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The first years of life are a period of intense brain 
maturation and learning. It is a major challenge for 
young infants to acquire the capacities to navigate their 
complex environment. They have to make sense of 
the ends of their own actions through experiencing the 
proprioceptive effects of their body movement. At the 
same time, they have to acquire a basic understanding 
about the behavior of the physical and social entities 
in their environment. On the physiological level, this 
learning process relies on the continuous formation and 
pruning of connections in neuronal networks, which 
allows infants to interpret sensory information and 
translate their experience into appropriate behavioral 
responses in increasingly sophisticated ways. However, 
on the functional level, it remains an open theoretical 
and empirical question which basic principles underlie 
infants’ early brain development and learning.

An influential theoretical account from cognitive 
neuroscience posits that the formation and refinement 
of predictive models is a major working principle of 
the human brain and that the main purpose of learning 

processes is to minimize prediction errors. The predictive-
processing (PP) perspective originated from the basic 
computational problem that successful navigation in 
the environment relies on the organism’s ability to opti-
mize predictions about how one’s own behavior will 
affect proprioceptive experiences (Helmholtz, 1867) 
and how social and physical entities in the outer world 
behave (e.g., Clark, 2013; Schubotz, 2015). Although 
the basic idea of the PP framework very closely resem-
bles the challenges described for learning processes in 
young infants, researchers have only recently begun to 
investigate PP mechanisms in infancy (Emberson, Richards, 
& Aslin, 2015; Kayhan, Heil, et  al., 2019; Kayhan, 
Hunnius, O’Reilly, & Bekkering, 2019; Kayhan, Meyer, 
O’Reily, Hunnius, & Bekkering, 2019; Kouider et al., 2015). 
The PP account has been related to several phenomena 

895071 PPSXXX10.1177/1745691619895071Köster et al.Infant Learning
research-article2020

Corresponding Author:
Moritz Köster, Freie Universität Berlin, Faculty of Education and 
Psychology, Habelschwerdter Allee 45, 14195 Berlin, Germany 
E-mail: moritz.koester@fu-berlin.de

Making Sense of the World: Infant Learning  
From a Predictive Processing Perspective

Moritz Köster1,2,3 , Ezgi Kayhan1,4 , Miriam Langeloh1,5 , 
and Stefanie Hoehl6
1Max Planck Institute for Human Cognitive and Brain Sciences; 2Faculty of Education and Psychology,  
Freie Universität Berlin; 3Department of Psychology, Graduate School of Letters, Kyoto University; 
4Department of Psychology, University of Potsdam; 5Department of Psychology, Heidelberg University; and 
6Department of Developmental and Educational Psychology, Faculty of Psychology, University of Vienna

Abstract
For human infants, the first years after birth are a period of intense exploration—getting to understand their own 
competencies in interaction with a complex physical and social environment. In contemporary neuroscience, the 
predictive-processing framework has been proposed as a general working principle of the human brain, the optimization 
of predictions about the consequences of one’s own actions, and sensory inputs from the environment. However, the 
predictive-processing framework has rarely been applied to infancy research. We argue that a predictive-processing 
framework may provide a unifying perspective on several phenomena of infant development and learning that may 
seem unrelated at first sight. These phenomena include statistical learning principles, infants’ motor and proprioceptive 
learning, and infants’ basic understanding of their physical and social environment. We discuss how a predictive-
processing perspective can advance the understanding of infants’ early learning processes in theory, research, and 
application.
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in developmental psychology, including mentalizing 
about own and others’ internal bodily and mental states 
(Fotopoulou & Tsakiris, 2017; Palmer, Seth, & Hohwy, 
2015), early language acquisition (Trainor, 2012), and 
autism spectrum disorder (e.g., Bolis & Schilbach, 2018; 
Lawson, Rees, & Friston, 2014; Pellicano & Burr, 2012; 
Sinha et al., 2014; Van de Cruys et al., 2014). However, 
it is still unclear how PP can inform our perspective on 
early learning processes more generally and whether it 
can be considered a unified framework to guide our 
understanding and research on cognitive development 
in the early infant years.

In this perspective article, we briefly summarize the 
core idea of the PP framework before highlighting how 
a PP perspective may provide a unifying account for 
several phenomena of infants’ early learning. Phenomena 
that fit neatly into the PP explanatory framework 
include infants’ statistical learning, motor learning, and 
proprioception as well as their emerging representa-
tions and expectations about the physical world. Finally, 
we discuss directions for future theoretical and empiri-
cal work.

Predictive Processing

The roots of the PP account go back to basic motor 
learning principles in the sense that the brain has to 
generate predictions of the organism’s own motor out-
comes (Helmholtz, 1867; for reviews on the theoretical 
origins, see Clark, 2013; Schubotz, 2015). This basic 
principle has recently been generalized and discussed 
as a basic working principle of the human brain (e.g., 
Friston, 2005, 2010). The principal problem the brain 
has to solve is the successful behavioral navigation in 
a dynamic physical and social environment. Every novel 
situation comes with uncertainties, which result from 
incomplete, noisy, and sparse sensory information. 
When perceiving and interacting with the environment, 
the brain has to deal with these uncertainties by making 
inferences and generating appropriate behavioral 
responses (Friston, 2005, 2010). That is, sensory inputs 
provide only highly incomplete information about a 
complex environment, and the sensory information 
available to the organism is highly variable and changes 
with its behavioral navigation. It is therefore essential 
for the brain to improve inferences on the basis of sen-
sory inputs and minimizing prediction errors (Clark, 2013; 
Friston, 2005, 2010; Hohwy, 2007; Kwisthout, Bekkering, 
& van Rooij, 2017). As prediction errors are reduced, 
the accuracy of internal predictive models is increased 
(Friston, 2005, 2010). However, predictive models 
should not be misunderstood as rigid solutions to reoc-
curring situations but as a likelihood maximization of 
generative models based on former experiences. The 
adaptability of predictive models allows for adjustments 

to changing environments, including new social and 
physical contexts. Thus, the refinement of predictive 
models (i.e., the reduction of prediction errors) through 
learning allows the organism to interact with the envi-
ronment in more and more competent ways.

A central idea of the PP framework is that the brain 
consists of lower and higher level areas, organized in 
a hierarchical system, and that the different levels con-
tinuously communicate with one another (Friston, 2005, 
2010). Predictions are formed at every level of the hier-
archy, from basic motor responses to higher reasoning, 
that is, from predictions about the outcomes of the 
organism’s own actions (i.e., active inferences) to pre-
dictions about the physical world and actions and inten-
tions of other agents (FeldmanHall & Shenhav, 2019; 
Kilner, Friston, & Frith, 2007; Koster-Hale & Saxe, 2013). 
Mismatches between what is predicted and what is 
perceived are critical incidences for learning. Prediction 
errors are sent back to higher levels in the hierarchy, 
where the prediction was made, to update existing 
predictions and thereby improve predictive models.

For instance, an infant may try to grab a ball at a 
particular location according to their internal predictive 
model of where the ball should be. If the ball has rolled 
away in the meantime, the prediction error (grabbing 
air instead of ball) is fed back to higher order areas 
involved in the prediction. The infant can now update 
their predictions on how the ball behaves (perceptual 
inference) or change the sensory input by moving their 
arm to where the ball is located (active inference) to 
minimize the prediction error. Yet, on a higher hierarchical 
level, the infant may understand that this ball was too 
fast for them to reach or even too far away, such that 
the infant would have to relocate their body to be able 
to reach the ball.

Predictive Processing Perspective  
on Infant Learning

In the following section, we highlight how the PP frame-
work may offer a general account for several aspects of 
infant learning. We start with very basic learning pro-
cesses, focusing on infants’ statistical learning, and con-
tinue with infants’ motor and proprioceptive learning 
as well as their early physical and social understanding. 
These phenomena fit neatly within the basic principles 
of the PP framework.

Statistical learning in infants

Bayesian accounts of brain functioning posit that the 
brain constantly computes the probability of events in 
the environment on the basis of incoming sensory infor-
mation (Friston, 2005; Knill & Pouget, 2004). By acquiring 
statistical regularities of the environment, the organism 
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forms probabilistic models of its environment. This makes 
statistical learning an essential mechanism in forming 
generative models of the environment on the basis of 
which predictions are made.

There is ample evidence in the literature showing 
that human infants generate probabilistic models to 
represent statistical regularities in their environment 
(Gopnik & Bonawitz, 2015; Ruffman, Taumoepeau, & 
Perkins, 2012). In their seminal work, Saffran, Aslin, 
and Newport (1996) showed that infants learn to seg-
ment artificial language on the basis of statistical infor-
mation such as transitional probabilities between 
elements. In the habituation phase of their experiment, 
they presented 8-month-old infants pseudowords con-
sisting of syllables that always followed each other (i.e., 
transitional probability of 1.0). In the test phase, they 
showed infants previously presented pseudowords as 
well as nonwords and used a novel syllable order. 
Infants looked longer at nonwords, which indicated 
that they learned the predictive structure of the pseu-
dowords (for a recent review, see Saffran & Kirkham, 
2018). Today, infants’ statistical learning has been inves-
tigated extensively within different domains, including 
visual (Kirkham, Slemmer, & Johnson, 2002) and action 
domains (Monroy, Gerson, & Hunnius, 2017).

It seems reasonable to assume that the infant brain 
employs statistical learning principles to form predic-
tions about basic contingencies in the environment, 
which is essential for the basic assumptions of the PP 
framework on the formation and optimization of pre-
dictive models. Below, we argue that the explanatory 
power of the PP framework is not restricted only to 
statistical learning. The PP framework provides a much 
broader theoretical framework on brain function and 
organization, including several aspects of behavioral 
navigation and concepts of the physical and social 
environment.

Infants’ motor learning and 
proprioception

Early evidence for infants’ behavioral adaptation to con-
tingencies in their environment are their behavioral 
responses in associative-learning paradigms. For exam-
ple, Ivkovich, Collins, Eckerman, Krasnegor, and Stanton 
(1999) first reported a conditioned eye-blink response 
when a tone was presented shortly before an air puff 
in 4- and 5-month-olds. Later, researchers showed that 
even 1-month-old infants can acquire a conditioned 
eye-blink response to social and nonsocial voice stimuli 
(Reeb-Sutherland et  al., 2011). Thus, already young 
infants learn contingencies in their environment, in the 
basic sense of Hebbian learning (Hebb, 1949).

From early on, infants also learn about the conse-
quences of their own actions in the environment. 

Rovee-Collier (1999) demonstrated that from 2 months 
onward, infants learned that a mobile connected to 
their feet moved in response to their own movement, 
as indicated by an increased kicking rate, in contrast 
to a condition in which the mobile was not connected 
to their feet. Infants even further increased their kicking 
rate when the mobile was disconnected, which indi-
cates that they were trying to reproduce the effect (for 
a review, see Gerhardstein, Dickerson, Miller, & Hipp, 
2012). Critically, computer simulations suggest that 
infants’ increased kicking in the absence of an effect 
cannot be explained by simple action-effect binding, 
but it rather indicates that infants formed a causal link 
between the effect and their actions (Zaadnoordijk, 
Otworowska, Kwisthout, & Hunnius, 2018). The authors 
showed that a simulated infant robot, functioning on 
operant-conditioning principles without representing 
cause–effect relations, also increased its kicking rate 
when it was connected to the mobile but did not further 
increase its kicking after the mobile was disconnected. 
This finding suggests that infants represent their own 
actions (i.e., kicking) as the cause of effects in the 
world (i.e., moving mobile). This idea is in line with 
the idea that infants build up predictive models in inter-
action with their environment. When the effect ceases 
to appear (i.e., disconnected mobile), a prediction error 
occurs, and infants increase their effort (active infer-
ence) to adjust the world to their predictive models.

By the same token, infants’ own interactions with the 
environment inform their increasingly sophisticated 
understanding of others’ goal-directed actions (Stapel, 
Hunnius, Meyer, & Bekkering, 2016). When 3-month-old 
infants are provided with artificial grasping experiences 
through sticky mittens (gloves that facilitate infants’ 
grasping experience), their sensitivity to an actor’s goal 
increases (Sommerville, Woodward, & Needham, 2005). 
Furthermore, 6- to 10-month-old infants with high com-
petencies to perform goal-directed grasping actions 
themselves are also better at predicting goal-directed 
grasping actions performed by others (Kanakogi & 
Itakura, 2011). Thus, infants seem to be able to use their 
own action-effect representations to make predictions 
about other agents’ action goals, which suggests a close 
link between action generation and prediction (see also 
Keysers & Perrett, 2004).

This idea was formalized in a Bayesian model of 
infant imitation that suggested that infants’ early motor 
behavior (“motor babbling”) serves the generation of 
internal models and maps movements to consequences 
(Rao, Shon, & Meltzoff, 2007). In the form of forward 
models, these internal models can then be used to 
predict the consequences of one’s own actions as well 
as the goals of another person’s actions, which allows 
for (intention-based) imitation learning. Although the 
earliest forward models in motor development that 
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likely begin to be formed in utero may not necessarily 
depend on prediction errors, later imitation learning 
seems to be, at least partly, fueled by infants’ drive to 
minimize prediction error. For instance, infants are 
more likely to imitate a novel action when it is unex-
pected (e.g., because it is inefficient given the situa-
tional constraints of the model; Gergely, Bekkering, & 
Király, 2002). Observing such unexpected actions 
induces increased motor activation in the infant brain, 
which potentially reflects the updating of prior action 
predictions (Langeloh et al., 2018).

Evidence for changes in infants’ active inferences 
about their own actions have been demonstrated 
explicitly with regard to their walking abilities, which 
emerge around the first birthday (Adolph & Tamis-
LeMonda, 2014). Walking upright provides infants with 
a novel view on their physical world (Campos et al., 
2000; Franchak, Kretch, Soska, & Adolph, 2011) that 
demands that they form novel predictive (propriocep-
tive and visual) models of the outcomes of their newly 
acquired actions. This has been shown for infants’ wari-
ness of heights. Just when infants begin to walk upright, 
they tend to readily walk and fall down a steep cliff of 
90 cm (Adolph, 2000), whereas they would not, at the 
same age, go down this cliff in a crawling posture. 
However, when infants had experiences with upright 
walking in a baby walker, before they had begun to 
walk autonomously (i.e., making similar proprioceptive 
and visual experiences as in a walking posture), they 
could estimate the height of the cliff and avoid it (Dahl 
et al., 2013). Thus, infants adjust their predictive models 
about their novel abilities to interact with the environ-
ment on the basis of their prior sensory experiences 
(i.e., making sensory and active inferences; see also 
Anderson et al., 2013).

Given the uncertainties that come with infants’ 
emerging capacities for walking, why do infants begin 
to walk in the first place? In developmental robotics, 
the imperative to learn about one’s own motor capaci-
ties is often cast in terms of an intrinsic motivation 
(see also the concept of motor babbling; Barto, Mirolli, 
& Baldassarre, 2013; Friston et al., 2015, Kaplan & 
Oudeyer, 2007; Schmidhuber, 2010). We argue that 
intrinsic motivation is an integral aspect of PP that 
forms an important component of active inference. In 
active inference, agents form not only inferences about 
the causal structure that underlies their sensations but 
also inferences about specific actions that will minimize 
prediction error in the long run (Attias, 2003; Botvinick 
& Toussaint, 2012; Friston et al., 2015). That is, agents 
select those actions that resolve the greatest amount of 
uncertainty or, in short, that resolve uncertainty about 
“what would happen if I did that” (Schmidhuber, 2006). 
Resolving this uncertainty is exactly the intrinsic moti-
vation or epistemic value associated with exploration 

of one’s own motor capacities (Saegusa, Metta, Sandini, 
& Sakka, 2009). As we discuss below, these consider-
ations link PP to infants’ curiosity and exploration (i.e., 
choosing actions that afford the “opportunity for predic-
tion error”), which is conceptually related to the notion 
of proximal development (Vygotsky, 1978). At this 
stage, it is sufficient to note that PP under active infer-
ence renders novelty seeking and responding to epis-
temic affordance a natural part of the way we forage 
for information in the service of self-modeling (and 
self-evidencing). These considerations closely corre-
spond to the notion that young infants not only learn 
to move but also move to learn (e.g., Adolph, 2008).

These developmental phenomena in the motor 
domain neatly fit within the PP explanatory framework. 
Specifically, young infants already show appropriate 
motor responses to anticipated events in their environ-
ment and learn the consequences of their own actions 
on the basis of proprioceptive experiences in the inter-
action with their environment.

Infants’ basic understanding about 
their environment

Infants’ early learning about their social and physical 
environment is often discussed in terms of the forma-
tion of basic representations (e.g., Reid et  al., 2009; 
Spelke, 1990; Wynn, 1992). Infants focus their attention 
selectively on novel events and objects with which they 
are not familiar (novelty preference; Fantz, 1965). That 
is, infants lose interest in perceptual stimuli that they 
have repeatedly encountered (habituation), and their 
attention revives for novel stimuli (dishabituation). 
Traditionally, infants’ interest in novel events and 
objects has been described in terms of a comparator 
model (Sokolov, 1963, 1990): When orienting toward a 
stimulus, the infant compares the sensory information 
with an existing neuronal representation. If the current 
stimulus deviates from the existing representation, an 
orienting response leads to increased attention and the 
formation or update of a neuronal representation of the 
respective stimulus.

Critically, it has recently been acknowledged in cogni-
tive science that there is no one-on-one correspondence 
between sensory inputs and mental representations. For 
instance, the sensory information of a stimulus changes 
dramatically after movements in relation to the specific 
stimulus, which requires the organism to understand the 
contingencies between behavioral responses and 
changes in sensory input (O’Regan & Noë, 2001). Thus, 
the main purpose of processing sensory information is 
not the mere representation of the external world but 
the generation of appropriate behavioral responses by 
making inferences on the consequences of behavioral 
responses for sensory inputs (sensorimotor contingency 
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perspective; Engel, Maye, Kurthen, & König, 2013; 
O’Regan & Noë, 2001). In this sense, in contrast to the 
acquisition of representations, from a PP perspective, 
infants’ learning may be conceptualized as the formation 
and refinement of predictive models about animate and 
physical entities in relation to the infant’s own body 
movements and actions.

Infants’ emerging understanding about the physical 
and social world is commonly investigated by using 
violation-of-expectation (VOE) paradigms. In VOE par-
adigms, infants’ orienting response (Sokolov, 1963, 
1990) is taken as an indicator of infants’ basic concepts 
about the environment. Unexpected events that violate 
physical or social rules lead to differential responses in 
infants’ gaze behavior (e.g., Wynn, 1992), pupil dilation 
(Gredebäck & Melinder, 2010), and event-related brain 
responses (Berger, Tzur, & Posner, 2006; Köster, Langeloh, 
& Hoehl, 2019; Langeloh et al., 2018; Reid et al., 2009). 
For example, infants detect impossible physical events 
(e.g., a ball rolling through a wall; Spelke, Breinlinger, 
Macomber, & Jacobson, 1992), changes in numbers 
(e.g., changes in the number of toys behind an occluder; 
Simon, Hespos, & Rochat, 1995; Wynn, 1992), or irra-
tional human actions (e.g., a pretzel that is put toward 
the ear instead of the mouth; Reid et al., 2009). The PP 
perspective offers a plausible explanation for infants’ 
VOE responses across social and physical knowledge 
domains. VOE responses indicate infants’ processing of 
prediction errors, which require them to refine prior 
predictions (i.e., update their predictive models) or, put 
more simply, learning. It was formerly emphasized that 
unexpected events provide infants with novel oppor-
tunities to learn (Baillargeon, 2004; Leslie, 2004; Stahl 
& Feigenson, 2019). In support of this view, a recent 
study of 11-month-old infants demonstrated an increase 
in subsequent exploration and hypothesis-testing behav-
ior by the infants for objects that behaved in an unex-
pected way (Stahl & Feigenson, 2015). Thus, infants 
actively seek to reduce their uncertainties, which may be 
particularly important for objects that do not comply with 
their existing predictive models.

In sum, the PP account provides a framework that is 
compatible with several well-known phenomena regard-
ing infants’ processing of novel and unexpected informa-
tion in their environment. That is, beyond the comparator 
model, it also holds as an explanatory framework for the 
processing and imitation of unexpected actions and the 
exploration behavior toward objects that behaved in an 
unexpected way. Furthermore, the PP perspective on 
infants’ early understanding of their environment high-
lights that these phenomena are largely compatible with 
the paradigm shift in the cognitive sciences, away from 
a representation-based account toward an enacted 
account of human cognition (Engel et al., 2013; O’Regan 
& Noë, 2001).

Future Perspectives

By sorting different developmental phenomena roughly 
along their level of complexity, we have pointed out 
how infants learn, from very early in life, to predict the 
effects of their own actions and basic regularities in 
their environment and how they use novel experiences 
to adjust their predictive models. We will now discuss 
how a PP perspective can advance our understanding 
of infants’ early social learning and its implications for 
future research.

Mastering uncertainties: A motivation 
to learn and a need for structure

A critical aspect of the PP perspective is that the organ-
ism seeks to form predictive models to handle uncer-
tainties. Friston (2010) based this consideration on the 
free energy principle and stated that organisms seek to 
reduce entropy. This idea has intriguing implications 
for infants’ motivation to explore and learn from their 
environment and likewise for their preference for 
behavioral regularities. From a PP perspective, the moti-
vation to learn, to reduce prediction errors, may be a 
self-sufficient process that explains infants’ curiosity 
(i.e., their intrinsic motivation to explore; Twomey & 
Westermann, 2018) and interest in novel objects, events, 
and activities (Stahl & Feigenson, 2019; see also the 
section on infants’ motor learning and proprioception). 
The emphasis is on building up and optimizing internal 
models (i.e., the importance of novelty seeking and the 
epistemic value in early exploratory behavior). In this 
instance, exactly the same principles that underlie motor 
exploration may also drive infants’ general exploratory 
tendencies—resolving uncertainty about the way that 
the world works (see also Kayhan & Kwisthout, 2017, 
p. 10).

For young infants, interacting with social agents in 
particular comes with many uncertainties given that the 
thoughts and intentions of other individuals are largely 
hidden and people often act differently in similar situ-
ations (FeldmanHall & Shenhav, 2019). FeldmanHall 
and Shenhav (2019) argued that specific strategies have 
evolved to improve predictions in a social context, 
including impression formation and perspective taking. 
Furthermore, Bayesian models of social learning, 
including epistemic trust and imitation, take advantage 
of the fact that probabilistic models enable the integra-
tion of multiple kinds of data (i.e., statistical and social 
information; e.g., Gopnik & Bonawitz, 2015; Rao et al., 
2007; