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Abstract: Research on urban thermal environments based on thermal comfort can help formulate
effective measures to improve urban thermal and human settlement environments, which is of
great significance for improving urban quality, urban climate change adaptation, and sustainable
development. Taking 344 municipal administrative districts in China as study areas, the Universal
Thermal Climate Index (UTCI) of each city in the last 20 years was calculated to evaluate thermal
comfort. We then analyzed the thermal comfort and spatiotemporal heterogeneity of each city during
a typical heat wave. Finally, the driving forces of the potential socioeconomic, natural, and landscape
factors influencing thermal comfort were analyzed using geographic detectors. The results show that
the thermal comfort index had similar spatial patterns and differentiation characteristics in different
years, and the interannual variation was not obvious. Cities in the typical heat wave period were
mainly distributed in East and Northwest China. The driving factor in the contribution rate of the
same index in different years was basically the same and was not affected by the change in years, and
the highest contribution rate was the natural factor.

Keywords: thermal environment; urban thermal comfort; spatial heterogeneity; geographic detector;
China

1. Introduction

Changes in the urban thermal environment not only affect urban air quality, energy
consumption, and ecosystem process evolution, but also seriously affect the health status
of residents [1,2]. Especially in the scenario of global warming, extreme high-temperature
events occur frequently in cities, and the morbidity and mortality of residents increase [3–6].
Changes in the thermal environment can directly or indirectly affect the health status of
residents. However, increasing the frequency and intensity of extreme weather events, such
as high temperatures, leads to increased exposure to high temperatures, which directly
affects human health [7,8]. According to research projections, the rise in global warming
from 1.5 ◦C to 2 ◦C will lead to the death of more than 279,000 urban residents due to high
temperatures every year in China [9]. However, an increase in adverse meteorological con-
ditions leads to the deterioration of air quality, which indirectly affects human health [10].
For example, under the forecast scenario of typical concentration path 4.5 (RCP4.5), by the
middle of the century, the global temperature rise will increase the per capita exposure
concentration of PM2.5 and ozone by 3–4% in China, and the number of premature deaths
resulting from this increase is expected to be approximately 20,000 per year [11]. Therefore,
in the process of continuous urbanization, clarifying the change law of the urban thermal
environment and formulating corresponding measures to improve the quality of the urban
thermal environment is of important theoretical and practical significance.

Int. J. Environ. Res. Public Health 2022, 19, 5683. https://doi.org/10.3390/ijerph19095683 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph19095683
https://doi.org/10.3390/ijerph19095683
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0002-9014-5259
https://doi.org/10.3390/ijerph19095683
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph19095683?type=check_update&version=1


Int. J. Environ. Res. Public Health 2022, 19, 5683 2 of 20

One important way to evaluate the urban thermal environment is through people’s
subjective feelings. Compared with direct evaluation of the thermal environment by air
temperature or surface temperature, the thermal comfort index can better reflect the quality
of urban open spaces and outdoor attraction to people [12,13]. The factors affecting thermal
comfort mainly include urban characteristics, climate, and the subjective human thermal
state. Urban characteristic elements can be further divided into urban geometric, landscape,
natural, social, and economic elements [14,15]. In addition, the influence of climate on
outdoor thermal comfort is evident. For example, air temperature has been proved to be
the most important climate factor [16–18]. In the subjective thermal state of human beings,
different lifestyles, behaviors, cultures, tolerance, and adaptability may lead to different
views of thermal comfort [14,19]. These studies have provided objective and reliable
assessments of urban thermal environments. However, the time and space scales need to
be further expanded, and more detailed studies are required to obtain more comprehensive
results. In addition, multi-factor analysis and dominant factor identification are seldom
used in the analysis of the factors influencing thermal comfort.

Previous studies on thermal comfort can be roughly summarized in the following
three ways: (1) The applicability of the outdoor thermal comfort index can be explored
and the index modified [20–22]. The main purpose of this type of research is to provide
scientific guidance for the selection and application of indicators and realize the localization
application of indicators. (2) Spatial distribution and factors influencing thermal comfort
are analyzed. For example, based on thermal comfort evaluation results, the influencing
factors of its temporal and spatial variability are further analyzed to formulate strategies for
improving outdoor thermal comfort and the thermal environment [14,15,23]. At present,
climate, human activities, and urban characteristics are generally considered to be important
factors affecting outdoor thermal comfort [24–26]. (3) Exploring the impact of thermal
comfort on human activities or urban outdoor space utilization is also an important research
direction [27–29].

Studies on outdoor thermal comfort mostly establish outdoor thermal comfort indi-
cators to represent the correlation between the outdoor environment and human thermal
sensation, and to evaluate and predict human thermal sensation in a specific outdoor
climate [29–32]. In 2000, the Universal Thermal Climate Index (UTCI) was proposed. This
index adopts a multi-node model and considers a variety of meteorological variables (such
as air temperature, mean radiation temperature, wind speed, humidity, etc.), in addition
to environmental factors, human physiological characteristics, heat resistance of clothing,
and other factors and variables [33,34]. The UTCI also introduces a sensitivity analysis
of changes in meteorological variables, enhancing its applicability for evaluating thermal
comfort under different climatic backgrounds [35].

