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Purpose: This study was a systematic evaluation across differ-

ent and prominent diffusion MRI models to better understand

the ways in which scalar metrics are influenced by experimen-

tal factors, including experimental design (diffusion-weighted

imaging [DWI] sampling) and noise.
Methods: Four diffusion MRI models—diffusion tensor imaging

(DTI), diffusion kurtosis imaging (DKI), mean apparent propa-

gator MRI (MAP-MRI), and neurite orientation dispersion and

density imaging (NODDI)—were evaluated by comparing maps

and histogram values of the scalar metrics generated using

DWI datasets obtained in fixed mouse brain with different

noise levels and DWI sampling complexity. Additionally, mod-

els were fit with different input parameters or constraints to

examine the consequences of model fitting procedures.
Results: Experimental factors affected all models and metrics

to varying degrees. Model complexity influenced sensitivity to

DWI sampling and noise, especially for metrics reporting non-

Gaussian information. DKI metrics were highly susceptible to

noise and experimental design. The influence of fixed parameter

selection for the NODDI model was found to be considerable,

as was the impact of initial tensor fitting in the MAP-MRI model.
Conclusion: Across DTI, DKI, MAP-MRI, and NODDI, a wide

range of dependence on experimental factors was observed that

elucidate principles and practical implications for advanced diffu-

sion MRI. Magn Reson Med 78:1767–1780, 2018. VC 2017 The
Authors Magnetic Resonance in Medicine published by Wiley
Periodicals, Inc. on behalf of International Society for Mag-

netic Resonance in Medicine. This is an open access article
under the terms of the Creative Commons Attribution-
NonCommercial License, which permits use, distribution and
reproduction in any medium, provided the original work is

properly cited and is not used for commercial purposes.
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INTRODUCTION

The measurement and modeling of water diffusion by
MRI has spanned a rich history of advancement both by
improvement of existing approaches and by theory-
driven generation of new modeling frameworks. A hall-
mark example is the estimation of the diffusion tensor
(1), which has enabled a unique view of the brain by
providing metrics that report not only diffusivity, but
also anisotropy and fiber-orientation information (2). A
number of important subsequent diffusion modeling
approaches have been proposed to more accurately
describe the water diffusion in complex environments by
accounting for non-Gaussian diffusion displacement [e.g.,
diffusion kurtosis imaging (DKI) (3,4)] or modeling the
distribution of orientated white matter fiber populations
(5). Several modeling approaches are rooted in the q-space
framework (6,7) and relate the measured signal by Fourier
transformation to the 3D probability distribution of water
displacement, known as the diffusion propagator. These
techniques have been employed for the estimation of fiber
orientation distributions (8) or numerical propagator esti-
mation (9) or representing the propagator analytically
(10–13) and are commonly referred to as “physical” or
“signal-driven” models. The outcome scalar metrics of
physical techniques report features of water diffusion not
biological structure and must be carefully interpreted to
make meaningful biological inferences.

A second category of diffusion models, referred to here-
after as “biophysical models,” takes a different approach
and uses simplified representations of the microstructural
tissue environment and a priori assumptions of how tissue
structures affect water diffusivity to construct models that
relate diffusion measurements to specific tissue features.
Biophysical models have been developed for the descrip-
tion of cellular compartments (14,15), axon diameters
(16), and neurite density and orientation (17). The advan-
tage of biophysical models to report values directly rele-
vant to tissue properties is met by the inherent challenge
of representing the full range of tissue environments with
a simplified model.

Clearly, no single model can fully capture the com-
plexity of all tissue environments; however, it is impor-
tant to establish the value and limitations of each model
as a guide to the selection, combination, and
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implementation of diffusion tools for particular objec-
tives across brain studies. Within each class of model,
methodological comparisons are commonly made to
determine the relative performance of variations in the
modeling paradigm or to evaluate the effect of improve-
ments to the approach or implementation. Between-class
comparisons are most often made to evaluate the contribu-
tion of newer modeling approaches beyond standard tech-
niques, although there is a growing interest in
understanding differences across physical and biophysical
frameworks (18–20) as an important avenue for characteriz-
ing the relative capabilities and limitations of each model
for detection of tissue differences. However, there are nota-
bly few systematic studies across modeling categories
explicitly designed to assess the dependence of these
approaches on experimental factors such as diffusion sam-
pling scheme and quality of the acquired diffusion-
weighted images (DWIs). An improved understanding of
distinguishing features and practical considerations across
diffusion models is a means to most effectively apply these
tools in a way that optimally addresses the particular objec-
tives of clinical and neurobiological brain studies.

