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Complex symbiotic interactions at the surface of host epithelia govern most encounters
between host and microbe. The epithelium of the gut is a physiologically ancient struc-
ture that is comprised of a single layer of cells and is thought to possess fully developed
immunological capabilities. Ciona intestinalis (sea squirt), which is a descendant of the last
common ancestor of all vertebrates, is a potentially valuable model for studying barrier
defenses and gut microbial immune interactions. A variety of innate immunological phe-
nomena have been well characterized in Ciona, of which many are active in the gut tissues.
Interactions with gut microbiota likely involve surface epithelium, secreted immune mol-
ecules including variable region-containing chitin-binding proteins, and hemocytes from a
densely populated laminar tissue space. The microbial composition of representative gut
luminal contents has been characterized by molecular screening and a potentially rele-
vant, reproducible, dysbiosis can be induced via starvation. The dialog between host and
microbe in the gut can be investigated in Ciona against the background of a competent
innate immune system and in the absence of the integral elements and processes that are
characteristic of vertebrate adaptive immunity.
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INTRODUCTION
Because of their phylogenetic position relative to vertebrates,
deuterostome invertebrates (Figure 1) are compelling models for
studies of immunity. Of the representative deuterostome inver-
tebrates, echinoderms, which include sea urchins and starfish,
diverged prior to chordates and have proven to be highly infor-
mative models in which to examine innate immunity (Rast and
Messier-Solek, 2008; Messier-Solek et al., 2010). Protochordates
are comprised of invertebrate chordates such as sea squirts (Uro-
chordata or Tunicata) and amphioxus (Cephalochordata). These
species, which share certain developmental features with verte-
brates and possess competent innate immunity, diverged prior to
the origins of the vertebrate adaptive immune system.

Ciona intestinalis (sea squirt), which has been the focus of
our recent efforts, is relatively easy to maintain and propagate
(Figure 2) at room temperature and continues to serve as a highly
informative model for studies of animal development (Katz, 1983;
Meinertzhagen and Okamura, 2001; Canestro et al., 2003; Shi et al.,
2005; Baghdiguian et al., 2007; Davidson, 2007; Sasakura et al.,
2009) and immune defense (Fujita et al., 2004; Melillo et al., 2006;
Parrinello, 2009; Sasaki et al., 2009; Zucchetti et al., 2009). As a
model of animal development (Satoh and Levine, 2005; Lemaire
et al., 2008; Christiaen et al., 2009) Ciona has proven invaluable
in: (1) unraveling details of Hox-gene influences on development
(Ikuta et al., 2010), (2) mapping pathways in cardiac develop-
ment (Davidson, 2007), (3) defining the roles of cis-regulatory
networks (Kubo et al., 2010), (4) modeling the effects of maternally

derived epigenetic silencing (Sasakura et al., 2010), and (5) defin-
ing the evolution of the cell death machinery (Terajima et al.,
2003; Baghdiguian et al., 2007). Many of the involved processes
utilize signaling pathways that are relevant to studies concerning
immunity and immune homeostasis.

Deuterostome invertebrates possess homologs of a large num-
ber of vertebrate innate immune receptors, effectors, and their
corresponding regulatory elements (Rast and Messier-Solek, 2008;
Messier-Solek et al., 2010). The most surprising finding regard-
ing immunity in sea urchin and amphioxus is the expansion
of multigene families encoding homologs of different innate
immune pattern recognition receptors (PRRs), including: Toll-like
receptors (TLRs), scavenger receptors, and leucine-rich receptor
(LRR)-containing intracellular sensors such as nucleotide-binding
oligomerization domain-like receptors (NLRs; Rast et al., 2006;
Holland et al., 2008). Novel evolutionary constraints most likely
led to the lineage-specific expansions and functional divergence of
the various gene families encoding these molecules in amphioxus
and sea urchin. Detailed sequence analyses have revealed exam-
ples of parallel or convergent evolution relating to the expan-
sions (Leulier and Lemaitre, 2008). Very little sequence similar-
ity among presumed homologs (i.e., lack of one-to-one orthol-
ogy) is evident between these receptors in invertebrate deuteros-
tomes and their vertebrate counterparts. Innate immune genes
in Ciona have not undergone the expansions seen in amphioxus
and sea urchin (Dehal et al., 2002; Hughes and Friedman,
2005).
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FIGURE 1 | Simplified cladogram of animal phylogeny emphasizing

chordates (shaded gray) relative to other animal forms. Note that only
two protochordate taxa are shown, and all are exclusively marine animals.