Based on the UTCI thermal comfort index, historical monitoring data of meteorological
stations with 3 h resolution and solar radiation data were used to evaluate urban thermal
comfort during the years 2000, 2005, 2010, 2015, and 2019 with 344 municipal administrative
regions in China as research areas, and to differentiate the spatiotemporal variation rules of
urban thermal comfort in China. On this basis, the leading and important driving factors of
urban thermal comfort were identified. It is helpful to seek effective measures to improve
urban outdoor thermal comfort and enhance adaptation to urban climate change.

2. Materials and Methods
2.1. Study Area

China is located in the southeast of Eurasia, with geographic coordinates ranging
from 30◦52′ to 53◦31′ N latitude and 73◦40′ to 135◦05′ E longitude (Figure 1). The land
area of China is about 9.6 million km2, and the water area of the inland and border seas
are approximately 4.7 million km2. The land and sea boundary reaches 40,000 km, with a
vast territory, complex landforms, and diverse climates. Natural resources are abundantly
available. Urbanization has been accelerating since the reform and opening up, leading to
significant changes in China’s ecological environment [36,37].
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(1) Calculating UTCI values requires meteorological and solar radiation data. The data
of temperature, dew point temperature, and wind speed from March to December in 2000,
2005, 2010, 2015, and 2019 and from January to February in 2001, 2006, 2011, 2016, and 2020
were selected as well as the solar radiation data.

Three hours of meteorological data were collected from the National Climatic Data
Center (NCDC); the solar radiation data from the Climate Data website (https://cds.climate.
copernicus.eu, accessed on 1 September 2020), at a temporal resolution of one hour and a
spatial resolution of 0.1◦ × 0.1◦, are shown.

(2) Other data: The land use and administrative data are from the Chinese Geo-
graphical Conditions Monitoring cloud platform (http://www.dsac.cn/DataProduct/
Index/200827, accessed on 1 September 2020). Social and economic data were selected
from representative GDP and population density (POP), with numerical units of CNY
10,000/km2 and person/km2, respectively. Natural factor data were obtained from the

https://cds.climate.copernicus.eu
https://cds.climate.copernicus.eu
http://www.dsac.cn/DataProduct/Index/200827
http://www.dsac.cn/DataProduct/Index/200827
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Resources and Environmental Science and Data Center of the Chinese Academy of Sciences
(https://www.resdc.cn/ accessed on 1 September 2020).

2.3. Universal Thermal Climate Index (UTCI)

In this study, UTCI, a universal thermal climate index, was selected to evaluate
the thermal comfort of cities in China. The UTCI refers to the physiological equivalent
temperature calculated by combining the multi-node thermal regulation model with the
adaptive clothing model, which is realized by a model based on the six-degree polynomial
regression function [38]. The calculation formula is shown in Equation (1).

UTCI = f (Ta; Tmrt; v10; RH) = Ta + o f f set(Ta; Tmrt; v10; RH) (1)

where Ta (◦C) is the temperature, RH (%) is the relative humidity, Tmrt (◦C) is the average
radiation temperature, and v10 (m/s) is the wind speed measured at 10 m height. The value
of Tmrt cannot be obtained directly and needs to be calculated using Formula (2).

Tmrt =

(
Rprim + 0.5Lg + 0.5La

) 1
4

(0.95× 5.667× 10−8)
− 273 (2)

La = 5.5× 10−8 × (273 + Ta)4 ×
[
0.82− 0.25× 10(−0.094×0.75Pa)

]
(3)

where Lg (◦C) is the ground temperature, which is replaced with Ta (◦C) in this model [38].
Rprim refers to the solar radiation absorbed by the human body, which is calculated in the
operating procedures designed by Bröde et al. [38].

2.4. Classification of Thermal Comfort Level

Based on the calculated UTCI temperature value, the comfort level of each city at any
time can be divided according to the international classification standard (Table 1) [39]. In the
annual thermal comfort analysis, three indicators were used: the annual UTCI average, the
frequency of being at the thermal extreme comfort level (“hot/very hot/extremely hot”), and
the frequency of being at the cold extreme comfort level (“cold/very cold/extremely cold”).

Table 1. Classification standard of thermal comfort based on UTCI.