In the current study, scalar metrics were compared
across multiple diffusion-based models using the same
DWI datasets from ex vivo mouse brains. From large high-
quality datasets, several subsampled and noise-
manipulated diffusion MRI datasets were generated to
explore the effects of DWI sampling and image quality
across different and prominent diffusion MRI techniques.
The four models selected for this study were intended to
represent different categories of diffusion approaches: dif-
fusion tensor imaging (DTI), the well-established, simple,
Gaussian, physical model; DKI, a commonly used physi-
cal model with moderate complexity; mean apparent
propagator MRI (MAP-MRI), a more recent physical model
with high complexity that estimates the full propagator;
and neurite orientation dispersion and density imaging
(NODDI), an increasingly popular biophysical model with
low complexity based on a priori assumptions about cellu-
lar compartments and orientation of neural processes.
Maps and histogram values of the scalar metrics generated
for each model over the full range of DWI datasets were
used to evaluate the consequences of experimental factors
(21). The goal of this study was to perform a systematic
analysis of the dependence on image quality, DWI sam-
pling range, and model parameters across distinct diffu-
sion modeling approaches to advance the fundamental
understanding of differences between these models as
well as to provide insight regarding their implementation.

METHODS

Brain Specimens

Perfusion-fixed brain tissue samples were obtained from
four adult male mice (approximate age, postnatal day 140;
FVB-Tg (GadGFP) 45704 Swn/J; stock #003718; Jackson
Laboratory, Bar Harbor, Maine, USA). Animals were
treated according to national guidelines and institutional
oversight. Brain specimens were stored in 4% paraformal-
dehyde solution for 48 hours and then transferred to a
phosphate-buffered saline solution for rehydration and
storage. Prior to imaging, each specimen was transferred
to a 10-mm-diameter NMR tube system (Shigemi Inc.,

Allison Park, Pennsylvania, USA) and immersed in fluori-
nert (FC-3283; 3M, St. Paul, Minnesota, USA).

DWI Acquisition and Processing

Images were acquired using a Bruker 7T vertical bore
microimaging system with Paravision 5.1 software, an
Avance III interface, a microWB gradient/probe system,
and a 10-mm radiofrequency coil, and gradients were
maintained at 17 �C. For DWI, 297 image volumes were
acquired for each specimen using a 3D echo planar imag-
ing pulse sequence with the following parameters: echo
time ¼37 ms; repetition time¼800 ms; number of
excitations¼1; number of segments¼ 8; and isotropic
voxel dimension¼ 100 mm.

DWI data were acquired using a multishell acquisition
with six directions and three repetitions for b¼ 100, 200,
500, 1000, and 10,000 s/mm2, 32 directions and 1 repeti-
tion for b¼ 1700 and 3800 s/mm2, 56 directions and 1
repetition for b¼ 6700 s/mm2, and 87 directions and 1
repetition for b¼ 10,000 s/mm2. All DWIs were acquired
using d¼ 3 ms and D¼ 20 ms. A b¼0 image was not
acquired, but when the analysis software required it (for
DKI and NODDI), this was calculated from a separate
DTI fit using low b-value DWIs (b¼100–1700 s/mm2). A
T2-weighted structural image was also acquired using a
multislice spin echo sequence with the following param-
eters: echo time ¼ 30 ms; repetition time¼ 3000 ms;
number of excitations¼ 1; and the same spatial parame-
ters described for DTI. Total scan time was approximately
45 hours for each mouse brain.

Postprocessing

Processing of DWI data was performed using the TORTOISE
software package (22) to correct apparent translational
motion induced by frequency drift and diffusion gradients
and all volumes were rigidly aligned to the T2 structural,
which was rigidly aligned to a template in atlas space (23)
by landmark-based registration with Mipav software (ver-
sion 5.1.0, http://mipav.cit.nih.gov). Proper reorientation of
the diffusion gradient frame of reference was maintained.

Subsampled Datasets to Test Consequences of DWI
Sampling

Three subsampled DWI datasets were used in this study:
1) an eight-shell DWI set, which was the full set of
acquired DWIs including b-values from 100 to 10,000 s/
mm2; a six-shell DWI set, which was a subsampled DWI
set including b-values from 100 to 3800 s/mm2; and a
five-shell DWI set, which was a subsampled DWI set
including only b-values up to 1700 s/mm2. The selection
of the sampling schemes were based on the recom-
mended b-values for DTI (five-shell set), DKI (six-shell
set), and MAP-MRI (eight-shell set).

Noise Manipulated Datasets to Test the Consequences of
Image Quality

To examine the effects of DWI signal variance and noise
floor, we produced both a “signal-transformed” version
and an “noise-added” version of the original (eight-shell)
dataset from a single brain. This approach was favored over

1768 Hutchinson et al.

http://mipav.cit.nih.gov


the more rigorous approach of generating a “noise-free”

DWI dataset as a basis for noise addition, because the use of

a single model to generate a noise-free set would differen-

tially affect the outcomes of each model in a multimodel

study—although it should be noted that during preparation

of this study, a novel method for model-free denoising was

developed (24) that merits future exploration.
The signal-transformed DWI dataset was obtained accord-

ing to methods described previously (25,26) in which the

noise floor is estimated, after which a b-value–dependent

subtraction from each DWI is calculated and applied such

that volumes with high signal-to-noise ratio (SNR) are mostly

unchanged but those with low SNR are adjusted to approach

zero rather than the expected rectified noise floor. Important-

ly, this type of noise subtraction modifies the rectified noise

floor but does not greatly affect the signal variance.
Two noise-added DWI datasets were generated from

the eight-shell DWI by addition of Gaussian distributed

white noise using the procedure described by Pierpaoli

and Basser (27). The standard deviation values of the

added noise were 20% and 50% of the signal measured

in a typical gray matter region in the cortex, which is

equivalent to reducing the SNR by 17% and 33%,

respectively. Importantly, this procedure increases both

the signal variance and the level of the noise floor.