INNATE IMMUNITY AND INFLAMMATION IN CIONA
Comparative biological studies have revealed that most mul-
ticellular life is protected by conserved mechanisms of innate
immunity which include: barrier defenses [i.e., host (mucosal)
epithelium] and the associated non-specific secretory compo-
nents (e.g., antibacterial peptides), PRRs, which are present on
the surface and within the cytoplasm of phagocytes and other
host cells, various phagocyte effector mechanisms (e.g., reactive
oxygen species, induced cell death), and different enzymatically
catalyzed cascades involved in clotting, melanization, and com-
plement activation (Figure 3; Lavelle et al., 2010; Maldonado-
Contreras and McCormick, 2011). A variety of innate immune
genes and mechanisms have been identified in Ciona (Parrinello,
2009), which based on histological and molecular characteriza-
tions have evolved complex barrier defense strategies. Challenge
with microbe-associated molecular patterns (MAMPs) such as the
Gram-negative lipopolysaccharide (LPS) induces inflammatory-
like reactions that are characterized, in part, by tumor-necrosis
factor (TNF)-like gene expression and cell recruitment to various
body compartments (Di Bella and De Leo, 2000; Melillo et al.,
2006; Parrinello et al., 2007, 2008, 2010; Cammarata et al., 2008;
Bonura et al., 2009). These responses can recruit a variety of cell
types (Parrinello et al., 1996; Arizza and Parrinello, 2009; Arizza
et al., 2011) and induce a number of immunological phenom-
ena (Smith and Peddie, 1992; Melillo et al., 2006; Parrinello et al.,

2007), including the expression of characteristic innate immune
receptors (Shida et al., 2003; Parrinello, 2009; Sasaki et al., 2009;
Dishaw et al., 2011). Although a variety of different MAMPs induce
Ciona TLRs, LPS does not activate TLR expression directly, as with
TLR4 in vertebrates, suggesting the presence of alternative LPS sen-
sors (Sasaki et al., 2009). A repertoire of innate effectors [e.g., TLRs,
TNF, complement components, and the protochordate-specific
variable region-containing chitin-binding proteins (VCBPs)] are
expressed in the gut of Ciona (Marino et al., 2002; Sasaki et al.,
2009; Skjoedt et al., 2010; Dishaw et al., 2011) and could play essen-
tial roles in the stable maintenance of host–microbial interactions
(see below).

Documentation of these types of functional effects is critical
to the design of experimental approaches for characterizing the
interactions of immune receptors with gut microbiota. However,
enumerating gene homologs and defining their expression pat-
terns is one thing, understanding their dynamic interactions in a
cellular and molecular context is a daunting challenge in inverte-
brate systems, particularly those that inhabit marine and aquatic
environments. Despite a number of potential shortcomings, Ciona
has the potential to reveal conserved mechanisms sustaining the
evolution of host–microbial interactions (see below). Experimen-
tal manipulation of host–microbial interactions at the gut epithe-
lial interface is critical to such studies and in order to approach
these questions, it is essential to first understand the Ciona gut as
both a physical barrier and as an immunological organ.

