum test adjusted with the
Holm procedure, Figure 3B), and these could discriminate sex
differences with area under the receiver operating characteristic
curve (AUROC) > 0.7, which implies that AECT recovered the
differences between the sexes (Figure 3C). Next, we used gene–
gene correlation coefficients to analyze the gene relationships
recovered in the algorithms. AECT significantly increased
the correlation coefficients among genes (p < 2.2 × 10−16,
Wilcoxon rank-sum paired test), which implies a reconstruction
of gene–gene relationships (Figure 3D). The MAGIC algorithm
tremendously increased the number of sex-differential TSSs
and the gene–gene correlation levels. However, approximately
half of TSSs were identified as sex-different, and most gene
pairs presented high correlations (Pearson correlation coefficient
|r| > 0.8), suggesting an over-adjustment in the TSS profiles
(Figures 3C,D). Thus, AECT is the only model to perform well
on these shallow TSS profiles.

We further investigated whether the TSS profiles imputed
by AECT reflect the sex-different biology, and genes with
sex-different TSSs identified by AECT were selected for
functional enrichment (Figure 3E). Because the cfDNA
mostly originated from peripheral blood leucocytes, many
enriched Gene Ontology (GO) terms were associated with
the biological process of leucocytes. Moreover, similar to
the sex-differential transcriptome reported previously (23),
GO terms associated with calcium ion transport, muscle
contraction, lipid biosynthetic process, ketone metabolism, and
fat cell differentiation were significantly enriched (Figure 3E),
suggesting that our AECT algorithm recovered the biological
status of sex differences.

AECT Captures the Molecular
Characteristics of Breast Cancer
To further investigate whether AECT captures pathological
features, we collected plasma from 90 breast cancer patients
and 70 benign breast lesion patients, and ∼8.5M reads of
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FIGURE 2 | AECT improved accuracy of TSS coverage profiles in simulated data of cancer patients. (A,B) AECT increased the Pearson correlation coefficient (A) and

decreased the MSE (B) for shallow data and original high depth data. (C,D) AECT generated a higher Pearson correlation coefficient (C) and a lower MSE (D) with the

original high-depth data than with the high-depth data of other cancer samples and healthy donors. The x-axis represents the read counts for the simulated

shallow-sequencing data. The box represents the interquartile range, the horizontal line in the box is the median, and the whiskers represent 1.5 times the

interquartile range.

cfDNA sequencing data were generated per sample (range
7.0 to 10.5M). Another 45 healthy women donors were also
included in the analyses (Supplementary Table 1). To reduce
the effects of copy number variation in tumor samples, TSS
coverage was normalized by relative copy number for all
samples. AECT and the four single-cell algorithms were used
to impute the TSS coverage profiles. Unfortunately, none of
the algorithms could separate cancer patients and non-cancer
donors with PCA alone (Supplementary Figure 6), which might
be due to the high heterogeneity of the tumors. Alternatively, to
evaluate whether the imputation algorithms could capture the
differences between breast cancer and non-cancer samples, we
calculated the AUROC of each TSS for cancer detection. An
ideal distribution curve for an AUROC should have a peak near
0.5 and decrease with increased AUROC because most genes
are not relevant to breast cancer. AECT significantly increased
the AUROC patterns relative to the raw data without changing
the distribution mode (p < 2.2 × 10−16, Wilcoxon rank-sum
paired test) and increased the detection numbers of breast
cancer-associated TSSs with AUROC > 0.7 (Figure 4A), while
most other algorithms did not produce appropriate AUROC
distributions. Meanwhile, using random permutations, we found
that AECT did not increase the median AUROC levels of
randomly assumed sample types (p= 0.140, Wilcoxon rank-sum

test, Supplementary Figure 7), suggesting that it captured the
particular differences between breast cancer patients and non-
cancer donors. Gene–gene correlations were also analyzed in the
imputed breast cancer dataset. As previously with purely healthy
donors, AECT reconstructed the gene–gene relationships with
significantly increased correlation coefficients (p < 2.2 × 10−16,
Wilcoxon rank-sum paired test, Figure 4B).

