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Abstract
While induced pluripotent stem cell (iPSC) technologies enable the study of inaccessible patient cell types, cellular
heterogeneity can confound the comparison of gene expression profiles between iPSC-derived cell lines. Here, we purified
iPSC-derived human dopaminergic neurons (DaNs) using the intracellular marker, tyrosine hydroxylase. Once purified, the
transcriptomic profiles of iPSC-derived DaNs appear remarkably similar to profiles obtained from mature post-mortem DaNs.
Comparison of the profiles of purified iPSC-derived DaNs derived from Parkinson’s disease (PD) patients carrying LRRK2
G2019S variants to controls identified significant functional convergence amongst differentially-expressed (DE) genes. The PD
LRRK2-G2019S associated profile was positively matched with expression changes induced by the Parkinsonian neurotoxin
rotenone and opposed by those induced by clioquinol, a compound with demonstrated therapeutic efficacy in multiple PD
models. No functional convergence amongst DE genes was observed following a similar comparison using non-purified iPSC-
derived DaN-containing populations, with cellular heterogeneity appearing a greater confound than genotypic background.
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Introduction
Parkinson’s disease (PD) is the most common neurodegenera-
tive movement disorder worldwide, affecting 1% of the popula-
tion over 65 years, rising to 5% over the age of 85 (1). PD is
characterized clinically by motor manifestations, which have
largely been attributed to the preferential loss of dopaminergic
neurons (DaNs) from the substantia nigra pars compacta, a spe-
cific sub-population of midbrain dopaminergic neurons (2).
While the majority of PD cases are sporadic, around 10% of pa-
tients present with monogenic forms of the disease (3). A com-
mon missense mutation, G2019S, in the leucine-rich repeat
kinase 2 gene (LRRK2-G2019S) is of particular interest, as 8% of
familial forms and up to 2% of sporadic forms of PD are attrib-
uted to this mutation (4–6). LRKK2-G2019S mutations predispose
towards an autosomal dominant, late-onset familial PD, whose
clinical and pathological features are indistinguishable from the
common sporadic form of PD, indicating potential overlapping
pathways across both familial and sporadic forms (7,8). Which
molecular pathway perturbations underlie DaNs cell death in
LRKK2-G2019S PD patients are currently unclear.

Our poor understanding of the pathogenic mechanisms that
lead to PD are in part due to the inaccessibility of the human
brain and a lack of appropriate models of the disease (9,10).
Most of our current knowledge of the cellular phenotypes in-
volved in PD are derived from end-stage post-mortem brain tis-
sue or rodent models, which either may not allow the study of
early stage pathophysiology, may not accurately represent how
the disease develops, or fail to recapitulate the pathology of hu-
man PD (11–13). In particular, the inability to isolate human
DaNs to study their heightened susceptibility to cell death in PD
has hampered the study of disease mechanisms (14). Recent
advances in induced pluripotent stem cell (iPSC) technology of-
fer the opportunity to reprogram human somatic cells into plu-
ripotent stem cells, which can then be differentiated into
disease-specific cell types of interest (15). Deriving these cells
from a donor whose genome harbours disease-predisposing al-
leles provides a model in which to study the contribution of
these alleles to disease in hitherto-inaccessible human cell
types (16). The differentiation of iPSCs into functional midbrain
DaNs provides a powerful tool to study the particular genetic
contribution of the LRKK2-G2019S mutation to PD in a highly rel-
evant model.

Differentiating iPSCs into midbrain DaNs results in a mixed
population comprising a high percentage of DaNs, but also
proliferating neural progenitor cells (NPCs) or cells of differing
neuronal maturity (17). Therefore, in order to study the specific
sensitivity of DaNs in LRKK2-G2019S PD it would be crucial to
separate this specific subset of cells from the other heteroge-
neous cell types post-differentiation. The presence of multiple
cell types within a culture confounds experimental
approaches such as transcriptomics to study DaNs as one is
unable to deconvolute the contributions of different cell types
within the combined RNA profile. Previous attempts to yield a
pure population of cells have used markers for DaN progenitor
cells or neurons by fluorescent activated cell sorting (FACS) to
enrich for a DaN progenitor/neuronal population. Although
these methods increase enrichment, they lack an accurate
identification and isolation of DaNs specifically (17–19) and re-
maining cellular heterogeneity may confound transcriptomic
analyses.

To enable transcriptomic analysis of DaNs, we developed
an approach to obtain purified populations of DaNs by identi-
fying and isolating DaNs within differentiated iPSC

populations by FACS, using a live/dead stain followed by stain-
ing for the DaN marker tyrosine hydroxylase (TH). We show
that this results in a significantly increased purification re-
quired for transcriptomic comparisons. Using lines derived
from three controls and three PD patients carrying LRRK2-
G2019S variants, we demonstrate that upon purification the
transcriptome of this purified DaNs model closely matches
that obtained from mature post-mortem LCM-captured DaNs,
and reveals a functionally-coherent set of genes differentially
expressed between the case and control lines. The perturba-
tion in gene expression is significantly similar to that induced
by the pesticide rotenone, an environmental cause of PD, and
is opposed by clioquinol, a compound shown to have beneficial
effects in multiple PD models. However, these results are not
observable in a cellularly heterogeneous PD LRRK2-G2019S
iPSC-derived neuronal model.

Results
Purification of iPSC dopaminergic neurons
by flow cytometry

Induced pluripotent stem cell (iPSC) lines were derived from
three PD patients carrying a LRRK2-G2019S heterozygous muta-
tion, and three healthy control individuals (Materials
and Methods), from the Oxford Parkinson’s Disease Centre
(OPDC) Discovery Cohort (Table 1) (Materials and Methods,
Supplementary Material, Fig. S1, Notes S1 and S2). These lines
were then differentiated into midbrain dopamine neurons, as
previously described by Kriks et al. (20), with minor modifica-
tions (Materials and Methods).

In order to use RNA sequencing (RNA-seq) transcriptomics
to investigate the potential mechanisms responsible for DaNs
cell death in PD, we first purified the subpopulation of DaNs
from within the heterogeneous differentiated cell population.
Isolated DaNs were purified by fluorescence-activated cell sort-
ing (FACS) using a live/dead stain, followed by fixation and
staining with an antibody for TH to identify live, dopamine
THþneurons (Fig. 1). To enable the use of the intracellular
marker TH, cells were fixed and permeabilised to allow antibody
entry. This also eliminated the induction of stress response
genes following FACS, which might alter the transcriptomic pro-
file (21). The IgG2a isotype control confirmed successful gating,
and a clear population of live THþ cells was observed in both
control and LRKK2-G2019S cells (Fig. 1B and C). The number of
cells collected from control and LRKK2-G2019S lines did not sig-
nificantly differ from one another (Supplementary Material, Fig.
S2A and B) and extracted RNA was of uniform high quality (RNA
integrity analysis (RIN)>8) (Supplementary Material, Fig. S2C).
Q-RT-PCR analysis of RNA extracted from unsorted and purified
control and LRKK2-G2019S dopamine neurons confirmed the en-
richment, with both control and LRKK2-G2019S sorted dopamine
neurons displaying a 10-fold enrichment for TH compared to
unsorted populations (Fig. 1D).