UTCI Thermal Stress Category Comfort Level UTCI Thermal Stress Category Comfort Level

>46 Extreme heat stress Extremely hot 0–9 Slight cold stress Cool
38–46 Strong heat stress Very hot −13–0 Moderate cold stress Slight cold
32–38 Strong heat stress Hot −27–13 Strong cold stress Cold
26–32 Moderate heat stress Slight heat −40–27 Very strong cold stress Very cold
9–26 No thermal stress Comfortable <−40 Extreme cold stress Extremely cold

2.5. Landscape Pattern Index

The landscape pattern indices selected in this study included landscape percentage
(PLAND), mean patch size (MPS), edge density (ED), area-weighted mean shape index
(AWMSI), aggregation index (AI), maximum patch index (LPI), and Shannon diversity
index (SHDI) (Table 2). Based on the remote-sensing monitoring data of land-use status in
China (resolution 1 km × 1 km), an optimal pane size of 7 × 7 was selected in Fragstats
3.3 software to calculate the landscape pattern indices of five land-use types (1: cultivated
land, 2: green land, 3: water area, 4: construction land, and 5: unused land) [40,41]. After
standardized processing, Pearson correlation analysis was conducted between the thermal
comfort index and the thermal comfort index using SPSS 25 software [42].

https://www.resdc.cn/
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Table 2. Description of the selected landscape pattern indices [43–45].

Index Explanation Value Range

Landscape percentage
(%)

PLAND = pi =
∑n

j=1 aij

A × 100, aij is the area of patch ij, A is the
total area of landscape. Represents the abundance ratio of a

patch type in the landscape.
[0,100]

Mean patch size (ha )
MPS =

∑n
j=1 aij

n , aij is the area of plaques ij, and n is the number
of plaques of this type. Represents the average area of a

patch type.
>0

Edge density
(m/ha )

ED =
∑M

i=1 ∑M
j=1 Pij

A , Pij is the boundary length between the
patches of type i and the adjacent patches of type j, and A is the

total landscape area. Represents the edge length between
patches of different landscape elements in a unit area.

>0

Area-weighted mean shape index At plaque level, it is the sum of the peripheral-area ratio of each
patch in a patch type multiplied by their respective area weight. ≥1

Aggregation index (%)

AI =
[

gii
maxgii

]
×

100, gii is the number of nodes before patch type i pixel, maxgii
is the maximum number of nodes before patch type i pixel.

Represents the degree of aggregation between plaques.

[0,100]

Largest patch index (%)
LPI = maxai

A , maxai is the area of the largest patch in a patch
type, A is the total landscape area. Represents the proportion of

the largest patch in a patch type to the landscape area.
(0,100]

Shannon diversity index Represents landscape heterogeneity. The richer the land use
types, the higher the value. ≥0

2.6. Geographic Detector

Geographic detectors are used to detect spatial heterogeneity and reveal the driving
force behind them. The core idea is based on the assumption that if an independent variable
(X) has an important influence on a dependent variable (UTCI), the spatial distribution of X
and UTCI should be similar.

Compared to traditional regression analysis, the geographic detector abandons the
linear relationship and identifies the degree of explanation of factors to dependent variables
by differentiating spatial, that is, the differences between layers. Therefore, this method
does not comply with the requirements of sample size and significance and avoids the
problem of collinearity between factors [46–49]. Compared with the traditional linear
regression method, this study used geographic detectors to identify the leading factors of
annual and seasonal thermal comfort indices in Chinese cities.

In the calculation process, factor X must be discretized before it is used for driver
identification in practice, and factor X should be stratified, classified, or partitioned. The
discretized factor and dependent variable UTCI are then imported into the geographic
detector for differentiation and factor detection. The main function is to detect the spatial
differentiation of the dependent variable UTCI and the extent to which the detection factor
X explains the spatial differentiation of attribute UTCI. The degree of explanation was
measured using the statistical value q. The expression is as follows:

q = 1− ∑L
h=1 Nhσ2

h
Nσ2 (4)

where h is the discretization result of factor X, corresponding to stratification, classification,
or partition. Nh is the number of variables in the h-layer, and N is the number of variables.
σ2

h is the variance of the Y-value of the dependent variable in the h-layer, and σ2 is the
variance of the global dependent variable Y. The size of the q-value of the final output result
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is between 0 and 1. The larger the q-value, the greater the driving force of this factor on the
spatial differentiation of the Y-value [50].

3. Results
3.1. Annual Thermal Comfort Evaluation of Cities in China

The average UTCI values of each city in the years 2000, 2005, 2010, 2015, and 2019 are
statistically and visually displayed in Figure 3. The UTCI mean distribution pattern of the
five years had the same general trend, showing a trend of high in the southeast and low
in the northwest. The highest UTCI value was distributed in the southern part, whereas
the lowest UTCI value was mainly distributed in the northeast and northwest of higher
latitudes and in the southwest of Tibet at higher altitudes. In addition, the UTCI of the
southern region of the Xinjiang Uygur Autonomous Region was significantly higher than
that of the surrounding regions.
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The spatial distribution pattern of the frequency of annual thermal extreme thermal
comfort in each city showed an obvious general trend of high in the southeast and low
in the northwest in all five years (Figure 4). The highest frequency (more than 40.01%)
was distributed in Hainan Province, which has the lowest latitude and highest annual
temperature. The second-highest frequency values (between 30.01 and 40.00%) were mainly
distributed in South China and southern Southwest China, where the latitude is also lower
and the average annual temperature is higher. Cities with frequencies between 20.01 and
30.00 were mainly distributed in the south and the middle and lower reaches of the Yangtze
River. These areas had a high frequency of extreme thermal comfort throughout the year,
so attention should be paid to improving the living environment.