GO enrichment was performed using 242 breast cancer-
associated TSSs identified by AECT (FDR < 0.1, Wilcoxon rank-
sum test adjusted by Holm procedure, Figure 4C). A set of
GO terms associated with breast cancer were enriched, such
as RNA catabolic process, response to progesterone, cellular
response to growth factor stimulus, Wnt signaling pathway,
and others (Figure 4D), suggesting that AECT recovered the
biology of breast cancer. AECT also recovered TSS-coverage
levels of a single gene. Although the transcription levels were
not always associated with the chromatin status of TSS, a set
of typical markers of breast cancer showed a change in TSS
coverage after imputation (24). For example, BRCA1, which
did not change significantly between breast cancer and non-
cancer samples in the raw data (p = 0.461, Wilcoxon rank-
sum test), showed significantly lower TSS coverage in breast
cancer patients after imputation (p = 0.0480, Wilcoxon rank-
sum test), which is consistent with the high expression level of
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FIGURE 3 | Imputation performance of AECT and other algorithms on healthy donors. (A) Plots of principal components 1 and 2 derived from raw TSS coverage

profiles and TSS coverage profiles imputed by different algorithms. (B) Sex-different TSSs (FDR < 0.1, Wilcoxon rank-sum test adjusted by Holm procedure) identified

with different algorithms. (C) AUROC patterns of each TSS on sex discrimination; the dashed lines represent AUROC = 0.7. (D) Correlation patterns between TSSs;

the dashed lines represent Pearson correlation coefficient r = ±0.3. (E) Gene Oncology enrichment of sex-different TSSs identified by AECT.

BRCA1 in breast cancer tissues (Figure 4E). Another example is
ADH1B, one of the most downregulated genes in breast cancer
samples in TCGA (24), which showed significantly higher TSS
coverage after AECT imputation (p = 3.23 × 10−6, Wilcoxon
rank-sum test, Figure 4F). Moreover, AECT also contributed to
differentiating breast cancer subtypes. After AECT imputation,
the marker gene Her2 (ERBB2) showed lower TSS coverage in
Her-2(+) subtype and luminal B subtype with Her-2 expression
(p = 0.0472, Kruskal–Wallis test, Figure 4G). These results
suggest that AECT-imputed data showed better agreement with
the biology of breast cancer, which may be obscured by the
shallow sequencing.

AECT Reflects Molecular Characteristics
in Rectal Cancer
We also examined AECT’s ability to uncover features of another
cancer type, namely, rectal cancer. Plasma cfDNA sequencing

data of 90 rectal cancer patients were collected and imputed
together with 90 healthy donors. Similar to breast cancer patients,
whether before or after imputation, PCA could not separate rectal
cancer patients from healthy donors (Supplementary Figure 8).
AECT increased the AUROC of single genes (p < 2.2
× 10−16, Wilcoxon rank-sum paired test) and identified
more altered TSSs (Figures 5A,B; Supplementary Figure 9),
suggesting significantly increased differences between samples
from rectal cancer patients and healthy donors. Additionally,
AECT also reconstructed gene–gene relationships in rectal
cancer datasets (p < 2.2 × 10−16, Wilcoxon rank-sum paired
test, Figure 5C). GO enrichment was performed on most altered
200 TSSs between rectal cancer patients and healthy donors, and
GO terms associated with cancer, including histone modification,
DNA repair, DNA modification, and tumor necrosis factor
production, were enriched (Figure 5D). Typical differentially
expressed genes, such as DPEP1 and MXI1 (24), also showed
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FIGURE 4 | Imputation performance of AECT and other algorithms on breast cancer. (A) AUROC patterns for each TSS in breast cancer detection; dashed lines

represent AUROC = 0.7. (B) Correlation patterns between TSSs; dashed lines represent Pearson correlation coefficients r = ±0.3. (C) Breast cancer-associated