AN INVERTEBRATE CHORDATE GUT MODEL
Ciona is a highly successful, cosmopolitan solitary tunicate that has
adapted to living in diverse marine environments (Caputi et al.,
2007). Other tunicates include both colonial and solitary forms
and spend their adult lives as sessile, filter-feeding, organisms.
In addition, a few pelagic forms have been identified (Denoeud
et al., 2010; Nishida et al., 2010). Because the tunicate feeding
strategy involves siphoning seawater, the gut in Ciona is in contin-
uous contact with both dietary and seawater microbiota where in
addition to its essential physiological role, it acts as both a phys-
ical barrier and site of continuous immunological interaction.
An immunocompetent gut, which includes mucosal immunity
mediated by surface epithelium, is present even in the simplest
metazoans (Bosch et al., 2009). In mammals, proper develop-
ment of gut mucosal immune tissues is dependent on the proper
timing and colonization of the gut by microbial communities
(see below); however, details governing these events remain to
be defined (Cebra et al., 1998; Cebra, 1999; Hooper and Gor-
don, 2001; Mazmanian et al., 2005; Edelman and Kasper, 2008;
Kanther and Rawls, 2010). Intensive studies in comparative mod-
els, such as Ciona, have the potential for shedding light on the
basic biology of gut immune homeostasis and in turn, may reveal
basic mechanisms of dysfunctional gut immunity [e.g., inflam-
matory bowel diseases (IBD) in mammals]. As an initial step in
adapting a urochordate as a new model system for understand-
ing gut immune homeostasis and mucosal immunity, we have
combined cellular, molecular, and microbiological approaches to
characterize the Ciona gut and its microbiota. At this prelimi-
nary stage of investigation, basic aspects of complex microbial
community dynamics can be identified that mirror many of the
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FIGURE 2 | (A) Ciona intestinalis is a solitary urochordate that typically
grows in close proximity on suitable substrates. (B) Ciona is relatively
translucent and the gut can be visualized through the tunic (overlay
depicts the branchial basket and gut; solid arrows depict water flow;
dotted arrows indicate two routes of flow). (C) The entire gut can be
readily dissected. (D) Juveniles are attracted and attach to standard
tissue culture plastic plates. (E) Ciona can be reared to adulthood in a

laboratory environment (Cirino et al., 2002; Joly et al., 2007). Ciona
adults are hermaphrodites and release sperm and egg into the water
column. Typically, fertilization leads to rapid development and hatching of
swimming tadpole larva. After settlement, the animal undergoes
metamorphosis into a permanent, sessile, filter-feeding lifestyle;
colonization of the gut by microbes is likely immediate. Images (D,E) are
courtesy Dr. Paola Cirino.

core features and symbiotic intricacies of host–microbe interac-
tions that are recognized in the mammalian gut ecosystem (Savage,
1977; Hooper and Gordon, 2001; Willing et al., 2011). The interac-
tions between host and gut microflora are not simple, but instead
involve complex mutualisms (Bischoff, 2011) that ultimately help
govern immune development, and the establishment and main-
tenance of immune homeostasis (Artis, 2008; Chung and Kasper,
2010; Hooper and Macpherson, 2010).

COMPLEX BIOLOGY OF THE CIONA GUT
Ciona filters microbe-rich seawater through a modified pharynx
where ciliated cells push food particles into a gut, which is divided
into esophagus, stomach, mid-gut, and hind-gut; the latter two are
referred to collectively as intestines. The esophagus connects the
branchial basket to the stomach in which both cilia and mucous
glands are highly developed for the efficient transfer of foods.
The stomach epithelium forms many cilia-rich ridges and grooves
and is composed of at least two major epithelial cell types, as
well as an undifferentiated cell population (Burighel and Cloney,
1977). The stomach epithelium, which is presumed to be the site
of most digestive enzyme secretion, contains secretory cells, and
is coated by a thin layer of mucus. The mid-gut is distinguished

by an interior typhlosole that runs the entire length and is rich
in testicular acini. Three types of largely granular epithelial cells,
absorptive, mucous, and large round (or elliptical), define the mid-
gut. Glycogen stores are concentrated in the mid-gut and to a lesser
degree in the stomach. Energy is stored as both fat and glycogen
(Yonge, 1925). The sexual ducts exit the atrial siphon adjacent
to the hind-gut. Although absorption is most prominent in the
mid-gut, diffusion of dissolved substances occurs throughout the
alimentary track. The Ciona gut demonstrates complex epithelial
cell renewal traits (Ermak, 1981), which are of particular impor-
tance to several aspects of mucosal physiology, including immune
function. The highly developed and compartmentalized stomach
and distinct intestinal region in Ciona morphologically resemble
that of more recently diverged chordates (Millar, 1953; Burighel
and Cloney, 1977).