As can be seen from Figure 5, the spatial distribution pattern of frequency of cold
extreme comfort grade in different years was basically the same, showing a trend of low
in the southeast and high in the northwest. Most regions of South China, Central China,
East China, and Southwest China showed low values, mainly due to relatively high winter
temperatures in these regions and a lower frequency of cold extremes. The southern part
of the Xinjiang Uygur Autonomous Region in Northwest China also showed low values,
mainly because it is located in a basin and the high mountains in the north block the
invasion of cold air from the north and reduce the occurrence of extreme cold weather. The
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high-frequency values mainly appeared in the northern region with high latitudes and the
Qinghai-Tibet Plateau at high altitudes.
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The three annual analysis indicators (average annual UTCI, extreme comfort level in
thermal frequency, and frequency of extreme cold comfort rank) of the spatial distribution
pattern presented the following pattern: (1) For the same index, the spatial distribution of
each year trend is consistent, and the spatial distribution pattern of change is not large and
is not affected by the year of change. (2) The annual UTCI average and annual frequency
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in the extreme thermal comfort level show an overall trend of high in the southeast and
low in the northwest, and the annual frequency in the cold extreme comfort level shows an
overall trend of low in the southeast and high in the northwest. The distribution trend is
consistent with the characteristics of climate distribution in China. More attention should
be paid to the southern region with a high frequency of extreme thermal comfort and the
northern region with a high frequency of cold extreme comfort, particularly in the northeast
region. (3) The low-value distribution area of UTCI and the high-value distribution area
of cold extreme thermal comfort level frequency coincide, and the high-value distribution
area of UTCI and the high-value area of thermal extreme thermal comfort level are also
consistent. This indicates that there is no significant difference in the spatial distribution
pattern between the UTCI mean and frequency for extreme comfort from the perspective of
annual indicators. (4) The UTCI mean value, thermal extreme comfort frequency, and cold
extreme comfort frequency of the southeastern Xinjiang Uygur Autonomous Region are
higher than the surrounding values.

3.2. Spatial and Temporal Distribution of Urban Thermal Comfort during Heat Wave in China
3.2.1. Identification of Heat Wave Period

The criteria for identifying heat wave periods in this study were as follows: The
maximum temperature exceeded 25 ◦C for at least five consecutive days, and the maximum
temperature exceeded 30 ◦C for at least three days [51]. Through the statistical analysis of
the temperature data of Chinese cities from June to September 2019, it was found that the
number of cities in the heat wave period was the largest for five consecutive days from
24 July 2019 to 28 July 2019. During this period, 70% of the cities met the above criteria
for the heat wave period; therefore, this study selected 24–28 July 2019 as a typical heat
wave period.

In the selected typical heat wave period, cities were classified according to temperature
data into the following three categories: Class I cities were in the heat wave period, with
five days exceeding 25 ◦C and at least three days exceeding 30 ◦C. The temperature of Class
II cities was relatively high, but did not meet the standard of a heat wave period. All five
days exceeded 25 ◦C, but fewer than three days exceeded 30 ◦C. The temperature of Class
III cities was relatively low and did not exceed 25 ◦C for all five days. According to the
classification results, 240 cities fully met the criteria of being in a heat wave period, mainly
distributed in East China and the Xinjiang Uygur Autonomous Region in Northwest China.
There were 31 cities with high temperatures that did not meet the criteria for heat waves,
and the distribution was scattered, both in the south and north. There were 73 cities with
low temperatures, mainly in the northern and southwestern regions (Figure 6).
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3.2.2. Spatial Distribution of Thermal Comfort during Heat Wave

The UTCI values and corresponding thermal comfort levels of the five selected mo-
ments (8:00, 11:00, 14:00, 17:00, and 20:00) with frequent human activity during the typical
heat wave were analyzed. According to the UTCI classification standards for thermal
comfort, the UTCI average values of each city during the heat wave were divided into four
levels (Figure 7).
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The UTCI average during the heat wave showed an obvious trend of higher in the
southeast and lower in the northwest. There were 39 cities with a UTCI average >38 ◦C
(corresponding to “very hot” thermal comfort level), distributed in the middle and lower
reaches of the Yangtze River and the Beijing–Tianjin–Hebei region. This is because the
sub-high-pressure belt moves to the Yangtze River area in summer, the airflow sinks, and
the temperature rises in the middle and lower reaches of the Yangtze River. However,
the Beijing–Tianjin–Hebei region has long sunshine duration, high energy demand and
consumption, high urban surface temperature, and a significant urban heat island effect.
There were 184 cities with UTCI between 32.01 and 38.00, which were distributed in East
China. This is because the eastern region is located in a subtropical monsoon climate and
temperate monsoon climate zone with high temperatures and rainy summers. There were
52 cities with UTCI <26 ◦C, distributed in Northeast, Northwest, and Southwest China.
Because of the high latitude or altitude, the temperature of these cities was low, and the
maximum temperature was not greater than 25 ◦C during the heat wave, so the comfort
was strong.