Modeling Frameworks: General Theory, Implementation,
and Metric Maps

For each of the aforementioned datasets with different

DWI sampling range or manipulated noise properties,

DTI, DKI, MAP-MRI, and NODDI frameworks were

applied and the relevant metric maps were generated as

follows.

DTI

The diffusion tensor was fit using TORTOISE software (22)

with nonlinear tensor fitting and maps were generated for

the Trace of the diffusion tensor, axial diffusivity (DAX),

radial diffusivity (DRAD), and fractional anisotropy (FA).

DKI

Data were fit by the DKI model using diffusion kurtosis

estimator software (4) for Linux using the default model-

ing options of weighted and constrained linear least-

squares fitting. Median filtering was turned off to elimi-

nate inappropriate data exclusion, and no smoothing or

interpolation was used. Maps for mean kurtosis (Kmean),

axial kurtosis (Kaxial), radial kurtosis (Kradial), and kurto-

sis fractional anisotropy (KFA) (28) were generated by the

software as well as DTI metrics from both the DKI fit and

a DTI-only fitting of the data.

MAP-MRI

The MAP-MRI framework (12) uses the anisotropic sim-

ple harmonic oscillator (ASHO) functions to represent

the DWI signal in “q-space” and mean apparent propaga-

tor in displacement space as a Fourier pair of series

expansions, with the lowest order term of the mean

apparent propagator being dependent on the diffusion

FIG. 1. Diffusion weighting and the MRI signal for the fixed mouse brain. (a) Diffusion-weighted images are shown for a representative
sagittal slice in the fixed mouse brain across a range of b-values (b¼100-10,000 s/mm2) with gradient directions along the dorsal-
ventral axis (top row) and left-right axis (bottom row). (b) To demonstrate the relationship between DWI data and the diffusion model,

the mean signal value within a region of gray matter is plotted for each DWI volume against the b-value at which the image was
acquired. Theoretical curves are also plotted for the diffusion model fit with the five-, six-, and eight-shell DWI sampling schemes used
in this study. (c) The same DWI data as in panel b is plotted with the theoretical curves for diffusion kurtosis imaging fit with each of the

DWI sampling scheme sets.
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tensor. In this study, the MAP-MRI computation to deter-

mine the coefficients of the ASHO series was performed

using customized IDL code (version 8.4, Excelis Visual

Information Solutions, Inc.). A 6th-order expansion was

selected for the eight-shell DWI set, and a 4th-order

expansion was used for the five-shell and six-shell DWI

sets. Previously described scalar metrics (12,29) were

generated including the return to origin probability

(RTOP), return to axis probability (RTAP), return to

plane probability (RTPP), non-Gaussianity (NG), and

propagator anisotropy (PA).
The eight-shell DWI dataset was used for the initial

tensor estimation step; however, additional investigation

of the importance of the initial diffusion tensor estimate

was performed using the five-shell DWI dataset instead.

NODDI

The NODDI model (17,30) for ex vivo data was fit using

the NODDI toolbox (http://mig.cs.ucl.ac.uk) for MATLAB

(R2013a, MathWorks, Natick, Massachusetts, USA). The

software default values for ex vivo tissue were used for

the fixed parameters of isotropic free diffusivity (DISO)¼
2000 mm2/s and intrinsic diffusivity (DIN)¼600 mm2/s.

The estimated parameters were the isotropic volume

fraction (VISO), intracellular volume fraction (VIC), and

intracellular restricted volume fraction (VIR). Metric

maps for these parameters as well as for the orientation

dispersion index (ODI) were generated and analyzed.
A secondary analysis of the consequence of the fixed

parameters was performed by implementing the model

as described above except with a change of the DIN

parameter to values over the range 200–1200 mm2/s.

Statistical Analysis

Quantitative analysis was performed using MATLAB

tools (R2014b, MathWorks). For a general depiction of

the relationship between DWI signal values and fitted

DTI and DKI curves, the mean signal intensity in a gray

FIG. 2. Metric maps and histograms for DTI, DKI, and MAP-MRI models fit using diffusion weighted data from three sampling schemes
having five, six, and eight shells. Maps are shown for a representative slice for each DWI sampling scheme and whole brain density his-
togram plots are shown (right column) for each of four mouse brain samples. Abbreviations: Kmean, mean kurtosis; NG, non-Gaussianity;

rtop, return to the origin probability.
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matter region of interest for each DWI was plotted on a

logarithmic scale against the b-value. Using the mean

values for diffusivity and kurtosis in the same region of

interest, curves were generated for the DTI and DKI sig-

nal models and plotted on the same graphs as the data

points (Figs. 1b and 1c, respectively).

Whole Brain Histograms

To analyze the effects of DWI sampling and noise on the

scalar metrics generated from each dataset, whole brain

histograms were generated for each metric map using

data from all brain voxels and a set number of uniform

width bins between user-defined limits (e.g., for FA, 0

and 1). Scalar metric maps shown alongside the histo-

gram analysis were windowed based on the same limits

that were used for histograms. In Figures 2–4, the histo-

grams for each of the four brains included in this study

are shown for each DWI sampling scheme, and in

Figures 5–8, histograms are shown from a single brain.

Difference Maps

To visualize the effects of manipulated noise properties,

difference maps were generated by simple subtraction of

the original metric maps from metric maps generated

using subtracted or added noise datasets. To represent
these maps consistently across metrics, the window levels
were adjusted based on the full-width at half-maximum
values of the original metric histogram when possible.

RESULTS

The Consequences of DWI Sampling

To provide an encompassing view of the impact of DWI

sampling across the models in this study, each metric

map that was generated using the five-, six-, and eight-

shell DWI sampling schemes is shown for the same rep-

resentative slice. Alongside maps for each metric are

whole brain histograms for each of the four brains com-

paring all DWI datasets (see Figures 2–4 and Supporting

Table S1). Generally, the histograms and maps for all

metrics demonstrated dependence on the DWI sampling,

but to a remarkably variable degree and with different

attributes of dependence across metrics. Reproducibility

of the histograms across samples was notably high.

Diffusivity and Compartmental Metrics

Maps and histograms for Trace, Kmean, RTOP, and NG

are shown in Figure 2. Trace spans a large range of

FIG. 3. Metric maps and histograms for compartmental fractions from the NODDI model fit using DWIs from different sampling schemes

having five, six, and eight shells. Maps are shown for representative slice for each DWI sampling scheme and whole brain density histo-
gram plots (right column) for each of the four mouse brain samples are shown. Abbreviations: VIC, intracellular volume fraction; VIR,

intracellular “restricted” volume fraction; VISO, isotropic volume fraction.
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values and decreased values with increased DWI sam-

pling range; however, the shape of the Trace histogram

does not depend greatly on the DWI sampling scheme.

The histograms for Kmean across different DWI schemes

were markedly different from one another in shape and

mode, indicating a strong dependence on sampling

range. The mode of the RTOP histogram was notably sta-

ble across DWI sampling schemes; however, higher b-

value sampling corresponded to increased RTOP values

for white matter voxels with a positive skew for the

higher RTOP values. The NG histograms and maps

showed marked differences across DWI schemes from an

anatomically nonspecific and noisy map for the five-shell

DWI set to a less noisy map with higher values, especially

in white matter and a bimodal distribution in the histo-

gram for the eight-shell DWI set. Maps and histograms for

the three NODDI volume fraction maps (VISO, VIC, and VIR)

are shown in Figure 3 and demonstrate variable degrees of

dependence on DWI sampling scheme, with the least effect

for the VIC fraction and greatest effect for the VIR fraction.

Cylindrical Metrics

Histogram values and maps for axial and radial scalar
metrics are shown for the three DWI sampling schemes
in Supporting Figure S2. DAX and DRAD had histogram
features similar to those for Trace, with a relatively wide
distribution of values and mode shift for greater DWI
range. The histogram analysis of KAX and KRAD revealed
an interesting difference in histogram profile for the five-
shell DWI set in which the KAX values had a noisy
appearance in the map with a flat histogram, whereas
the KRAD histogram was more normally distributed with
values that were more specifically localized to different
brain structures. For the six-shell and eight-shell DWI
sets, KAX and KRAD demonstrated behavior similar to
that of the Kmean profile. The RTPP, which is informative

FIG. 4. Metric maps and histograms to probe water anisotropy for DTI, DKI, MAP-MRI, and NODDI models fit using diffusion-weighted
data from three sampling schemes having five, six, and eight shells and density histogram plots (right column) for each metric in four
mouse brain samples show the distribution of metric values. PDF histograms are normalized bin counts of metric values (x-axis) and

CDF histograms are the cumulative normalized bin counts for the metric value. Abbreviations: FA, fractional anisotropy; KFA, kurtosis
FA; ODI, orientation dispersion index; PA, propagator anisotropy.
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of axial water displacement, demonstrated a remarkably
consistent histogram profile—whereas the RTAP, which
is informative of radial water displacement, was similar
in profile to the RTOP with no shift in mode, but had
a shape change of positive skew in the higher RTAP
values with larger b-value sampling range.

Anisotropy Metrics

Histograms and maps of FA, KFA, PA, and ODI are
shown in Figure 4. FA maps and histograms were nota-
bly similar across all DWI sampling schemes. KFA dem-
onstrates remarkable sensitivity to the DWI sampling
with high values of KFA with no remarkable spatial pat-
tern for the five-shell DWI set, and more spatially local-
ized concentration of high KFA values to white matter
regions for the six-shell and eight-shell DWI sets, but
still with wide differences in the mode of the histogram
profiles. The mode of PA for the five-shell DWI set also
demonstrated a high value, and the maps were fairly
noisy, although the highest PA values mapped to white
matter regions. Small differences in the mode were
found for PA between the five-shell and six-shell DWI
sets, with a clear shift to lower values for the eight-shell
dataset. Moreover, the eight-shell dataset showed a
bimodal distribution, with a small second peak at high

values. The ODI maps and histograms were similar for
the five-shell and six-shell DWI sets, whereas the ODI
histogram was relatively shifted for the eight-shell DWI
set which in addition to a greater range of b-values had
higher angular sampling than the other two sets.