TSSs (FDR < 0.1, Wilcoxon rank-sum test adjusted by Holm procedure) identified with different algorithms. (D) Gene Oncology enrichment of sex-different TSSs

identified by AECT. (E,F) TSS coverage of (E) BRCA1 and (F) ADH1B in breast cancer, benign breast lesion, and healthy donor group (significant differences between

breast cancer and non-cancer samples, BRCA1 raw: p = 0.461; BRCA1 imputed by AECT, p = 0.0480; ADH1B raw: p = 0.327; ADH1B imputed by AECT, p = 3.23

× 10−6; Wilcoxon rank-sum test). (G) TSS coverage of ERBB2 in different breast cancer subtypes (for ERBB2 raw and ERBB2 imputed by AECT, p = 0.0472,

Kruskal–Wallis test; p = 0.0129, Wilcoxon rank-sum test between samples with and without Her-2 expression, respectively).

altered TSS coverage patterns after AECT imputation, suggesting
that AECT also performed well on rectal cancer (Figures 5E,F).

AECT Improves the Accuracy of Cancer
Detection
TSS coverage profiles are widely used to detect cancer or
other pathological states, but their performance is barely
satisfactory due to low sequencing depths (3, 10, 11). Because
AECT increased the AUROC of single TSSs and improved
the quantification of TSS coverage levels, we speculated that
AECT-imputed data may detect cancer more precisely. A
bootstrapping-based LASSO algorithm was employed to build
classifiers for breast cancer patients and non-cancer donors, and
an independent validation cohort was used for performance
evaluation (Supplementary Table 1). Using raw TSS profiles
without imputation, our model produced similar accuracy to that
reported in previous studies (3, 10, 11) (median AUROC of 5-fold
cross validation = 0.847 in training cohort, AUROC = 0.786 in
validation cohorts, Figures 6A,B). As expected, AECT-imputed

data significantly increased detection accuracy (median AUROC
of 5-fold cross validation = 0.909 in training cohort, Wilcoxon
rank sum test p = 4.62 × 10−13; AUROC = 0.903 in validation
cohorts, Delong test p = 7.36 × 10−4, Figures 6A,B). Similar
analyses were also performed on rectal cancer datasets, and
it was found that AECT improved detection performance in
them as well (training cohort: median AUROC of 5-fold cross
validation = 0.823 and 0.876 for raw data and imputed data,
respectively,Wilcoxon rank sum test p= 3.35× 10−8, Figure 6C;
validation cohort: AUROC = 0.709 and 0.875 for raw data
and imputed data, respectively, Delong test p = 1.78 × 10−3,
Figure 6D).

DISCUSSION

TSS coverage profiles have been widely shown to reflect
physiological and pathological conditions; however, accurate
quantification of them requires high-depth sequencing data,
which is hardly been satisfied in clinical applications (3, 5–8, 10).
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FIGURE 5 | Imputation performance of AECT and other algorithms on rectal cancer. (A) AUROC patterns for each TSS on rectal cancer detection; dashed lines

represent AUROC = 0.7. (B) Rectal cancer-associated TSSs (FDR < 0.1, Wilcoxon rank-sum test adjusted by Holm procedure) identified by different algorithms.

(C) Correlation patterns between TSSs; dashed lines represent Pearson correlation coefficients r = ±0.3. (D) Gene Oncology enrichment of sex-different TSSs

identified by AECT. (E,F) TSS coverage of (E) DPEP1 and (F) MXI1 in breast cancer, benign breast lesion, and healthy donor groups (DPEP1 raw: p = 0.983; DPEP1

imputed by AECT, p = 5.75 × 10−4; MXI1 raw: p = 0.730; MXI1 imputed by AECT, p = 0.00146; Wilcoxon rank-sum test).

To deal with shallow sequencing data, we previously merged TSS
with similar coverage trends among groups; unfortunately, this
method was insufficient for disease prediction and could not
provide precise coverage for each TSS (11). Hence, we introduced
AECT, which is tailored to TSS coverage matrices generated by
shallow sequencing data. In this study, we found that it could
impute TSS coverage profiles using low-coverage data without
loss of latent biological features. We also compared AECT with
representative algorithms designed for single-cell sequencing
data, including MAGIC (12), DeepImpute (15), DCA (13), and
SCALE (14). Although DCA and DeepImupte, generated high
correlation and low MSE in simulated low-coverage data, AECT
is the only algorithm which separated samples with different sex.
Moreover, AECT captures the molecular characteristics of cancer
patients, thus AECT had higher overall accuracy than imputation

algorithms designed for single-cell RNA-seq or single-cell ATAC-
seq data in both simulated and experimental datasets.