Superposition analysis of UTCI mean distribution and cities identified as being in heat
wave period showed that cities identified as being in a heat wave period had higher UTCI
mean values, and the UTCI mean values were generally above 32 ◦C (corresponding to
the thermal comfort level of “hot” and “very hot”), indicating that the high distribution
of UTCI values showed strong consistency with air temperature. However, the average
value of cities identified as being in a heat wave period in the Xinjiang Uygur Autonomous
Region, Inner Mongolia, and other regions was low, which may be because the recognition
of the heat wave period only focused on the maximum temperature, whereas the UTCI
average value was calculated multiple times.

To avoid the influence of intraday or diurnal differences in UTCI values, the thermal
comfort level with the highest frequency during the heat wave in each city was taken as
the dominant thermal comfort level of the corresponding city, as shown in Figure 8. The
regions with “very hot” thermal comfort were mainly located in the Beijing–Tianjin–Hebei
region and the eastern part of Central China. Similar to the distribution of the UTCI mean
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value, the regions with a dominant thermal comfort grade of “hot” were also concentrated
in East China. However, the distribution area with the dominant thermal comfort rating of
“relatively hot” was smaller and more concentrated than the UTCI average. The dominant
thermal comfort in a large area of Western China was “comfortable,” whereas the dominant
thermal comfort in Northeast China was consistent with the UTCI average.
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Figure 9 shows the frequency spatial distribution of “extremely hot” and “hot/very
hot/extremely hot” extreme thermal comfort levels in each city during heat waves. For the
frequency of “hot/very hot/extremely hot,” the distribution of cities in China still showed
a general trend of high in the southeast and low in the northwest, which is consistent with
the distribution of UTCI mean and dominant comfort level. The Beijing–Tianjin–Hebei
region and the middle and lower reaches of the Yangtze River were still highly distributed
areas due to the influence of high temperatures caused by the subtropical high-pressure
belt. There was also a large area of high value in Guangdong province, mainly because
the region belongs to the subtropical monsoon climate zone, where human economic
activity is concentrated. Cities with “extremely hot” thermal comfort were mostly located
in the Beijing–Tianjin–Hebei region and the middle and lower reaches of the Yangtze River.
Xinjiang and northern Ningxia also showed “extremely hot” grade—the southern region
of Xinjiang in particular had a high frequency of “hot/very hot/extremely hot”—but the
average UTCI value of these regions was at a low level, indicating that the difference in
UTCI value between day and night might be large in these regions, so we should pay more
attention to the outdoor thermal comfort during daytime high temperature.

3.3. Attribution of Spatial Heterogeneity of Thermal Comfort

Based on the optimal discretization results given in Appendix A, each factor that could
pass the significance test at the 0.01 level and the corresponding optimal category number
were selected for this study, and the heterogeneous attribution analysis of each dependent
variable was completed using geographic detectors.



Int. J. Environ. Res. Public Health 2022, 19, 5683 11 of 20
Int. J. Environ. Res. Public Health 2022, 19, x 12 of 22 
 

 

 
Figure 9. Frequency distribution of thermal extreme comfort levels during heat waves (shaded areas 
are cities during the heat wave). 

3.3. Attribution of Spatial Heterogeneity of Thermal Comfort 
Based on the optimal discretization results given in Appendix A, each factor that 

could pass the significance test at the 0.01 level and the corresponding optimal category 
number were selected for this study, and the heterogeneous attribution analysis of each 
dependent variable was completed using geographic detectors. 

The Q statistics of annual UTCI mean drivers were obtained using geographic detec-
tors (Figure 10). It was found that latitude (Lat) was the dominant factor in the annual 
UTCI mean for 2000, 2005, 2010, and 2015, and accounted for 60% and 80% of the annual 
UTCI mean. Second, the Q values of the six landscape pattern indices of the unused land 
could explain the UTCI average by more than 40%. Finally, the socioeconomic factors GDP 
and POP, natural factor elevation (AMSL), and landscape pattern indices AWMSI and ED 
of cultivated land type were explained with a power between 20% and 40%. The landscape 
pattern index of construction land type, especially the AI index, also showed explanatory 
power for each year. 

Figure 9. Frequency distribution of thermal extreme comfort levels during heat waves (shaded areas
are cities during the heat wave).