The Consequences of Noise

Noise floor bias reduction by signal transformation
affected the models investigated differently (Figs. 5–7,
blue lines). Trace values and also axial and radial diffu-
sivity (Supporting Fig. S3) were shifted to higher values
with a greater effect found for the higher diffusivity
range, whereas the FA histogram exhibited only a slight
positive shift, but no change in shape. The mean kurtosis
and RTOP exhibited a negative shift for the lower range
of values, and the KFA demonstrated only a slight posi-
tive shift, similar to FA. The somewhat unexpected
effects of noise floor on NG and PA were decreased NG
values over the full range but a selective decrease of only
the lower PA values. Furthermore, the PA and NG differ-
ence maps showed selective vulnerability of gray matter
regions. Changes in NODDI metrics included a decrease
in VIR that was greater for white matter, decreased VIC

preferentially for low values and a slight histogram
mode shift in ODI.

FIG. 5. Effects of signal transfor-
mation and added noise for met-

ric maps related to diffusivity
and non-Gaussianity. For each

metric, whole brain histograms
are shown for modeling of the
original DWI dataset (black) and

of the same dataset following
noise floor subtraction (blue),

addition of 20% or 50% rectified
noise (orange and red, respec-
tively). To visualize the localiza-

tion of metric differences
resulting from noise manipula-
tion, difference maps are shown

for the same slice.
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The effects of added rectified noise (Figs. 5–7 and

Supporting Figure S3, orange and red lines) were gener-

ally in the opposite direction as the changes described

above, but also included more dramatic changes in his-

togram distributions. The Trace was influenced very lit-

tle by low levels of added noise, but 50% added noise

resulted in decreased values and narrowing of the dis-
tribution. The FA histogram distribution was not greatly
affected by added noise; however, the difference map dem-
onstrated a speckled appearance. Added noise substantial-
ly affected DKI and MAP-MRI metrics including increased
Kmean and RTOP values and the greatest vulnerability for
KFA, PA, and NG, which changed considerably in mode
and shape. An interesting distinction among these was the
preferential susceptibility to the effect of noise in the gray

matter regions observed for PA and NG difference maps.
The effects of added noise on NODDI metrics are a small
change to the distribution of VIR and a much more notable
change for VIC. The histogram of ODI values remained
remarkably unchanged by the addition of noise to the raw

data; however, the difference map for ODI showed
increased variability across the brain.

The Consequences of Fixed Parameters on NODDI
Metrics

Modification of the fixed parameter, DIN, in the NODDI
model produced considerable systematic changes in the
outcome metrics (Figs. 8 and 9). For extremely low
assumed DIN (200 mm2/s), the VISO was greatly increased,
whereas the other compartment fractions were decreased
and ODI was inaccurate. For extremely high assumed
DIN (1200 mm2/s), the most affected metric was VIC,
which was increased and in many voxels estimated to be

1. The VIR and ODI were less affected by assuming high
DIN, although in some regions (e.g., the hypothalamus), the
VIR exhibited a curious increase that is likely related to the
presence of DWI signal at high b-values in this region,
which also influenced the metrics of other models (e.g.,
NG, RTOP, and Kmean). The metric results from modeling
with intermediate values of DIN suggest that assuming a
low value for DIN is more consequential than assuming a
high value. In addition, fitting of the NODDI model with
DIN as a free parameter (Supporting Fig. S4) reveals hetero-
geneity in this value across the brain from 0.4 to 0.8 mm2/s
and anatomical contrast evident on the DIN map.

The Consequences of Model Selection, Constraints, and
Weighting on DKI and DTI Scalar Metrics

Investigation of DTI metrics derived from the DKI model
compared with DTI-only modeling in the DKE software
are shown in Supporting Figure S5 and indicate that MD
values are stable when derived from the DKI model, but
vulnerable to systematic bias in mode (similar to Fig. 3)
when derived from DTI-only. Whereas model order and
experimental factors of image quality and DWI sampling
were shown in this study to greatly influence DKI scalar
metrics, changing DKE software options to govern tensor
fitting—specifically, constrained compared with uncon-
strained and weighted compared with unweighted tensor
fitting options—were not found to substantially affect
histograms for Kmean of KFA (data not shown).

The Consequences of Tensor Estimation on MAP-MRI
Metrics

The initial estimation of the diffusion tensor was shown
to differentially affect several MAP-MRI indices (Fig. 10).

FIG. 6. Effects of signal transfor-
mation and added noise for met-
ric maps for compartmental

fractions from the NODDI model.
For each metric, whole brain his-

tograms are shown for modeling
of the original DWI dataset
(black) and of the same dataset

following noise floor subtraction
(blue), addition of 20% or 50%
rectified noise (orange and red,

respectively). To visualize the
localization of metric differences

resulting from noise manipula-
tion, difference maps are shown
for the same slice.
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When the DT was estimated using low b-value DWIs

instead of the full set, higher RTOP values were prefer-

entially reduced and the RTOP map showed less tissue

contrast. The PA map also showed less contrast, but

greater homogeneity in gray matter regions and the histo-

gram shape was modified. NG was greatly affected by

the initial DT estimation with increased values, histo-

gram shape changes, and low contrast in the NG map.