Global expression profiles: purified iPSC-derived DaNs
are highly similar to native mature LCM-isolated DaNs

Transcriptional profiles were generated from purified iPSC-
derived DaN lines derived from six individuals: three PD
patients carrying LRRK2-G2019S mutation and three controls. In
order to evaluate the effect of the THþpurification step on the
transcriptional profiles, we generated additional RNA-seq data
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from two of the control lines prior to purification (Table 1)
(Materials and Methods).

To assess the transcriptomic variation between the purified
and non-purified lines, we performed principal component (PC)
analyses using the FPKM values of 17,170 of the 20,157 protein
coding genes for which the variance was not zero (Supplementary
Material, Fig. S3). Across first principal component, which ac-
counts for 34% of the total variance, we observed a clear separa-
tion between the transcriptomic profiles of the purified and the
unpurified samples (Fig. 2A). This demonstrates that the cell-type
purification step has increased transcriptomic uniformity in the
purified samples. We did not observe that other factors such as
patient age, gender or relatedness had a major impact on the tran-
scriptional profiles (Supplementary Material, Figs S4 and S5).

Next, we examined the expression of marker gene transcripts,
specifically eight major pluripotency marker genes
(Supplementary Material, Fig. S6A), sixteen reference DaN marker
genes (Fig. 2B) and three genes associated with PD
(Supplementary Material, Fig. S6B). We found that all pluripo-
tency markers exhibited low or undetectable expression levels
with the exception of SOX2, which plays a role in the adult neuro-
genesis (22) and is known to be highly expressed in adult brain
tissue (http://www.proteinatlas.org/ENSG00000181449-SOX2/tis
sue) (Supplementary Material, Fig. S6A). Twelve of sixteen dopa-
minergic markers were more highly expressed (highest quartile)
in the purified iPSC-derived DaN lines as compared to the unpuri-
fied lines, reflecting successful purification of the DaNs (Fig. 2B).
GBA and SNCA, genes involved in PD, were expressed in DaNs
(Supplementary Material, Fig. S6B). As has been observed for
other brain tissues, expression levels of the LRRK2 gene were low
but detectable (Supplementary Material, Fig. S6B). http://www.pro
teinatlas.org/ENSG00000188906-LRRK2/tissue).

Finally, we compared the transcriptional profiles of all eight
sets of iPSC-derived DaNs with the following publically-available
transcriptional profiles: (i) RNA-seq profiling generated from 53
human postmortem tissue profiles made available by the
Genotype-Tissue Expression (GTEx) project (http://www.gtexpor
tal.org/) (ii) RNA sequencing data profiling up to sixteen cortical
and subcortical structures across the full course of human brain
development (http://www.brainspan.org/) (iii) microarray profiles
of eight iPSC-derived unpurified DaNs cell lines including two
controls lines, three lines carrying the LRRK2-G2019S mutation
and three matching isogenic lines with engineered-corrections
for the LRRK2-G2019S mutation (GSE43364) (23) (iv) microarray
profiles of two laser-captured human dopaminergic neurons

dataset (GSE20141 & GSE24378) (24) (v) RNA sequencing data pro-
filing seven iPSC-derived DaN lines (two replicates per line) and
subsequently FACS sorted on a combination of surface markers
(CD133, a stem/progenitor marker; CD56, a nerve cell adhesion
molecule; CD15 and CD184, NSC markers; and CD24, a cell differ-
entiation antigen) derived from following subjects: (1) man with a
five-year history of PD (PD) and heterozygous for GBA-N370S vari-
ant, (2) his monozygotic twin brother without PD (Non-PD), (3)
one sporadic PD patient (Sporadic-PD) and (4) four control sub-
jects (C) (GSE62642) (25).

Clustering all samples/tissues using the Euclidean distance ma-
trix computed from the ranked transcript levels of 7305 common
expressed protein-coding genes (Materials and Methods), showed
that the six THþ-sorted iPSC-derived DaN lines exhibited transcrip-
tional profiles highly similar to those obtained from mature
laser-captured human dopaminergic neurons isolated from post-
mortem tissue (Fig. 2C). However, the transcriptional profiles of the
unsorted iPSC-derived DaN lines and those enriched for non-DaN-
specific markers were found to cluster with prenatal brain
(BrainSpan) tissues and with the previously-published and non-
sorted iPSC-derived DaNs, indicating that cell-type heterogeneity is
an important bias in unsorted iPSC-derived DaNs populations.

Taken together, the distinct expression profiles of the purified
neurons compared to the unpurified cells, the increased expres-
sion of dopaminergic marker genes within the purified neurons,
and the transcriptomic clustering of the purified neurons with
adult nigral brain tissue, all support the conclusion that the THþ-
purified iPSC-derived dopaminergic neuronal transcriptomic pro-
files are representative of mature native dopaminergic midbrain
neurons. Thus, the THþ-purified cell populations enable studies
focused to this particularly PD-relevant cell type.

Genes differentially expressed between PD LRRK2-
G2019S case and control iPSC-derived DaNs
converge functionally

We performed differential expression analyses between the
THþ-purified neurons (herein referred to as “purified”) from the
three control lines and the three lines carrying the LRRK2-
G2019S mutation. For this, we compared the variation in read
counts per gene with DESeq2, a method demonstrably robust to
logarithmic fold changes (LFC) of genes with low counts and ap-
propriate for experiments with few replicates (26). Adjusting for
gender and age, we found 40 differentially expressed (DE) genes

Table 1. Experimental design controls and patients lines used in this study from Oxford Parkinson’s Disease Centre (ODPC) Discovery Cohort

Donor ID Study ID iPSc Clone THþve Live Sex Status Age Comment

OX119 CTR1 19 X X M CTR 36 Previously published (43)
NHDF1 CTR2 1 X X F CTR 44 Previously published (44)
AH016 CTR3 3 X M CTR 80
MK144 PD1 7 X F G2019S 57 Sister of JR036
MK002 PD2 4 X F G2019S 72
JR036 PD3 1 X M G2019S 50 Brother of MK144

THþ ve: TH purified neurons.

Live: non-purified.

CTR: healthy control donor.

G2018S: PD patients carrying LRRK2 G2019S mutations.

M: Male.