The Q statistics of annual UTCI mean drivers were obtained using geographic detectors
(Figure 10). It was found that latitude (Lat) was the dominant factor in the annual UTCI
mean for 2000, 2005, 2010, and 2015, and accounted for 60% and 80% of the annual UTCI
mean. Second, the Q values of the six landscape pattern indices of the unused land could
explain the UTCI average by more than 40%. Finally, the socioeconomic factors GDP and
POP, natural factor elevation (AMSL), and landscape pattern indices AWMSI and ED of
cultivated land type were explained with a power between 20% and 40%. The landscape
pattern index of construction land type, especially the AI index, also showed explanatory
power for each year.
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Figure 11 shows the driving factors of the heterogeneity in the frequency of extreme
thermal comfort in Chinese cities. It can be seen from the figure that the leading factors of
the frequency of thermal extreme comfort are all natural factors of latitude, and the latitude
factor has a significantly higher explanatory degree than other factors. The q-values of
altitude, socioeconomic factors, GDP and POP, and the landscape pattern index of unused
land are next, ranging from 20% to 40%. In addition, the landscape pattern indices of
cultivated land, water areas, and construction land also have 10–20% explanatory power,
which are also important driving factors of frequency heterogeneity of annual thermal
extreme comfort.
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The heterogeneous attribution results for the annual cold extreme comfort frequencies
are plotted in Figure 12. Latitude was still the dominant factor in the frequency of cold
extreme comfort, and the explanation of annual cold extreme frequency was up to 80%,
which is much higher than other factors. The q-value of the landscape pattern index of
unused land was second only to the latitude factor, with an explanatory power of 35%. The
explanatory power of the population factor POP was greater than 20%, and the explanatory
power of the economic factor GDP was between 10% and 20%. The explanatory power of
the landscape pattern index of cultivated land was greater than 10%. However, the natural
altitude factor failed to pass the significance test of 0.01.

In conclusion, for each annual index, the relative explanatory power of different
driving factors on the annual index is relatively consistent in different years, especially for
driving factors with strong explanatory power. Both the UTCI mean and extreme comfort
frequency are driven by latitude, indicating that latitude plays a leading role in the spatial
differentiation pattern of the annual urban thermal comfort index in China. In addition,
GDP and POP are important driving factors that can explain the spatial variation in each
annual indicator to a certain extent. Among the landscape pattern indices, those of unused
land have a greater explanatory power for each annual index. In addition, altitude does not
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pass the significance test as an important driver of the frequency of cold extreme comfort,
although it shows high explanatory power for the annual UTCI mean and extreme thermal
comfort frequency.
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4. Discussion

The following three problems exist in studies of outdoor thermal comfort. First, the
spatial scale of thermal comfort research is small, and the research scope is usually commu-
nity, park, or a single city, etc., which lacks large-scale research, especially thermal comfort
research in China [52–57], resulting in a lack of comparative analysis of thermal comfort
evaluation results in different regions under different climate change backgrounds. Second,
most studies only evaluate thermal comfort in a single period (most studies select the heat
wave period), lacking long-term series and monitoring in different seasons [53,54,58]. Third,
although some studies use long-term meteorological data, these studies usually use daily
or monthly average data [14]. This may lead to a situation where extreme temperatures are
erased and extreme climate phenomena are ignored, and it is difficult to comprehensively
and meticulously evaluate the thermal comfort of the study area. Therefore, this study
expands the space and time dimensions to obtain more comprehensive and systematic
evaluation results.

During the study period, the spatial pattern and differentiation characteristics of the
annual analysis indices in different years were similar, and the inter-annual differences
were small. During a typical heat wave period (from 24 July 2019 to 28 July 2019), 70% of
the cities were in the heat wave period, mainly distributed in East and Northwest China’s
Xinjiang Uygur Autonomous Region. The UTCI mean high value and dominant comfort
level were “very hot,” which were mainly distributed in the middle and lower reaches of
the Yangtze River and the Beijing–Tianjin–Hebei region, which is also reflected in previous
studies [59,60]. A possible reason for the poor thermal comfort in the middle and lower
reaches of the Yangtze River during heat waves is that the secondary high-pressure belt
moves to the Yangtze River area in summer and the air flow sinks, leading to a temperature
rise, decreased rainfall, dry climate, and increased solar radiation [61,62]. In the Beijing–
Tianjin–Hebei region, owing to the high latitude, long sunshine duration, sufficient solar
radiation, low and flat terrain, and poor air mobility, the thermal comfort of the region is
poor in extreme thermal climates [63,64].