COMPLEX MICROBIAL COMMUNITY DYNAMICS DEFINE THE
CIONA GUT
Details surrounding the relationships between filter-feeding inver-
tebrates and the microbial communities colonizing their guts are
lacking but may be broadly relevant to gut immunity in vertebrates
for determining: (1) the role of diet in gut microbial ecology, (2)
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FIGURE 3 | Simplified schematic of mucosal immunity emphasizing

barrier defense strategies of vertebrates and Ciona. Barrier defenses
(across the epithelium) are governed by innate immune phenomena
characterized by the secretion of mucus, antimicrobials, and soluble
immune molecules. On the basolateral surface and deeper, host innate
immunity consists of various proteolytic-coagulation cascades for wound
healing and microbe trapping, as well as complement defense pathways.
Distinct phagocytes populate this area as well other cell types [e.g.,
dendritic cells (DC) in vertebrates]. Gut DCs sample luminal antigens and
present them to the adaptive immune system which includes gut-specific
lymphocytes of both T and B cell lineages. This results in the maturation of
immunity and the recruitment of additional cell types. A parallel, more

simplified, system in Ciona has evolved to also include barrier defenses
across distinct epithelial lineages in the gut and the secretion of immune
mediators, including antimicrobial peptides, into the lumen. In the
basolateral side, distinct populations of hemocytes, including granular
amoebocytes, populate the laminar connective tissues. Immunological
competence in this area is mediated by coagulation/immobilization
cascades and microbe trapping, complement defenses, distinct antigenic
sampling via PRRs, secretion of pro-inflammatory signals, and recruitment
of specialized hemocytes. However, as opposed to the vertebrate gut, the
Ciona gut generates immune amplification within an innate immune
context and does not couple to a distinct, more specialized, system such
as adaptive immunity.

the nature of host selection of gut microbiota, and (3) the role
of microbiota in gut immune homeostasis. These features of gut
physiology are essential to our defining of homeostasis, even if
a model organism such as Ciona does not share all the innate
receptor orthologs found in mammals. Because the composition
of gut microbiota is relevant to host physiology for a variety of
reasons not limited to their metabolic output, we suspect that the
gut microbial communities in Ciona will not simply reflect diet
and/or environmental availability, but will reveal species-specific

communities that determine or influence various aspects of overall
immune competence.

Gut bacteria from four Ciona populations (Woods Hole, MA,
USA; San Diego and Monterey Bay, CA, USA; and Naples, Italy)
have been partially sampled using PCR-amplified 16S ribosomal
genes recovered in small clone libraries derived from whole gut
homogenates (and/or recovered fecal matter). The 16S products
were then characterized by sequencing of individual clones as well
as by screening of restriction fragment length polymorphisms
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(Figure 4). A fraction of the recovered microflora (∼25 bacte-
rial species) was cultured successfully. The Ciona gut revealed
distinct communities of bacteria that were affected by both diet
and environment, including species of metabolic significance
(e.g., Chitinophaga). Starvation induced reproducible dysbiosis
(i.e., disruption or displacement of microbial communities) and
revealed bacterial families and genera that were conserved across
populations and between two Ciona species (e.g., Gammapro-
teobacteria such as Vibrio sp. and Shewanella sp., as well as various
Oceanospirillales genera; Dishaw, unpublished observations).

The successful recovery, identification, and growth of native gut
bacteria from wild Ciona adults provides the basic background to
inoculate the developing gut of juveniles grown in controlled lab-
oratory environments (e.g., under semi- or sterile conditions or
colonized by complex mixtures of microbes). Changes in com-
munity structure subsequent to experimental manipulation can
be monitored using real time quantitative PCR. These experi-
ments, which currently are in progress, have the potential to define

the onset and normal timing of microbial colonization in the
development of the Ciona gut in general, and more specifically,
characterize how this interaction affects the maturation of the
hemocyte-rich laminar spaces (i.e., immune tissues). Determin-
ing how interactions with microbiota affect maturation of the gut
immune tissues will utilize dysbiosis techniques including antibi-
otic treatments and/or development of juveniles under germ-free
or semi-germ-free conditions. In this regard, two features of the
Ciona model are particularly attractive: (1) it is relatively easy
to produce and maintain hundreds of Ciona juveniles and (2)
transparency of tissues makes it feasible to visually characterize
gut development and gauge luminal content (Figure 2) and make
possible the tracking of host–microbe interactions (e.g., the use of
labeled bacteria) from early in development through adulthood.