F: Female.
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Figure 1. Purification of iPSC dopaminergic neurons by flow cytometry. (A) Representative immunostains of neurons demonstrates successful differentiation of control

and PD samples in DaNs. (B) Representative FACS plots of the DA neuron isolation for control. (C) PD LRKK2-G2019S samples. Vertical axis denotes live/dead stain and

horizontal axis TH- and THþ cells. IgG2a was used as an isotype control. (D) Successful purification of TH positive neurons: qRT-PCR for TH expression on RNA extracts

from sorted and unsorted control and LRKK2-G2019S lines.
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with a False Discovery Rate (FDR) of 0.1 (Supplementary
Material, Data S1). However, as we wished to look for functional
convergence within shared molecular pathways amongst genes,
rather than focus on each gene individually, we considered
more DE genes by relaxing the P-value threshold at a cost of in-
creasing the frequency of individual false positive genes. We
considered those 168 DE genes with nominal P-value< 1%
(Supplementary Material, Data S1) and tested for functionally-
linked clustering within a phenotypic-linkage network (PLN)
(27). Briefly, a PLN is constructed by evaluating and integrating

multiple sources of gene functional information to create a
gene network within which the distances between any pair of
genes is inversely proportional to the likelihood that those
genes influence the same mammalian phenotype (27). We
found that 94 of 168 DE genes formed a significant functional
cluster within the PLN (P< 10�6) (Supplementary Material, Fig.
S7 and Data S1). While this functional clustering is generated by
an amalgamate of functional genomics evidence, the 4 most
prominent contributions made by Gene Ontology evidence in-
clude oxidative stress, glycosaminoglycans, immune response

Figure 2. Transcriptomic evaluation of an iPSC-derived and purified model of dopaminergic neurons. (A) Principal component analyses performed from FPKM values of

17170 of 20157 protein coding genes for which the variance was different zero. x and y axis represent the principal component 1 and 2 explaining 34% and 15% of vari-

ance, respectively. (B) Expression level of 16 gene dopaminergic markers. The two vertical dotted lines represent the 50nd (gray) and 75nd (black) percentiles of expres-

sion level measure. (C) Comparisons of the transcriptional profiles of all eight iPSC-derived DaNs cell lines with the following publically-available transcriptional

profiles: (i) RNA seq profiling generated from 53 human postmortem tissue profiles made available by the Genotype-Tissue Expression (GTEx) project (http://www.gtex

portal.org/) (ii) RNA sequencing data profiling of up to sixteen cortical and subcortical structures across the full course of human brain development (http://www.brain

span.org/) (iii) microarray profiles of eight iPSC-derived unpurified DaNs cell lines including two controls lines (C1.1,C2), three lines carrying LRRK2-G2019S mutations

(L1.1Mut, L2.3Mut, L2.2Mut) and three matching isogenic lines with engineered-corrections for LRRK2-G2019S mutation, isogenic line of L1.1Mut, L2.3Mut, L2.2Mut (L1.

1GC2, L2.3GC, L2.2GC) (GSE43364, (23)) (iv) microarray profiles of two laser-captured human dopaminergic neuron dataset (GSE20141 & GSE24378). (v) RNA sequencing

data profiling of 14 samples coming from of 7 iPSC derived DaN (two replicates by cell line) and FACs sorted by using a combination of surface markers (CD133, a stem/

progenitor marker; CD56, a nerve cell adhesion molecule; CD15 and CD184, NSC markers; and CD24, a cell differentiation antigen) derived from following subjects: (1)

man with a five-year history of PD (PD) and heterozygous for GBA-N370S variant, (2) his monozygotic twin brother without PD (Non-PD), (3) one sporadic PD patient

(Sporadic-PD) and (4) four control subjects (C) (GSE62642) (25) (Materials and Methods).

The brainspan dataset uses the following acronyms:

URL upper (rostral) rhombic lip; VFC ventrolateral prefrontal cortex; DFC dorsolateral prefrontal cortex; LGE lateral ganglionic eminence; ITC inferolateral temporal cor-

tex (area TEv); STC posterior (caudal) superior temporal cortex (area TAc); AMY amygdaloid complex; MFC anterior (rostral) cingulate (medial prefrontal) cortex; HIP

hippocampus (hippocampal formation); CGE caudal ganglionic eminence; Ocx occipital neocortex; DTH dorsal thalamus; M1C-S1C primary motor-sensory cortex (sam-

ples); MGE medial ganglionic eminence; OFC orbital frontal cortex; PCx parietal neocortex; TCx temporal neocortex; M1C primary motor cortex (area M1); STR striatum;

IPC posteroventral (inferior) parietal cortex; A1C primary auditory cortex (core); V1C primary visual cortex (striate cortex); S1C primary somatosensory cortex (area S1);

CB cerebellum; MD mediodorsal nucleus of thalamus; CBC cerebellar cortex
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signalling (regulation of I-kappaB kinase/NF-kappaB signaling)
and lipopolysaccharides.

We were concerned that the observed functional conver-
gence within the PLN could simply be a result of selecting genes
at random from the same cell type, and thus not a consequence
of the LRRK2-G2019S mutation. Given the number of replicates,
it was not possible to test this by permuting case/control status.
Instead, we developed an alternative approach wherein we
modelled each gene’s observed expression profile across the
6 lines and then randomly generated simulated transcriptomic
profiles representing 10,000 sets of 3 case lines and 3 control
lines (Materials and Methods). By examining the functional
clustering amongst the most significantly differentially-
expressed 168 genes in each simulated case/control compari-
son, we found that none of these simulations clustered as
strongly as the 168 original DE genes (P< 10�5; Supplementary
Material, Fig. S8) demonstrating that our signal was likely driven
by LRRK2-G2019S mutation.

Among 168 DE genes observed, 109/168 genes had an in-
creased expression level in the LRRK2-G2019S lines as compared
to controls, while 59/168 genes had decreased expression levels.
To validate the 168 DE gene set identified by RNA-seq
(Supplementary Material, Data S1), six of the top most differen-
tially expressed up- and down-regulated genes were selected
for further qRT-PCR analysis. All the up-regulated (HIST1H1A,
ZNF441, SGCN, PTPRN2) and the down-regulated (RGCC, SV2B)
genes tested displayed relative expression similar to that identi-
fied in the RNA-seq of the purified PD LRKK2-G2019S patient
DaNs compared to controls (Supplementary Material, Fig. S9).

Furthermore by examining the network architecture of the
94 PLN-clustered DE genes, we noted that up- and, separately,
down-regulated genes represented two distinct and significant
clusters (Fig. 3A). Indeed, after separating the 168 DE genes by
their direction of change, the set of 109 up-regulated genes and
the set of 59 down-regulated genes each clustered significantly
within PLN (respectively P< 10�6 (Supplementary Material, Fig.
S7B) and P¼ 2.4�10�4 (Supplementary Material, Fig. S7C)).
Furthermore, after randomly permuting the members of the up-
and down-regulated gene sets we found no significant cluster-
ing within the randomly drawn sets (Supplementary Material,
Fig. S7F) suggesting that these two groups of genes may repre-
sent distinct functional clusters and may be associated with dis-
tinct cellular/molecular perturbations induced by LRRK2-G2019S
mutation.

To evaluate whether the observed 168 DE genes were associ-
ated with known molecular mechanisms underlying PD, we (i)
looked for an overlap with known PD genetic risk factors, (ii) ex-
amined PD-relevant phenotypes associated with these genes’
mouse orthologues and (iii) examined publically-available drug
transcriptional response profiles.