At the national level, the driving factors affecting the spatial distribution of heat and
cold comfort differed to some extent. The natural factors of latitude and altitude were the
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important factors affecting the spatial differentiation of the urban comfort level [65–68].
For regions with high latitudes and low altitudes, more attention should be paid to the
thermal comfort [68]. In addition, in the process of urban development, attention should
be paid to the possible impact of GDP and POP growth on urban thermal comfort, and
reasonable planning and layout measures should be implemented to improve urban thermal
comfort [69–71]. For areas to improve thermal comfort in summer, such as the middle
and lower reaches of the Yangtze River, the Beijing–Tianjin–Hebei region, and southern
Guangdong, attention should be paid to the layout of construction land, water bodies, and
green space types and the overall layout at the landscape level [43,72], and corresponding
measures should be formulated to achieve the goal of improving the thermal environment.

It is necessary to pay attention to outdoor thermal comfort under extreme climate
conditions, improve the climate comfort of outdoor activity areas, and provide a good
living environment [14,39]. Taking corresponding summer measures in outdoor areas to
protect the health of residents in outdoor activities and operations can reduce people’s lone-
liness [73] and have a significant positive impact on the lifespan of the urban elderly [74,75],
which can also reduce the cooling load of buildings and the utilization rate of electronic
equipment such as air conditioning [76,77]. For regions showing extreme thermal comfort
during heat waves, including the middle and lower reaches of the Yangtze River, Beijing–
Tianjin–Hebei region, southern Guangdong, Xinjiang Uygur Autonomous Region, and
Ningxia Autonomous Region, the prediction and early warning of thermal extremes should
be strengthened. For the southeastern regions with poor thermal comfort in summer, and
the northeastern and northwestern regions with cold thermal comfort in winter, some
measures should be taken to prevent heat and cold. For example, cool/green roofs and
urban greening can reduce the moderate urban thermal environment and urban heat island
phenomena [15], and optimized design of urban spaces and appropriate microclimatic
planning can increase the thermal comfort [78].

The results of this study can provide a reference for establishing effective measures
to improve urban outdoor thermal comfort, but there are still two deficiencies in this
study: (1) The longitudinal span of China is large, so a more reasonable comparison and
analysis should be made considering the actual time difference between the eastern and
western regions. However, owing to data limitations, this study can only obtain the
historical data of meteorological stations with an interval of 3 h, so the effect of time
difference cannot be excluded in the actual study. (2) In heterogeneity attribution analysis,
more potential drivers should be included to improve the accuracy of the results, such
as human subjective thermal state factors and the number of urban motor vehicles. In
subsequent studies, more advanced data acquisition methods will be adopted for more
accurate analysis.

5. Conclusions

Based on the UTCI index, this study evaluated the thermal comfort of 344 municipal
administrative regions in China at 8:00, 11:00, 14:00, 17:00, and 20:00, with high human
activity intensity, in 2000, 2005, 2010, 2015, and 2019, respectively. The spatial pattern of
thermal comfort in Chinese cities was studied in detail using relevant indicators during
heat waves and annual analysis indicators, and the driving factors of spatial differentiation
of thermal comfort in Chinese cities were identified based on this. The main conclusions
are as follows:

(1) The spatial patterns and differentiation characteristics of the three types of annual
analysis indicators were similar in different years, and the inter-annual differences
were small. The annual UTCI values showed a general trend of higher in the southeast
and lower in the northwest. The annual frequency of extreme thermal comfort also
showed a trend of high in the southeast and low in the northwest. The annual
frequency of cold extremes showed a trend of low in the southeast and high in
the northwest.
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(2) The analysis of the typical heat-wave period showed that the cities in the heat-
wave period were mainly distributed in the Xinjiang region in East and Northwest
China. The UTCI mean value and frequency of extreme thermal comfort (“hot/very
hot/extremely hot”) showed a general trend of high in the southeast and low in the
northwest during the heat wave. The dominant comfort level also showed a trend of
hot in the southeast and comfortable in the northwest. In high-temperature-warning
weather, the corresponding local government departments should take relevant mea-
sures to prevent heat stroke, reduce temperature, and ensure the thermal comfort of
outdoor activity spaces.

(3) In different years, the relative contribution rates of the driving factors of the same
index were basically the same and were not affected by year changes, especially for
factors with high contribution rates. The leading factor for the annual indicators
was latitude. In addition, the socioeconomic factors GDP and POP, as well as the
landscape pattern index of unused land type and cultivated land type, all showed a
high explanatory degree for each annual indicator.

Author Contributions: Conceptualization, S.L. and X.L.; methodology, X.L., S.L. and C.L.; writing—
original draft preparation, X.L. and S.L.; writing—review and editing, X.L. and T.Y.; visualization,
X.L.; supervision, J.W. and Y.Z.; funding acquisition, J.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This study was funded by the National Natural Science Foundation of China (No. 42130505).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the study
design; collection, analyses, and interpretation of the data; writing of the manuscript, or decision to
publish the results.