DISCUSSION

The present study is a systematic evaluation of the influ-

ence of image quality, DWI sampling, and model-specific

parameters across four different and prominent models

for diffusion MRI. By comparing computed scalar metrics

from different models using identical DWI datasets

designed to probe the roles of experimental factors, sev-

eral key observations were made about model complexity

and DWI sampling, the selective effects of the noise floor

and signal variance, and the consequences of model-

specific parameters.
A broad view of the maps and histogram values of sca-

lar metrics in this study reveals a wide range of suscepti-

bility to changes in DWI sampling and noise levels both

across and within models. Notably, individual

differences between brain specimens (i.e., lines of the

same color in the histograms of Figs. 2–4) were far less

consequential than the dependence of most metrics on

imaging experimental factors, which demonstrates the

challenges of interpreting observed differences in quanti-

tative diffusion MRI metrics either across or within stud-

ies conducted with different noise sensitivities or DWI

sampling schemes.

Model Complexity and DWI sampling

The potential to glean new information about biological

structure from the diffusion MRI paradigm is the primary

impetus for the development and application of advanced

diffusion modeling. For physical models, fitting of DWI

data to higher-order models can potentially characterize

water displacement in greater detail, but could also result

in an ill-conditioned problem with a larger number of

estimated parameters (i.e., DTI¼ 6, DKI¼ 21, MAP¼ 50

for order 6). The model complexity of any approach

requires collection of sufficiently many DWIs to provide

enough information for fitting the signal and to avoid vio-

lating the assumptions of the model or overfitting the

data. For example, using DTI to model high b-value data

that deviate considerably from monoexponential signal

FIG. 7. Effects of modeling DWI
data after signal transformation

(blue) and added noise (orange,
20%; red, 50%) were compared

with modeling of the original DWI
dataset (black) across anisotropy
metrics from DTI, DKI, MAP-

MRI, and NODDI. Whole brain
histograms report the distribution

of each metric generated from
datasets, and difference maps
are shown to compare and local-

ize metric value changes due to
noise manipulation.
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decay violates the model assumptions. At the same time,
estimation of non-Gaussian parameters from data with
insufficient diffusion sensitization or angular sampling
may result in incorrect and misleading metric values.

Sensitivity of modeling techniques and scalar metrics
to the DWI sampling scheme can result from instability
of a method but also from its ability to represent new
information. In this study, whole brain histogram analy-
sis was employed as a way to evaluate both the influence

of DWI sampling across models and also to provide
insight about detrimental and beneficial sensitivity of
various scalar metrics to DWI sampling. Some histogram
changes, especially the enhancement of shape features,
could indicate that the model is more capable of taking
advantage of the additional information sampled with
larger range of diffusion sensitization; therefore, it could
represent improved modeling. On the other hand, high
susceptibility of metric values to DWI sampling that is

FIG. 8. Effects of the fixed
parameter Din on the NODDI
metrics maps of VIR, VISO, VIC,

and ODI are shown by represen-
tative slices from metric maps

generated for the same DWI
dataset following NODDI model-
ing with different values for DIN.

FIG. 9. Whole brain histograms for

compartmental and orientation com-
pare the distribution of metric values

generated by NODDI modeling over a
range of DIN values corresponding to
the maps shown in Figure 8.
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not consistent with an expected improvement in sensi-
tivity or specificity would indicate lower reliability for
that metric. In this case, the comparability of data col-
lected with different sampling strategies is intrinsically
lower, and the effect of data removal because of artifacts
such as those originating from subject motion are more
consequential.

The primary DTI metrics observations in this study
were a systematic decrease of Trace values with
increased DWI sampling without considerable changes to
the histogram shape, which can be expected from the
combined effects at high b-values of gray matter signal
that is near the noise floor and white matter signal that
is dominated by restriction effects. It is notable that DTI
metrics derived from the DKI model did not exhibit this
systematic bias, which is consistent with previous work
(31). Surprisingly, FA showed little dependency on DWI
sampling. Robustness of DTI metrics to DWI sampling
could be desirable for clinical applications at the
expense of potentially not being able to extract new
information from higher b-value DWI data.

Unlike DTI, higher-order models (i.e., MAP-MRI and
DKI) showed a strong dependence on DWI sampling.
The most complex physical model investigated in this
study was MAP-MRI (12), although differences were evi-
dent among the scalar metrics. The zero-displacement
probability (RTOP, RTAP, and RTPP) metrics demon-
strated remarkable stability of mode across the full range
of DWI sampling, indicating immunity to noise floor

effects. The stability in histogram mode of the zero-
displacement metrics was accompanied by histogram
shape changes for the high value range that emerged
only when high b-values were included, suggesting
increased sensitivity to restriction effects present in
white matter. In contrast, the NG and PA metrics were
highly sensitive to the DWI sampling in a pattern that
suggests they may only be useful if DWIs are collected
for high diffusion weighting. This dependence on inclu-
sion of high b-values has also been noted for in vivo
human data and has been found to be more consequential
than balanced subsampling of a large DWI dataset (29).