Down-regulated genes are enriched in genes whose
orthologous disruption in the mouse yields abnormal
capabilities/coordination/movement phenotypes

We then examined whether the 168 DE genes were enriched for
orthologues of mouse genes whose disruption yields relevant
PD-relevant phenotype abnormalities; note that this informa-
tion is not included within the PLN applied above (Materials and
Methods). Considering those phenotypes that were within the 2
main categories of mouse phenotypes most relevant to PD,
namely nervous system (MP:0003631) and behavior/neurological
phenotypes (MP:0005386), we found significant enrichments of

genes associated with abnormal nervous physiology pheno-
types (MP:0003633) (q-value¼ 0.013,18.5 expected versus 29 ob-
served genes) and abnormal motor capabilities/coordination/
movement phenotypes (MP:0002066) (q-value¼ 0.037, 17.45 ex-
pected genes versus 28 observed genes) (Supplementary
Material, Fig. S10 and Fig. 3B). For both observations, we found
that the enrichment was largely driven by genes with a reduced
expression in the LRRK-G2019S case lines, matching the direc-
tion of a dosage change associated with their mouse
orthologues’ knock-out phenotypes (Supplementary Material,
Fig. S11).

Matching drug cellular response profiles to LRRK2-
G2019S iPSC dopaminergic cellular profiles

A key aim following the identification of the molecular pertur-
bations associated with disease is to identify therapeutics that
might act to ameliorate those perturbations, thereby offering
pathways to therapy. For this, we used the Connectivity Map
(CMAP) resource to identify drugs that influence the expression
of the 168 DE genes (https://www.broadinstitute.org/cmap)
(28,29). CMAP holds the cellular transcriptomic response profiles
recorded following the exposure of cells to over 1,000 com-
pounds and allows these profiles to be matched against user-
provided transcriptomic profiles to identify compounds that
provoke a correlated or anti-correlated transcriptomic response.
Given a disease-associated transcriptomic profile, compounds
that provoke a correlated profile may provide insights into
disease-relevant processes or new disease models, while com-
pounds that provoke an anti-correlated response may them-
selves be of therapeutic value or provide lead to identifying new
therapies (29,30).

Examining the significant results reported by interrogating
CMAP with our 168 DE gene disease signature, we observed that
rotenone, a compound known to induce PD (31), induces a gene
expression profile significantly similar to that observed within
the LRRK2-G2019S cells lines (enrichment score¼0.284, P¼ 7.6
�10�3 and Supplementary Material, Data S2 and Fig. 3C). A com-
pound generating a significantly counteracting gene expression
profile was clioquinol, a drug known to rescue dopamine neu-
ron loss and Parkinsonian behavioural phenotypes in mouse
models (enrichment score¼�0.557, P¼ 2.7 �10�3; see
Supplementary Material, Data S2 and Fig. 3D) (32–35)

To test the hypothesis that these drug signatures were not
associated with genes generally expressed in dopaminergic
neurons, but rather were specific to those genes we identified as
differentially expressed between the PD LRRK2-G2019S case and
control cell lines, we re-interrogated CMAP manually by hand
with 20 sets of simulated 168 DE genes as used above to simi-
larly test the clustering within the PLN (Materials and Methods)
but found that no simulated set displayed matched significantly
to these drug signatures reassuring that their relevance is
derived from the PD LRRK2-G2019S cellular perturbation
(Supplementary Material, Table S1).

Unpurified iPSC-derived LRRK2 DaNs transcriptomic
profiles do not yield functional, genetic or
molecular associations

To compare the transcriptomic signature revealed by purifying
DaN cells to that obtained from an heterogeneous iPSC mid-
brain neuronal population, we compared our results to those
obtained from a previous gene microarray transcriptional study
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Figure 3. Functional associations within general PLN of 94/168 DE genes.

The colour of links between genes indicates the most informative dataset for the relationship between gene pairs (see legend).

The Panel (A) shows the relation between the up (red) and down (blue) regulated genes (reference control). The Panel (B) lists differentially expressed genes whose

orthologue’s disruption in the mouse yields the phenotype abnormal capabilities/coordination/movement ((MP:0002066). The Panels C and D show genes for which ex-

pression is increased (red) or decreased (blue) after rotenone and clioquinol respectively by using top 1000 of up and dow regulated genes of CMAP rank matrix of each

instance (Materials and Methods).
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(GSE43364) (23) using three unpurified iPSC-derived dopaminer-
gic midbrain neurons carrying LRRK2-G2019S mutations and
their respective isogenic controls. The profiles of iPSC DaN lines
from this study cluster with those from our unsorted lines sup-
porting the relevance of the comparison (Fig. 2). Using the ap-
proach here to perform DE analyses, we found only one gene
differentially expressed at an FDR< 0.10 in the unsorted lines
(gene ZKSCAN5; Supplementary Material, Data S2). As with the
transcriptomic analyses of the purified DaN lines above, we
considered those DE genes with nominal P-value< 1% yielding a
total of 85 DE genes; 30 up-regulated in LRRK2-G2019S lines and
55 down-regulated (Supplementary Material, Data S3). Only the
gene NHLH2 was found to be differentially-expressed at this
threshold in both the Reinhardt et al. study and our study.

We repeated then the same network/genes enrichment/drug
signatures analyses described above. Unlike the DE genes be-
tween purified iPSC derived DaN lines, we did not observe that
this set of 85 DE genes significantly functionally clustered
within the same PLN (P¼ 0.21, 0,08 0.16 for all, up-regulated and
down-regulated genes respectively) nor were these 85 DE genes
enriched for mouse orthologous whose disruption was associ-
ated with abnormal nervous physiology phenotypes
(MP:0003633) or abnormal motor capabilities/coordination/
movement phenotypes (MP:0002066) (q-values of 1 and 0.98 re-
spectively). Lastly, by comparison to CMAP drug response pro-
files, we did not observe a significant intersection with either
rotenone, clioquinol nor any other agent known to reverse or in-
duce PD (Supplementary Material, Data S4).

As the analyses of global expression showed that unpurified
iPSC derived DaNs are dominated by immature neuronal popu-
lations (Fig. 2), the cellular heterogeneity is likely cause of these
negative results. Taken together, these results support a confla-
tion of the gene expression profiles obscuring differential ex-
pression studies.

Discussion
PD is a complex disorder, and we have little knowledge of the
exact mechanisms behind the associated dopaminergic neuron
susceptibility and death. In this study, we present a method for
purifying iPSC-derived dopaminergic neurons, which allows
methods such as RNA-sequencing to study this PD-relevant cell
type specifically. Once purified, we show that the transcriptomic
profiles of iPSC-derived dopaminergic neurons appear highly
similar to those obtained from post-mortem mature dopami-
nergic neurons isolated through LCM. Purified dopaminergic
neurons derived from PD patients carrying LRRK2-G2019S vari-
ants revealed a novel set of genes whose expression is per-
turbed as compared to models derived from controls. Most
notably, the gene expression variation was found to be corre-
lated with variation reportedly induced by rotenone, a com-
pound that causes drug-induced Parkinsonism.