Appendix A

According to the working principle of the geographic detector, before using it for
attribution analysis, the values of each independent variable must be discretized and
graded, and then related factor detection and spatial statistical analysis can be carried
out. In this study, several experiments were conducted on commonly used discretization
methods, including the K-means clustering, natural breakpoint, and bisection methods.
Finally, it was determined that the discretization method with the highest q-value had the
best effect. Therefore, this study paired each independent variable and each dependent
variable that had a significant correlation with it, conducted experiments on the number of
categories selected by the independent variables in each pair of combinations in the process
of discretization, and obtained the optimal number of categories for each combination. The
results are presented in Tables A1–A3.

Table A1. The optimal number of categories for discretization of the influence factors of the annual
UTCI mean for each year (** represents p < 0.01, * represents p < 0.05; 1: cultivated land; 2: green
space; 3: water bodies; 4. construction land; 5: unused land).

2000 2005 2010 2015

GDP 15 ** 12 ** 15 ** 11 **
POP 15 ** 15 ** 15 ** 15 **
Lat 15 ** 3 ** 15 ** 15 **

AMSL 15 ** 15 ** 15 ** 15 **
AI(4) 13 ** 14 ** 14 ** 11 **
AI(5) 3 ** 5 ** 5 ** 5 **

AWMSI(1) 15 ** 15 ** 15 ** 15 **
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Table A1. Cont.

2000 2005 2010 2015

AWMSI(3) 15 * 14 ** 15 **
AWMSI(4) 15 **
AWMSI(5) 3 ** 10 ** 10 ** 11 **

ED(1) 15 ** 15 ** 15 ** 13 **
ED(4) 14 * 15 * 13 **
ED(5) 3 ** 8 ** 3 ** 11 **

PLAND(4) 15 * 15 ** 15 **
PLAND(5) 3 ** 10 ** 3 ** 12 **

LPI(4) 14 * 15 * 14 **
LPI(5) 3 ** 6 ** 3 ** 12 **

MPS(4) 14 * 15 15 **

Table A2. The optimal number of categories for discretization of the influence factors of the an-
nual thermal extreme comfort frequency in each year (** represents p < 0.01, * represents p < 0.05;
1: cultivated land; 2: green space; 3: water bodies; 4. construction land; 5: unused land).

2000 2005 2010 2015

GDP 15 ** 13 ** 15 ** 14 **
POP 14 ** 11 ** 15 ** 10 **
Lat 15 ** 15 ** 15 ** 15 **

AWSL 14 ** 14 ** 14 ** 13 **
AI(1) 15 ** 15 ** 15 ** 15 **
AI(3) 15 ** 14 ** 13 ** 9 **
AI(4) 13 ** 14 ** 14 ** 11 **
AI(5) 5 ** 5 ** 5 ** 5 **

AWMSI(1) 15 ** 15 ** 15 ** 15 **
AWMSI(4) 15 ** 15 ** 15 ** 15 **
AWMSI(5) 9 ** 10 ** 10 ** 11 **

ED(1) 14 ** 15 ** 15 ** 15 **
ED(3) 15 ** 13 ** 13 ** 11 **
ED(4) 15 ** 14 ** 15 ** 13 **
ED(5) 10 ** 10 ** 10 ** 11 **

PLAND(3) 14 ** 12 ** 12 ** 14 *
PLAND(4) 15 ** 15 ** 15 ** 15 **
PLAND(5) 15 ** 10 ** 10 ** 12 **

LPI(3) 14 ** 15 **
LPI(4) 15 ** 15 ** 15 ** 14 **
LPI(5) 10 ** 10 ** 10 ** 12 **

MPS(3) 15 **
MPS(4) 15 ** 15 ** 15 ** 15 **
MPS(5) 10 ** 10 ** 10 ** 10 **

Table A3. The optimal number of categories for discretization of the influence factors of the annual
cold extreme comfort frequency in each year (** represents p < 0.01, * represents p < 0.05; 1: cultivated
land; 2: green space; 3: water bodies; 4: construction land; 5: unused land).

2000 2005 2010 2015

GDP 15 ** 12 ** 15 ** 15 **
POP 10 ** 11 ** 15 ** 11 **
Lat 15 ** 15 ** 15 ** 15 **

AMSL 13 * 13 * 13 * 13 *
AI(4) 14 * 14 9 **
AI(5) 5 ** 5 ** 5 ** 4 **

AWMSI(1) 13 ** 15 ** 13 ** 15 **
AWMSI(3) 10 * 15 15 * 15 *
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Table A3. Cont.

2000 2005 2010 2015

AWMSI(4) 15
AWMSI(5) 10 ** 10 ** 10 ** 11 **

ED(1) 12 ** 15 ** 12 ** 14 **
ED(3) 15 13 * 13 * 12 **
ED(4) 14 15 14
ED(5) 8 ** 8 ** 8 ** 8 **

PLAND(4) 15 15 ** 14 **
PLAND(5) 10 ** 8 ** 10 ** 12 **

LPI(4) 15 12 * 14
LPI(5) 8 ** 10 ** 10 ** 10 **

MPS(4) 12 *
MPS(5) 10 ** 10 ** 10 ** 11 **
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