DKI metrics were highly vulnerable to the effects of
DWI sampling, demonstrating considerable shape
changes for Kmean and highly sensitive histogram behav-
ior for KFA. The dependence of DKI metrics to diffusion
sampling has been emphasized in the original descrip-
tion of the model and beyond as an important consider-
ation of applying this approach (3,4). The basis for this
effect is likely the expansion from the 2nd-order DTI
model, which decreases monotonically, to the 4th-order
DKI model, which is quadratic in b-value (see Fig. 1c).
Furthermore, this dependence on DWI sampling may dif-
ferentially influence DKI metrics generated for different
tissue types or even along different axes (e.g., comparing
Krad and Kax in Fig. 3).

DWI sampling is not nearly as consequential for the
biophysical NODDI model, which has low model com-
plexity. The intracellular restricted volume fraction was

FIG. 10. The effects of initial ten-
sor estimation on MAP-MRI met-

rics. Maps of rtop, PA, and NG
are shown for the same slice
after MAP modeling performed

using an estimate for the diffu-
sion tensor based on all DWIs

(eight-shell, left column) or based
on only low b-value DWIs (five-
shell, right column). Whole brain

histograms are also shown to
report systematic differences in

MAP-MRI metrics that are the
consequence of the initial tensor
fitting. Abbreviations: NG, non-

Gaussianity; PA, propagator
anisotropy; rtop, return to the

origin probability.
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perhaps the most sensitive to DWI sampling, suggesting
that high b-value DWI data contributes in a meaningful
way to the modeling of restricted geometry by this mod-
el. The observation of systematically increased ODI with
the inclusion of higher b-value DWI data may suggest
sensitivity to DWI sampling, although the higher angular
sampling in the full DWI dataset may explain this.

Noise Floor and Signal Variance Effects

The influence of measurement noise on diffusion MRIs
becomes increasingly relevant as the model requirements
for stronger diffusion weighting increase. In previous
studies, noise has been shown to affect DTI results as a
consequence of both increased signal variance—for
example, affecting the sorting of the eigenvalues in DTI
or the measured diffusion anisotropy (27,32,33) and rec-
tified noise floor, especially as it pertains to the estimat-
ed ellipsoid shape (34). In this study, we tested the
effects of both reducing noise floor bias and adding
noise. Unlike the analysis of DWI sampling in the previ-
ous section, for which changes in histogram shape and
mode could imply either strength or weakness of the
approach, any change in the histogram due to altered
DWI noise should be considered a weakness.

A comparison of spatial variance (speckled appear-
ance) in homogeneous tissue regions of the difference
maps suggests that Trace is the most robust metric to
added noise, followed by FA. DKI metrics, especially
KFA, demonstrate high susceptibility to noise-induced
variance, and the other metrics including NG, VIC, and
ODI show intermediate susceptibility. Difference maps of
NG and PA both demonstrated dependence on tissue
type with the largest magnitude differences in gray mat-
ter regions. This may be explained by the predominance
of Gaussian water displacement in gray matter compared
with white matter.

Noise floor effects were not evident for the metrics
computed in the NODDI model, perhaps with the excep-
tion of VIC. This may be related the NODDI model
accounting for noise effects as part of the model imple-
mentation (35,36). Corrections for the effects of noise are
also included as options in the DKI modeling implemen-
tation (4) as either a simplified noise floor removal pro-
cess (37) or the option to smooth the DWI data, which
will reduce the effects of signal variance. In fact smooth-
ing of DWI data by a factor of 1.25 the voxel size is the
default setting of the DKE implementation, but this set-
ting should be carefully considered as the effect of
smoothing raw data prior to fitting may change the accu-
racy of the outcome metrics.

The Influence of Model-Specific Assumptions and
Parameter Settings

Diffusion models are not only affected by experimental
factors, but also by model fitting procedures. These may
be inherent to the model or built into the software, but
some settings or procedures require researcher input and
their selection should bear considerable importance for
appropriate modeling and interpretation. Biophysical
models by their nature depend most heavily on model
parameters and assumptions as they are defined by

assumptions about tissue geometry and how measured
DWI signal relates to the model. In the NODDI model,
two fixed parameters relate the diffusion signal to the tis-
sue model: isotropic diffusivity (DISO) and intrinsic free
diffusivity (DIN). DISO is the diffusivity of free water,
which should be well characterized, but DIN is an appar-
ent diffusivity measure and depends on hindrance of
water diffusion in the tissue environment and is hetero-
geneous across tissue types. This fixed parameter may be
changed within the NODDI toolbox, but the default fixed
values for in vivo and ex vivo DIN are 1700 mm2/s and
600 mm2/s, respectively, based on their expected values
(17,30,36). The effect of manipulating DIN in the current
study (Figs. 8 and 9) outweighed the effects of experi-
mental factors and resulted in both systematic changes
(i.e., histogram shifts) and tissue-selective effects. When
DIN was left as a free parameter, there was a distribution
of fitted values between 400 and 800 mm2/s and the sca-
lar map for DIN revealed some anatomical structure
emphasizing the heterogeneity of this value across the
tissues of the brain and suggesting that selection of a
fixed value may influence the appropriateness of the
model for all tissues (see Supporting Fig. S4). Beyond out-
comes of bias and reduced precision of this modeling
approach, other reports have found that the selection of
fixed parameters in a two-compartment NODDI model
may drive the solutions toward distinct and disconnected
local minima (38). Although the strong dependence of the
NODDI model on the selection of DIN should be expected,
it is also important to emphasize its influence on com-
partmental and orientation metrics as a caveat for imple-
menting this model and interpreting the resulting maps.