It is worth noting that the evaluation of imputation is
difficult for real datasets because there are few available cfDNA
datasets with sufficient depth for extremely precise TSS coverage
quantification. However, trends in RNA expression and TSS
openness are not always consistent (25), so RNA-seq data are
not suitable for evaluation. Nevertheless, we performed a set of
indirect analyses to evaluate the performance of AECT. AECT
showed benefits in specifically increasing overall differences
between different biological statuses and identifying significantly
changed TSSs, suggesting that it captured internal features in
the samples. AECT also increased gene–gene correlations in
shallow sequencing data, which could contribute to establishing
regulatory networks using cfDNA. Because plasma cfDNA
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FIGURE 6 | Performance of cancer detection using AECT-imputed data. (A)

Median AUROC of 100-times permutation with 5-fold cross validation on a

training cohort of breast cancer datasets (p = 4.62 × 10−13, Wilcoxon rank

sum test). (B) ROC curve of validation cohort of breast cancer datasets

(p = 7.36 × 10−4, Delong test). (C) Median AUROC of 100-times permutation

with 5-fold cross validation on a training cohort of rectal cancer datasets

(p = 3.35 × 10−8, Wilcoxon rank sum test). (D) ROC curve of validation cohort

of rectal cancer datasets (p = 1.78 × 10−3, Delong test).

is primarily derived from apoptotic immunocytes (6), our
algorithm could provide a method for understanding the
biology that underlies immunologic processes for both healthy
individuals and tumor patients (26, 27). Thus, AECT may lead
to a set of applications with lower cost in different fields. Early
detection, differential diagnosis, and companion diagnostics of
cancer might be the biggest potential applications, because AECT
could reflect physiological conditions with an acceptable price.
Similar applications are also suitable for immunological diseases,
because cfDNA ismainly derived from immune cells. Monitoring
of the physiology and pathology of pregnancy might be another
field for AECT, considering NIPT has been widely used, there
may be no additional cost for prediction of physiological and
pathological prediction.

An additional advantage of AECT is the improvement
of classifier performance, which might because of the
enhanced robustness of TSS coverage quantification. Using
shallow sequencing data, AECT achieved acceptable detection
accuracy, close to the results achieved using high-depth
data (7, 28). Considering that the clinical application of TSS
profiling is limited by its high cost, AECT could significantly
reduce the budget for high-throughput sequencing, which may
enable moderate cost platforms for health monitoring, cancer
screening, prediction of pregnancy complications, and other
clinical usages.

Several optimizations may further improve the performance
of the imputation algorithms. For example, AECT uses the
MSE loss function, but the TSS coverage profiles are not
strictly normally distributed. Thus, an autoencoder fit for the
distribution likelihood (13) or fit for the multimodal distribution
(14) may further improve the imputation performance.
Generally, the sample sizes for cfDNA sequencing data are not
as large as those in single-cell sequencing, so fitting methods
may lead to overfitting and over-imputation of the data. For
this reason, regularization methods such as neuron dropout,
L1 regularization, and L2 regularization should be introduced
into the model. On the other hand, because plasma cfDNA is
derived from different tissues, the imputation performance may
benefit from incorporating additional biological variables, such
as cfDNA fetal fraction for NIPT samples and cfDNA tumor
fraction for tumor samples. We have made AECT an available
Python package and Docker file on GitHub: https://github.com/
hanbw0120/AECT.

CONCLUSION

We developed a deep-learning pipeline, namely AECT, for
TSS coverage profiles generated from cfDNA sequences.
Outperforming existing single-cell sequencing imputation
algorithms, AECT reflects molecular characteristics in healthy
donors and cancer patients, and classifiers show that using AECT
works well on cancer detection.
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