When comparing the phenotypic profiles of purified and
unpurified dopaminergic neurons, the purified dopaminergic
neuronal population obtained by FAC sorting on a DaN-specific
marker displayed the transcriptomic profile of a mature mid-
brain dopaminergic neurons (Fig. 2). By contrast, the transcrip-
tomic profiles of unpurified heterogeneous midbrain neuronal
populations from both this study and a previous study (36), and
those from a study selecting cells on non-DaN-specific markers
(25), cluster with immature prenatal neurons, suggesting a
dominating contribution of immature neurons which limits the
insights into the PD-relevant dopaminergic neuronal population
and emphasizes the importance of selecting the DaNs

specifically from the populations prior to RNA-seq analysis.
While the use of an intracellular marker (TH) for cell sorting kills
the cells, exposing the DaN gene expression profiles offers sig-
nificant insights, as we demonstrate here. Furthermore, al-
though two purified dopaminergic neuronal lines (CTR1-sort.
and CTR 2-sort.) are derived from the same control individuals
as the two unpurified lines (CTR1-unsort. and CTR2-unsort.),
their transcriptional profiles were more similar to the other pu-
rified lines from different individuals, suggesting that cellular
heterogeneity has a greater impact on the bulk transcriptional
profile than the genetic background. Thus, isolating cell types
may be more important than isogenic controls for particular
study designs.

In a novel approach to investigate how particular drugs may
influence the expression of genes affected by the PD LRKK2-
G2019S mutation, CMAP identified the mitochondrial complex I
inhibitor, rotenone, as the compound with an expression profile
most analogous to the 168 DE genes. Rotenone is one of the
most extensively utilized chemical models of PD, with chronic
exposure to rotenone causing a highly selective nigrostriatal do-
paminergic degeneration that is associated with motor impair-
ment in drosophila, mouse and rat models of PD (31,37–39). The
identification of a compound so comprehensively linked to PD
as that most related to the 168 DE gene expression profile fur-
ther supports the iPSC-derived FACS sorted DaNs as a highly
relevant model for PD.

The finding of a strong hit for clioquinol as a compound that
induces a transcriptomic response anti-correlated to that ob-
served within the PD LRRK2-G2019S dopaminergic neurons is in-
triguing and a robust validation of our methodology. Clioquinol
is an iron/copper/zinc chelator and anti-oxidant previously
used extensively as an antibiotic and antimalarial. It was shown
in 2003 to prevent dopaminergic cell death in the MPTP toxin
mouse model of Parkinson’s, most likely through a reduction in
reactive iron (35). More recently, clioquinol has been shown to
rescue cognitive and motor function, and dopamine neuron loss
in a-synuclein hA53T transgenic mice (34) and in microtubule
associated protein tau knockout (Mapt-/-) mice (32). Clioquinol
has also shown promise in the treatment of mouse models of
Alzheimer’s disease (AD) (40) and has been used in a small
Phase 2 trial for AD in which it was well tolerated and appeared
to reduce cognitive decline (41). Other anti-malarials (amodia-
quine and chloroquine) have been also found to alleviate behav-
ioural deficits within a 6-hydroxydopamine lesioned rat model
of PD (42). Taken together, the data build a strong case for clio-
quinol as a therapeutic molecule for Parkinson’s and validate
our approach for identifying candidate drugs for repurposing.

Dopaminergic neurons do not exist in the brain in isolation,
they form defined functional neuronal circuits existing in the
context of a complex mix of supporting glial cells. Our work
here has focussed on dopaminergic neuronal cultures as a trac-
table model to understand transcriptional perturbations in the
most vulnerable cell type in Parkinson’s disease. Interestingly,
LRRK2 is highly expressed in astrocytes and further studies will
be needed to investigate transcriptomic changes in mixed dopa-
mine neuron/astrocyte co-culture models of disease.

In summary, this study demonstrates the ability of iPS cells,
when combined with appropriate experimental controls, to de-
liver in vitro cellular disease models whose gene expression
profiles are extremely similar to inaccessible mature neuronal
cell types. Despite comparing only three lines derived from PD
patients carrying LRRK2-G2019S variants to three controls lines,
the differential gene expression pattern identified is both corre-
lated with the effects of PD-inducing compounds and anti-
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correlated to the effects of compounds found to have efficacy in
alleviating PD symptoms in rodent models. The approach de-
scribed here identifies molecular perturbations to direct future
cellular phenotyping studies to understand disease mecha-
nisms, and allows the identification of potential re-purposable
drugs for disease treatment.

Materials and Methods
Participation recruitment

Participants were recruited to this study having given signed in-
formed consent, which included mutation screening and deri-
vation of hiPSC lines from skin biopsies (Ethics committee:
National Health Service, Health Research Authority, NRES
Committee South Central – Berkshire, UK, who specifically ap-
proved this part of the study - REC 10/H0505/71).

LRKK2-G2010S mutation screening

Parkinson’s disease patients and controls from the Discovery
clinical cohort established by the Oxford Parkinson’s Disease
Centre (OPDC) were screened for the presence of LRRK2-G2019S
heterozygous mutation and excluded for other known PD-
related mutations (Supplementary Material, Fig. S1A). Genomic
DNA was extracted from iPSC-derived cells using Illustra tissue
and cells genomic miniprep kit and quantified using a
Nanodrop 1000. Polymerase chain reaction (PCR) was carried
out using AmpliTaq DNA polymerase with primer sequences 50-
TTTAAGGGACAAAGTGAGCAC-30 and 50-ACTCTGTTTTCCTTT
TGACTC-30. The PCR product was digested using the restriction
enzyme SfcI and the product analysed for the presence of the
G2019S mutation by agarose gel electrophoresis.

Generation of human iPSCs

Induced pluripotent stem cell (iPSC) lines were derived from
three PD patients carrying a LRRK2-G2019S heterozygous muta-
tion, and three healthy control individuals, from the Oxford
Parkinson’s Disease Centre (OPDC) Discovery Cohort (Table 1).

Skin punch biopsies were obtained from participants and
low passage fibroblast cultures established and transduced with
reprogramming retroviruses (c-MYC, KLF4, SOX2, OCT3/4 and
Nanog). Colonies displaying iPSC morphology were picked and
passaged on MEFs by manual dissection before conversion to
feeder-free culture. One control line and the three patient lines
are described here for the first time, and full characterization in-
formation is given, with full details of characterization methods
given in Supplementary Material, Notes S1and S2. The other
two control iPSC lines, iPS-OX1-19 and iPS-NHDF-1 have been
described fully elsewhere (43,44).

Characterisation of iPSC

hiPSC adapted to feeder-free culture on Matrigel (BD
Biosciences) were banked in bulk and harvested for characteri-
sation analyses. RNA and genomic DNA were made using an
All-Prep kit (Qiagen). Genome integrity and cell line identity
were confirmed by a high resolution Illumina CytoSNP-array, si-
lencing of retroviral transgenes upon establishment of pluripo-
tency was confirmed by quantitative RT-PCR, and their gene
expression profiles conformed to those of benchmark human
pluripotent stem cell lines as assessed by Pluritest. All iPSC lines
displayed embryonic stem cell-like morphology and expressed

the pluripotency-associated protein TRA-1-60 (Supplementary
Material, Fig. S1D).

Further details on fluorescence activated cell sorting (FACs),
qRT-PCR for assessing transgene silencing, Illumina Human
CytoSNP-12v2.1 beadchip array for assessing genome integrity
and tracking, and Illumina HT12v4 transcriptome array for as-
sessing conformity to benchmark pluripotent expression pro-
files (PluriTest), can be found in Supplementary Material,
Note S2.

Generation of human iPSC-derived dopamine neurons

In order to study gene expression profiling in those cells most
vulnerable to death in LRRK2-G2019S models of Parkinson’s dis-
ease, iPSCs from patients harbouring these mutations and con-
trols needed to be differentiated into dopaminergic (DA)
neurons. Three control (NHDF-1, OX1-19 and AH-016-3) and
three LRRK2-G2019S (JR-03601, MK002-4 and MK144-7) patient
lines were differentiated, as described previously by Kriks et al.
(20), with slight modifications. Cells first undergo 21 days of pat-
terning and differentiation, are replated and are then matured
for a further 2 weeks, resulting in cells at days in vitro (DIV 35)
when collected for flow cytometry.

Characterization of iPSC-derived DaNs cultures

Control and PD LRKK2-G2019S lines successfully differentiated
into dopaminergic neurons, as assessed by positive TH (dopami-
nergic marker), FOXA2 (dopaminergic marker) and b-3 tubulin/
TUJ1 (neuronal marker) staining by immunofluorescence
(Fig. 1A). Additionally, post-differentiation, the PD LRKK2 G2019S
lines display an increase in midbrain dopaminergic markers;
LMX1A, FOXA2, TH, PITX3, GIRK2 and NURR1 by qPCR compared
to iPSCs. Conversely, they also display a decrease in OCT4,
a marker of stem cell pluripotency (Supplementary Material,
Fig. S1F).

Quantitative real-time PCR and immunocytochemistry

RNA was extracted from cells using the RNeasy Micro kit
(QIAGEN) as per manufacturer’s instructions and quantified us-
ing a NanoDrop 1000 (ThermoScientific). cDNA was synthesised
using Superscript III reverse transcriptase (Life Technologies) as
per manufacturer’s instructions. Quantitative real-time PCR
was carried out using Fast SYBR Green Mastermix on a
StepOnePlus thermal cycler (Life Technologies).

For immunostaining, cells on coverslips were fixed in 4%
paraformaldehyde then stained in PBS/0.1% TritonX as follows.
Cells were blocked with 10% donkey serum for 1 h then incu-
bated with the following primary antibodies: TH (1:500,
Millipore), TUJ1 (1:500, Covance), FOXA2 (1:250, R&D Systems) in
1% donkey serum for 1.5 h, then secondary antibodies in 1%
donkey serum for 1 hr. Finally, cells were incubated with 1 mg/
mL DAPI for 10 min at room temperature, cells were then
washed 1x PBS before mounting onto slides and imaged using
an EVOS FL-Auto microscope.

Purification of iPSC derived live/DaNs by flow cytometry

Control and PD LRKK2-G2019S lines, seeded at 400,000/cm2 were
washed with 2ml of warm DPBS and dissociated with 300 ml of
warm trypsin-EDTA for 5 min. During incubation a 40 um cell
strainer was primed with 1ml cold PBSþ 3U/ml DNAse I. The
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trypsin was inhibited with 400 ml of warm defined trypsin
inhibitorþ 6U/ml DNAse I and cells passed through the cell
strainers into BSA pre-coated 50 ml falcon tubes. The cell
strainers were washed with 1ml cold PBSþ 3U/ml DNAse I and
spun for 300 g for 5 min at 4 �C. The supernatant was aspirated
and pellets kept on ice for the remainder of the protocol,

Pellets were re-suspended in 1ml cold PBS, transferred to a
protein lo-bind tube and spun for 300 g for 3 min at 4 �C, The su-
pernatant was aspirated and the cells re-suspended in 1 ml
Live/dead yellow fixable stain (1:500) in PBS, kept on ice for
10 min in the dark, followed by the addition of 200 ml of 10% BSA
in PBS and cells spun for 300 g for 3 min at 4 �C, Cell pellets were
then re-suspended in 30 ml PBS and 200 ml of 4% paraformalde-
hyde (PFA) in PBS added to the cell suspension and incubated
on ice for 10 min, after which 15 ml of 2M Glycine in PBS was
added to inhibit PFA fixation. To prime the cells for permeabili-
saiton, 100 ml of permeabilisation buffer ((PB) (0.1% saponin, 2%
BSA, 2M DTT, 100U/ml RNAse inhibitor, 2ug/ml normal goat IgG,
PBS)) was added and cells spun at 300 g for 3 min at 4 �C,

Cells were then permeabilised with the addition of 200 ml of
PB, kept on ice for 10 min and the samples then split into two
tubes; Tube A (33 ml) and Tube B (166 ml). Both tubes were then
incubated with PB containing the appropriate primary antibody;
Tube A (100 ml normal mouse IgG2a antibody (1:500)) and Tube B
(500 ml Mouse anti-TH F-11 antibody (1:2000)), rotating in the
dark at 4 �C for 1 h. Cells were spun at 300 g for 3 min at 4 �C and
then re-suspended in PRDB buffer (2% BSA, 5mM DTT, 100 U/ml
RNAse inhibitor, PBS) containing secondary antibody (Goat anti-
mouse Alexa 635 (1:2000)) and kept on ice for 15 min in the dark

Cells were then spun at 300 g for 3 min at 4 �C, washed with
200 ml PRDB buffer and then resuspended in 400 ml PRDB buffer
before being transferred to polypropylene tubes and Flow cy-
tometry sorted. Samples were sorted into 2ml Eppendorf DNA
LoBind tubes containing 100 ml PRDB bufferþ 2 ml RNAse inhibi-
tor. Post FACS, samples were spun at 1000 g for 5 min at 4 �C, re-
suspended in 300 ml RLT buffer (Qiagen RNeasy micro extraction
kit)þ 1% beta-mercaptoethanol (BME) and vortexed for 5 min,
followed by incubation for 20 min at room temperature.
Samples were then stored at �80 �C until RNA extraction.

RNA extraction

RNA was extracted from the sample pellets using an RNeasy mi-
cro kit (Qiagen) with minor alterations. Briefly, 580 ml of RNase-
free water and 20 ml of 10 mg/ml Proteinase K was added to the
cells and incubated at 55 �C for 10 min. After the addition of 450
ml of 100% ethanol, the cell suspension was loaded onto
MinElute spin columns in a 2 ml DNA LoBind collection tube
and spun at 8000 gfor 15 s. Pellets were washed with 350 ml
Buffer RW, centrifuged at 9000 gfor 15 s and flow-through dis-
carded. 10 ml of DNAse Iþ 70 ml of RDD buffer were mixed before
being added to the column, incubated for 20 min at room tem-
perature, after which 350 ml of RW1 buffer was added and cells
spun at 9000 gfor 15 s.

Cells were washed with 500 ml Buffer RPE, centrifuged at 9000
gfor 15 s, then further washed with 500 ml 80% ethanol before be-
ing centrifuged at 9000 gfor 5 min to dry the silica-gel mem-
brane. The column was transferred to a new 1.5 ml DNA LoBind
collection tube, 12 ml of RNAse-free water was added, incubated
for 10 min and the column centrifuged at maximum speed for
1 min to elute the RNA. 1.2 ml of RNA was removed for concen-
tration and RNA integrity analysis (RIN analysis) on a
bioanalyzer

RIN analysis and RNA quantitation

RNA integrity (RIN) and concentration was analysed on a 2100 bio-
analyzer system (Agilent), utilizing the RNA 6000 pico kit (Agilent),
as per manufacturer’s instructions. The samples were diluted be-
fore being loaded onto the bioanalyzer; JR-03601 (1:5), NHDF-1 (1:4),
MK002-4 (1:4), OX1-19 (1:10), MK144-7 (1:4) and AH-016-3 (1:5).

RNA library construction and sequencing

The polyadenylated fraction of RNA isolated from eight samples
was used for 100bp paired-end RNA-seq with coverage 43.8 6

4.1 sd million pairs read per sample. We used the SMARTerVR

UltraTM Low RNA Kit for IlluminaVR Sequencing (Clontech) fol-
lowed by the NEBNextVR DNA Library Prep Master Mix Set for
IlluminaVR to contruct poly(A) selected pair-end sequencing li-
braries. Both kits were used as per the manufacturer’s instruc-
tions except that published in-house custom indexes were used
(45). The resulting multiplexed libraries were sequenced using
Illumina TruSeq v3 chemistry. After indexing, all samples were
combined into a single library and sequenced on two lanes of
an Illumina HiSeq 2000 System.

Quality control of RNA sequence data

By checking the quality of RNA sequencing data using the
FASTQC software (version 0.9.3) (http://www.bioinformatics.bab
raham.ac.uk/projects/fastqc/) via the CGAT pipeline pipeline_
readqc.py, we observed (i) an abnormal GC content and per base
GC content for 5’ reads due to Hexamer priming bias (46)
(Supplementary Material, Table S2) and (ii) an overrepresenta-
tion of some RNA sequence due to adapter contamination
(Supplementary Material, Table S2 and Fig. S12).

Exons genes annotations file

We generated annotations within the ENSEMBL gene set after
reconciliation with the UCSC genome assembly from human ge-
nome (hg19) by using the CGAT pipeline pipeline_annota-
tions.py. Annotations here are the original ENSEMBL
annotations bar some filtering. The gtf file generated provided
the information regarding exon parts of transcripts. This set in-
cludes both coding and non-coding transcripts. Coding tran-
scripts span both the UTR and the CDS

Alignment and quality control of alignment

We aligned our RNA sequences to the human genome (hg19) us-
ing STAR (version 2.3.0) (47). STAR is a mapper developed for
RNA-seq data and is able to ignore adapters by clipping. We gen-
erated the index required by STAR using the following options:

• –runMode genomeGenerate
• –genomeFastaFiles genome softmasked fasta file (hg19)
• –sjdbGTFfile gtf containing all known gene models (gener-

ated with CGAT pipeline pipeline_annotations.py)
• –outFilterType BySJout

We aligned reads with the CGAT pipeline pipeline_map-
ping.py (option: make mapping) using STAR default options and:

• runMode alignReads
• genomeLoad LoaDaNsdRemove
• outStd SAM
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• outSAMstrandField intronMotif
• outSAMunmapped Within
• outFilterType BySJout

The two bam files of each of the eight libraries coming from
two lanes were then merged by using samtools (version 1.8) (48)
by running the CGAT pipeline pipeline_mapping.py with the op-
tion make mergeBAMFiles. We compiled the statistic regarding
the quality of mapping by using make buildBAMStats of CGAT
pipeline pipeline_mapping.py. We successfully mapped uniquely
29.8þ/- 3.0 sd millions of pair reads (Supplementary Material,
Table S3). However we observed a non-uniform read coverage bi-
ased to the 3’ end of genes (Supplementary Material, Fig. S13).

Counts read overlapping exons annotations

The number of reads overlapping a gene were computed using
HTSeq count (version 0.6.1p1) (49) with the intersection-strict
mode. The sam files were sorted by read name with samtools.
The exon annotations file was generated with the CGAT pipe-
line pipeline_annotations.py.

Fragments per kilobase of exon per million fragments
mapped (FPKM)

The FPKM values of eight libraries were computed by using cuff-
quant (versions 2.2.1) on bam files and exons annotations file to
first compute gene and transcript expression in RNA-seq sam-
ples. We then used cuffnorm (version 2.2.1) to compute the
FPKM values normalized across all eight RNA-seq libraries (50).

List of protein coding genes

The list of 20,157 protein coding genes was obtained from the
UCSC genome browser for the hg19 assembly by using the fol-
lowing query:

SELECT T1.name FROM ensGene T1, ensemblSource T2 WHERE
T1.name¼T2.name and source¼“protein_coding”

Principal component analyses

We performed principal component analyses by using the func-
tion prcomp in R (R version 3.1.2) with the following parameters:
center¼TRUE and scale¼TRUE. We used the FPKM values of
20157 protein coding genes in eight samples. 2857 protein cod-
ing genes were discarded because variance equals to zero.

Public transcriptional genes profiles

We compared the transcriptional profiles of iPSC DaNs with fol-
lowing public transcriptional profile:

1) RNA seq profiling generated from 53 human postmortem
tissue profiles made available by the Genotype-Tissue
Expression (GTEx) project (http://www.gtexportal.org/, ((51),
http://www.gtexportal.org/, dbGaP Study Accession:
phs000424.v5). We computed for each gene in each tissue
the average of FPKM value.

2) RNA sequencing data profiling of up to sixteen cortical and
subcortical structures across the full course of human brain
development (http://www.brainspan.org/) (52). From the ex-
pression matrix in RPKM values, we computed the average
of expression for stage: Prenatal (2pcw-38pcw), Infancy

(Birth - 18 months, Childhood (19 months to 11 years),
Adolescence (12–18 years), Adult (19–60 yearsþ) and for the
following cortical and subcortical structures:
URL upper (rostral) rhombic lip
VFC ventrolateral prefrontal cortex
DFC dorsolateral prefrontal cortex
LGE lateral ganglionic eminence
ITC inferolateral temporal cortex (area TEv
STC posterior (caudal) superior temporal cortex (area TAc)
AMY amygdaloid complex
MFC anterior (rostral) cingulate (medial prefrontal) cortex
HIP hippocampus (hippocampal formation)
CGE caudal ganglionic eminence
Ocx occipital neocortex
DTH dorsal thalamus
M1C-S1C primary motor-sensory cortex (samples)
MGE medial ganglionic eminence
OFC orbital frontal cortex
PCx parietal neocortex
TCx temporal neocortex
M1C primary motor cortex (area M1
STR striatum
IPC posteroventral (inferior) parietal cortex
A1C primary auditory cortex (core)
V1C primary visual cortex (striate cortex
S1C primary somatosensory cortex (area S1
CB cerebellum
MD mediodorsal nucleus of thalamus
CBC cerebellar cortex

3) microarray profiling of eight iPSC-derived DaNs cell lines in-
cluding: two control lines (C1.1,C2), three lines carrying on
mutation LRRK2-G2019S (L1.1Mut, L2.3Mut, L2.2Mut), three
lines corrected for LRRK2-G2019S mutation, isogenic line of
L1.1Mut, L2.3Mut, L2.2Mut (L1.1GC2, L2.3GC, L2.2GC)
(GSE43364) (23). We used the normalized and background
subtracted intensity value.

4) microarray profile of two laser-captured human dopaminer-
gic neuron dataset (GSE20141 & GSE24378). For each dataset,
we downloaded the raw intensity values by using the R li-
brary, GEOquery, performed a Robust Multi-array Average
transformation on probe-level with function RMA of R li-
brary affy, and computed the expression by gene by using
the mean of expression probe measures. We took the me-
dian normalized expression value across replicates as the
single expression gene measure.

5) RNA sequencing data profiling of 14 samples coming from
of 7 iPSC derived DaN (two replicates by cell line) and FACs
sorted by using a combination of surface markers (CD133, a
stem/progenitor marker; CD56, a nerve cell adhesion mole-
cule; CD15 and CD184, NSC markers; and CD24, a cell differ-
entiation antigen) derived from following subjects: (1) man
with a five-year history of PD (PD) and heterozygous for
GBA-N370S variant, (2) his monozygotic twin brother with-
out PD (Non-PD), (3) one sporadic PD patient (Sporadic-PD)
and (4) four control subjects (C) (GSE62642) (25). We used the
FPKM values as expression measures generated by this
study (25).

Method to compare the transcriptional profiles

We discarded protein-coding genes that were not expressed in
one of set used to perform these comparisons: 7,305 protein
coding genes were used in the comparisons for 162 tissues/cells.
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Expecting that the distributions of gene expression level were
different between sets (array, RPKM, FPKM), we applied a non-
parametric approach by ranking the genes according their ex-
pression level in each tissue/cell. From this rank matrix (row:
tissue/cell, row: gene), we computed the Euclidean distance ma-
trix between tissue/cell and performed clustering analyses by
using Ward’s hierarchical approach.

We noticed that samples cluster according to their tissue
specificity and not just according to tissue set. For example, the
brain tissues described within GTeX cluster with BrainSpan tis-
sues, rather than with the non-brain tissues within GTeX.

Differential expression analyses

Differential expression analyses were performed with DESeq2
(version 1.6.3) (26) from the number of reads per protein coding
gene using a multifactorial design that included the sex and age
of individuals.

Phenotypic linkage network

We updated the general PLN developed by Honti et al. (27) by in-
tegrating two new co-expression dataset based on RNA se-
quencing experiment coming from brainspan project (52) and
GTEx project (51). Each genomic dataset was evaluated on its
ability to predict the similarity of phenotypes observed follow-
ing disruption of these genes’ unique orthologues in the mouse
(Supplementary Material, Table S4). From this evaluation on a
unique phenotypic benchmark, we scaled each individual data-
set and combined their information into a single gene-pair mea-
sure. To remove spurious associations and increase
computability, we considered only the 1,000,000 highest
weighted gene links.

Testing for functional clustering in PLN

To evaluate whether the DE gene set demonstrated unusually
similar functionality, we examined the extent to which those
genes clustered within the PLN. For this, we compared the sum
of weighted links observed between these genes as compared to
an equal number of random genes. To avoid detection of a gene
cluster that reflected only a set of genes expressed in iPSC
DaNs, we matched the randomized gene on CDS length, on de-
gree in the PLN and on FPKM values to the set of DE genes.
Specifically, within the PLN, we observed a median node degree
of 117 (mean 175) for the 168 DE genes while our matched rand-
omised gene set had a median of 118 (mean 176). For the clus-
tering, we observed 330 links amongst the 168DE but only 177
links on average amongst random gene sets matched for degree
and CDS length.

Generation of random set of read counts

We simulated transcriptome profiles for 10,000 genes set for
three cases and three controls. We generated read counts for 10
million genes from a negative binomial distribution where pa-
rameters m and / were sampled from the joint distribution of es-
timates from observed counts. We performed these simulations
by using the R framework NBSim developed by Zhou et al. (53),
http://imlspenticton.uzh.ch/robinson_lab/edgeR_robust) et al.
with following options:

foldDiff ¼ 3

nTags ¼ 1000000

add.outlier ¼ TRUE

outlierMech ¼ “S”

pOutlier ¼ 0.01

drop.extreme.dispersion ¼ 0.1

The parameters were selected to get similar QQ plot profiles
compared to QQ plot profiles of the nominal P-value of differen-
tial expression analyses performed with DESEq2 on protein cod-
ing genes read counts of 3 sorted control lines versus 3 sorted
LRRK2-G2019S lines.

We then generated a random set of read counts for each
gene by matching the original gene set on the mean of counts
computed on six sorted lines used in our differential expression
analyses.

Enrichment test for differentially expressed genes
whose orthologues’ disruption in the mouse yields an
abnormal phenotype

To perform an enrichment test in orthologous mouse genes
with phenotype annotation (e.g. x genes with y annotations),
we considered all orthologous genes with a mouse phenotype
and compared the number of DE genes with a specific mouse
phenotype annotation to the number of random genes with
same phenotype annotations, generated by considering the
same number of de genes (among DE genes with mouse annota-
tions) and by matching the original gene set for (1) the CDS
length and gene expression (2) the expression level estimated in
FPKM measure in control purified lines.

Identification of genes for which their expression level is
the most impacted in different CMAP instances by the
same perturbagen

To identify the genes among DE genes for which their expres-
sion level were the most impacted in the same way in different
CMAP instances by the same perturbagen, we used the matrix
of rank of CMAP. In this matrix the CMAP instances are ranked
according to their connectivity score for each probe set. We
identified the top 1000 of up-regulated and down-regulated
probe. After mapping probe set to gene, we considered that
gene was up (or down)-regulated when all its probes in all in-
stances were up (or down)-regulated.

Differential expression analyses of a public microarray
transcriptional dataset assayed on non-purified iPSC-
derived DaNs cell lines

To evaluate the effect of the purification step to remove the
noise caused by cellular heterogeneity on the differential ex-
pression gene results in the context of iPSCs derived DaNs cells
populations, we compared our results with those of a previous
gene microarray transcriptional study (GSE43364) (23) done on
iPSC-derived unpurified DaNs cell lines. We performed differen-
tial expression analyses between three lines carrying on LRRK2-
G2019S mutation (L1.1Mut, L2.3Mut, L2.2Mut) and three lines
corrected for LRRK2-G2019S mutation, isogenic line of L1.1Mut,
L2.3Mut, L2.2Mut (L1.1GC2, L2.3GC, L2.2GC) by using the limma
R bioconductor package. The full R code used is given in the
Supplementary Material, Note S3. The full differential
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expression results are represented in the Supplementary
Material, Data S3. 85 genes was associated with nominal P-val-
ue< 1%.

Accession number
The SNP datasets and the Illumina HT12v4 transcriptome
array results have been deposited in the Gene Expression
Omnibus (GEO) under accession number SuperSeries
GSE77664: the SNP data series is GSE77662; the expression data
series is GSE77663.

Supplementary Material
Supplementary Material is available at HMG online.
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