GUT MICROBIAL IMMUNE INTERACTIONS
The circulatory system of Ciona is open and continuous with his-
tologically defined blood lacunae. Gut-associated lacunae, which

FIGURE 4 | A general approach to assess gut microbial communities in Ciona. The technique, albeit labor intensive, provides high-grade sequence-based
identifications.
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we have termed the Ciona gut lamina propria (Dishaw et al., 2011),
share blood cells between the various tissue spaces and are richly
infiltrated by a variety of hemocyte types. A complex developmen-
tal maturation of this subepithelial lamina that likely is influenced
by luminal antigen exposure is indicated. Notably, the hemocytes
are not restricted to the gut as morphologically indistinguish-
able cell types can be detected in other parts of the body. Adult
Ciona injected with MAMPs (e.g., in the tunic) can be induced
to generate localized inflammatory responses, which include an
active recruitment of these and other immunocompetent cells
(Di Bella and De Leo, 2000; Pinto et al., 2003; Bonura et al.,
2009; Parrinello et al., 2010). In this regard, variable (V) region-
containing chitin-binding proteins (VCBPs), which are expressed
by distinct gut epithelial cells in amphioxus (Cannon et al., 2002),
also have been identified in Ciona (Figure 5). VCBPs have been
shown to be secreted by discrete cells of the stomach and intesti-
nal epithelium into gut lumen where they interact with bacteria
via their V-type immunoglobulin domains (Dishaw et al., 2011).
The functional relevance of the VCBP chitin-binding domain
remains unclear. Ciona granular amoebocytes, which also express
VCBPs, are present in both blood and the laminar spaces of the
gut. In vitro experiments have demonstrated that granular amoe-
bocytes, recovered from blood, recognize (phagocytose) bacteria
coated with VCBPs (Dishaw et al., 2011) in vitro. We have hypoth-
esized that the morphologically indistinguishable cells found in
the lamina propria function in an equivalent manner and play a
major role in the dynamics of gut immunity in both Ciona and
amphioxus. This hypothesis is supported further by the finding
that native VCBPs bind luminal bacteria (Dishaw et al., 2011) and
it is entirely likely that VCBPs enhance phagocytic recognition of

FIGURE 5 |Transverse section of stomach in Ciona depicting.

(A) Characteristic folding of epithelium that is not seen in the intestines. (B)

Higher magnification view [of (A)] emphasizing the abundance of laminar
tissue blood hemocytes. (C) Antibody staining for VCBP-C in untreated
Ciona. (D) Extensive upregulation of VCBP expression in animals challenged
with E. coli lysates. Scale bar: 100 μm in (A) and 50 μm in (B–D);
Hematoxylin and eosin staining in (A,B) and 3,3′ diaminobenzidine (DAB)
substrate detection in (C,D); L, lumen; B, blood; and E, epithelium.

gut bacteria coated with VCBPs that traverse epithelial barriers
(e.g., in instances of epithelial damage). An emerging functional
role for VCBPs places them in the broader context of our hypoth-
esis by suggesting that some innate receptors, secreted into the gut
lumen, may be serving still undefined roles as symbiosis factors.
Penetration of the mucosal barrier would trigger an immuno-
logical event by the tagged (i.e., opsonized) microbe to protect
the integrity of self (i.e., phagocytosis, inflammation, and cell
recruitment). Broad analogies can be drawn between this process
and immune recognition in the vertebrate mucosal environment,
albeit involving different effectors. MAMP challenge across the gut
mucosal barriers also may recruit cells from distant tissue spaces;
however, this may be unnecessary since the subepithelial lamina
is densely populated with many hemocyte types along the gut
length (Figure 5). Several preliminary observations (Dishaw, De
Stantis, and Pinto, unpublished) suggest that lamina-associated
gut hemocytes from Ciona may be exposed to luminal contents
(e.g., through injury of epithelium or exposure to factors that affect
epithelial tight junctions). Electron microscopic analysis will be
critical to demonstrate if hemocytes actively cross the epithelium
and interact with gut microbiota and if luminal antigens enter the
laminar spaces.

CONSERVED SENSORS IN HOST–MICROBE INTERACTIONS
The extent to which innate receptors are expressed by gut epithe-
lium and the functional implications of their interaction with
symbiotic or pathogenic gut microbes, as well as virulence fac-
tors, are of central interest. Innate immune receptors in verte-
brates, primarily TLRs, are expressed selectively in a polarized
fashion on intestinal epithelial cells (IECs) of the small and large
intestines (Abreu, 2010). TLRs provide indirect signals to the adap-
tive immune system by first providing innate immune signals to
the underlying (basal lamina) tissues. In Ciona, the expression,
function, and regulation of a variety of immune molecules (Azumi
et al., 2003; Shida et al., 2003), including antimicrobial peptides
(Fedders and Leippe, 2008), TLRs, Gram-negative binding pro-
teins (GNBPs), lipopolysaccharide binding protein (LBP), TNF,
MBL, complement protein C3, as well as VCBPs, are of potential
interest. Ciona responds to bacterial ligands in a manner con-
sistent with the patterns of expression of TLRs and other PRRs
in gut tissues, resulting in the induction of pro-inflammatory
molecules, e.g., TNF (Sasaki et al., 2009). Whereas Ciona only
has two TLRs, both are expressed in distinct locations along
the gut and along with other innate immune molecules likely
play a significant role in discriminating among gut commen-
sals and sensing pathogens (Sasaki et al., 2009; Abreu, 2010).
The presence of only two TLRs, which interact with more than
one ligand, could be seen as a disadvantage of the Ciona sys-
tem over mammals, in which multiple TLRs discriminate among
distinct ligands. Multi-functional PRRs, such as the TLRs, may
be coupled to downstream pathways which may serve to better
discriminate ligands; such pathways could differ significantly in
Ciona and investigations in this system will help reveal how var-
ious organisms discriminate among TLR ligands. Under normal
conditions, the gut in Ciona likely maintains a state of balance
(i.e., homeostasis) between tolerance and protection through host
epithelial–microbe interactions, as has been seen in vertebrates.
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However, most such interactions are designed to sustain ancient
symbiotic relationships and are not necessarily immune-restricted
(Hooper and Macpherson, 2010). Innate receptors play signif-
icant roles in these basic processes that govern homeostasis
and studies that define conserved mechanisms governing host–
microbial interactions in the gut are of fundamental biomedical
interest.

DISCUSSION
The animal gut is host to a massively populated dynamic ecosys-
tem of microbes (Savage, 1977) with enormously complex anti-
genic diversity. Such gut microbial communities in mammals
are linked intimately to the maturation and development of
mucosal immunity and represent an important determinant of
health and disease (Mazmanian et al., 2005; Fujimura et al.,
2010; Hooper and Macpherson, 2010). A particularly complex
physiological challenge is posed to the mucosal immune sys-
tem of the host, which must differentiate distinct populations
of commensal (i.e., possibly useful) microorganisms from patho-
genic communities. Specifically, some symbionts are recognized
and tolerated, and subsequently form a cooperative system in
the gut, whereas pathogens, which in many cases are invasive,
are not well tolerated and are cleared. Traditional views of gut
immunity are complicated further by numerous commensals
that although beneficial, can induce a pathogenic state in the
host (i.e., pathobionts, Round and Mazmanian, 2009). Break-
down of commensal-immune suppression and tolerance mech-
anisms can lead to disruptions of homeostasis and in turn to
inflammation, resulting in a range of distinct clinical pheno-
types that define acute and/or chronic IBD (Chung and Kasper,
2010; Nell et al., 2010). Details of how and why such changes
in the gut ecosystem can lead to disease manifestations remain
largely unknown (Bischoff, 2011). Although chronic inflamma-
tion in mammals involves a variety of gut-specific lymphocytes
(i.e., adaptive immunity), gut microbial recognition, and immune
homeostasis largely represent an innate immune phenomenon,
for which the epithelium is primarily responsible (Artis, 2008).
Details of the microbial and innate immune dialog within the gut
(e.g., across the epithelium), defined exclusively in terms of innate
immunity (i.e., in the absence of the adaptive immune system),
remain largely unknown and underscore the unique potential of
Ciona as a model system for investigating gut microbial–immune
interactions.

