
LETTER

REPLY TO DESIKAN ET AL.:

Micelle formation among various mechanisms of
toxin pore formation
Martin Vögelea,1, Ramachandra M. Bhaskaraa, Estefania Mulvihillb, Katharina van Peec, Özkan Yildizc,
Werner Kühlbrandtc, Daniel J. Müllerb, and Gerhard Hummera,d,2

Pore-forming toxins (PFTs) are adiverse class ofmembrane-
active proteins employed primarily by bacteria for un-
regulated perforation of lipid membranes (1). Based on
molecular dynamics (MD) simulations (2), electron cryo-
microscopy (cryoEM) structures (3), and atomic force mi-
croscopy (AFM) experiments (4), we recently identified
two distinct pathways for lipid efflux from large pores
(diameter >30 nm) formed by the β-PFT pneumolysin
(PLY). Lipids leave the PLY ring laterally upon slow mem-
brane insertion of the β-strands forming the pore-lining
β-barrel; by contrast, upon fast insertion, the membrane
within the ring bends into a small vesicle that then gets
expelled from the pore (2). In their letter, Desikan et al.
(5) describe a variant of the vesiculation pathway, in which
the lipids trapped inside a small α-PFT ring (diameter
<10 nm) form a micelle, which then leaves the ring.

Desikan et al. (5) performed MD simulations of
ClyA as an example for a small cytotoxin. In their sim-
ulation setup, the fully formed ClyA ring traps the lip-
ids inside the pore. By contrast, their earlier simulations
have shown that slow assembly of membrane-inserted
protomers allows the lipids to leave laterally (6), remi-
niscent of the lateral-escape pathway seen in our PLY
simulations (2). Alternatively, the crystal structure of

ClyA suggests that in the case that a fully formed ring
is inserted, the lipids of the small plug would be
wedged out rather than cut out (7). Lateral escape (6),
wedging (7), and micelle formation (5) provide alterna-
tive lipid efflux pathways from small PFT pores.

From a mechanistic perspective, pore opening via
micelle formation (5) is the small-pore variant of the
vesiculation mechanism that we propose in our recent
paper (2). Both in narrow ClyA rings and in wide PLY
rings, a fully cut-out patch of lipids reshapes into a
form that minimizes the edge tension and lets the
lipids escape from the ring vertically instead of later-
ally from a partially formed pore. AFM studies of var-
ious large pores have shown that the exact mechanism
depends on the pore-forming protein, its oligomeric
state (arc, slit, or ring), the membrane composition,
and the environmental conditions (4, 8–10).

In summary, there are two principal pathways of
lipid removal: vertical expulsion [by vesiculation (2, 8)
or micelle formation (5)] and lateral retreat [by lipid
outflow (2, 6) or wedging (7)], driven by lipid repulsion
from the hydrophilic inner wall of the pore (2). PFTs
may have evolved this variability in the pore formation
pathway to combat cellular defense mechanisms.
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