Physical models do not require the selection of fixed
parameters, but each model has a set of assumptions, fit-
ting constraints, or implementation settings that may
affect the outcome metrics and their interpretation. For
example, the estimation algorithm, weightings, and con-
straints can affect the fitting accuracy of DTI (39) and DKI
(4). In the present study, the application of constraints
and weightings for tensor fitting by the DKE software was
not nearly as consequential as experimental factors such
as image quality or DWI sampling. In MAP-MRI, the range
of DWI data that is used for the initial estimation of the
diffusion tensor can affect the estimation of propagator
metrics. The primary arguments for using only low b-
value data for initial DTI estimation are a straightforward
interpretation of the NG measures that is consistent with
the existing corpus of DTI literature. The primary argu-
ments for using the entire DWI range for initial DTI esti-
mation are lower fitting errors and a more accurate
estimate of tensor orientation. Evidence for improved
maps using the full DWI set for tensor estimation is
shown in Figure 8 and also in the seminal paper (12), yet
both approaches are meaningful in different ways that
should be considered for interpretation of MAP indices.

CONCLUSIONS

As diffusion models increase in complexity and begin to
include relevant biological information more directly, it
becomes important to identify the new capabilities of
these approaches and also to place them into context. In
the present study, ex vivo specimens were used, which
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limit the generalization of these findings to the in vivo

brain, but allow for comprehensive sampling and high

quality DWIs that enable this type of investigation. By

systematic evaluation of four representative and popular

diffusion models in comprehensive, high-quality DWI

datasets, observations regarding the influence of image

quality, DWI sampling, and model parameters revealed

fundamental differences between models and practical

insight about implementation of the approaches. In par-

ticular, model-specific parameters greatly affected the

NODDI metric values, although they were highly stable

across DWI sampling and image quality. On the other

hand, several metrics from the DTI and MAP-MRI mod-

els were dependent on DWI sampling, and DKI metrics

were highly sensitive to the effects of DWI sampling and

noise. Although no single model stands apart from the

others as the best tool, this investigation provides

context for understanding, selecting, and effectively

implementing diffusion MRI modeling approaches in

neurobiological research.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article

Table S1. Values for the quantitative comparison of scalar metrics are pro-
vided including the relative error to compare the mean value of each metric
obtained using six-shell and eight-shell sampling to the value obtained with
five-shell sampling where greater values indicate a greater histogram shift.
The coefficient of variation is also given for each scalar metric obtained
using different DWI sampling to describe the relative variability across data-
sets where greater values indicate grater variability. Only metrics for which
histograms were unimodal are reported (i.e. NG, VIR, and VISO are
excluded).

Fig. S2. Metric maps and histograms to probe water movement along the
primary eigenvector (Dax, Kax, and rtpp) and perpendicular to it (Drad,
Krad, and rtap). DTI, DKI, and MAP-MRI models were fit using diffusion-
weighted data from three sampling schemes having 5, 6, and 8 shells and
density histogram plots (right column) for each metric in 4 mouse brain
samples show the distribution of metric values. Metric map abbreviations:
Dax, axial diffusivity; Drad, radial diffusivity; Kax, axial kurtosis; Krad, radial
kurtosis; rtap, return to the axis probability; rtpp, return to the plane
probability.
Fig. S3. The effects of signal transformation and added noise are shown
for metric maps for cylindrical components from the DTI, DKI, and MAP
models. For each metric, whole brain histograms are shown for modeling
of the original DWI dataset (black) and of the same dataset following noise
floor subtraction (blue), addition of 20% or 50% rectified noise (orange and
red respectively). To visualize the localization of metric differences resulting
from noise manipulation, difference maps are shown for the same slice.
Fig. S4. Interstitial diffusivity (DIN) as a free parameter. The NODDI made
was fit with DIN left as a free parameter and the scalar image (left) and his-
togram of values are shown in this figure. Notably, DIN spans a range of
values and appears to demonstrate some dependence on tissue type.
Fig. S5. The effects of DWI sampling scheme on DTI metrics derived from
the DKI model (MD-DKI and FA-DKI) or from the DTI model using the DKE
implementation (MD-DTI-DKE and FA-DTI-DKE). The MD maps and histo-
gram mode and shape are relatively stable across the full range of DWI
sampling schemes when estimated from the DKI model, but demonstrate
DWI sampling dependence when estimated from the DTI model alone.
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