Gut microbiota also appear to play a major role beyond the gut
immune environment extending into a range of host physiologi-
cal responses (Bischoff,2011; Maslowski and Mackay,2011),which
include but are not limited to metabolomics and behavior (Sekirov
et al., 2010). In addition to their roles in host nutritional physi-
ology, disease protection, and pathogenesis, symbiotic microbial
interactions in the gut may be linked to the phylogenetic origins of
vertebrate adaptive immunity, which evolved through the recruit-
ment of pre-existing genetic elements (Flajnik and Kasahara, 2010;
Litman et al., 2010) and the spontaneous acquisition of special-
ized components of the recombination machinery (Dreyfus, 1992;
Agrawal et al., 1998). The selective pressures that drive these events
appear to have led to more than one form of molecular innova-
tion (Cooper and Alder, 2006) and remain elusive (Matsunaga

and Rahman, 1998). It has been proposed that selective pressures
were maintained by an increasing need to reduce collateral dam-
age caused by persistent or chronic infections (i.e., the toxic index
hypothesis; Usharauli, 2010), as well as by innovations of strategies
to manage increasingly complex symbiotic communities of the gut
(McFall-Ngai, 2007; Lee and Mazmanian, 2010), which in turn
also drove innovation in highly specialized cell types (Rescigno
and Di, 2009; Chow and Mazmanian, 2010). The two theories
may not be mutually exclusive if both phenomena intersect in the
gut, which evolved as a major factor in adaptive immune matu-
ration (Cebra, 1999; Ivanov et al., 2009; Atarashi et al., 2011). A
variety of gut-specific adaptive immune mechanisms help main-
tain microbial–immune homeostasis (Hooper and Macpherson,
2010; Feng and Elson, 2011), yet the effects on host physiology
and immunity in distant parts of the body by the resident gut
microbiota (Clarke et al., 2010; Lathrop et al., 2011; Maslowski and
Mackay, 2011) support the existence of an ancient mutualism.

The animal gut has evolved to tolerate the presence of dense
communities of commensal residents; however, the majority of
this microbiota remain invisible to the majority of the gut immune
system on the basal laminar surface, in part due to physical bar-
riers such as mucus (Figure 3). The epithelium has evolved to
become a fully functional immune system that expresses various
innate receptors and secretes immune-related molecules into the
gut lumen (Muller et al., 2005; Duerkop et al., 2009; Marchiando
et al., 2010). However, details regarding epithelial recognition and
tolerance of luminal bacteria remain largely unknown (Rautava
and Walker, 2007; Marchiando et al., 2010), e.g., tolerance to
endotoxin is likely governed at the earliest exposure in devel-
opment (Lotz et al., 2006). It has been suggested that immune
systems, as defined currently, evolved first to manage complex
symbiotic relationships, while the preservation of “self” became
an inevitable adaptation (Bosch and McFall-Ngai, 2011). By this
account, mechanisms (later acquired by innate immunity) that
govern host–microbial interactions are of ancient phylogenetic
origins.

Investigations in Ciona, which are focused on the interaction
of microbes at the epithelial surface, may help reveal: (1) if certain
bacterial species effect barrier function (Lyczak, 2003; Ohland and
Macnaughton, 2010); (2) if the degree of microbiome complex-
ity influences epithelial response to infections (Mans et al., 2009);
(3) how polarized expression of PRRs help maintain microbial
recognition, immune integrity, and homeostasis; (4) how bacte-
ria modulate intercellular tight junctions, which are key to barrier
integrity (Turner, 2009); and (5) how secretory pro-inflammatory
molecules, like TNF, affect barrier integrity by increased intercellu-
lar permeability. Much like mammals, rich microbial communities
of distinct phyla and genera are selected in Ciona from an excep-
tionally vast range of choices of dietary and seawater microbes.
Various commensal bacteria likely have co-evolved with the species
and may have become integral to nutritional acquisition and gut
homeostasis. As such, Ciona offers a unique opportunity to study
and characterize not only the molecular events surrounding gut
microbial engagement with mucosal immunity but to define the
symbiotic ecosystem required for gut homeostasis and thereby
host well-being in a controlled, systematic manner using a novel,
tractable model system.
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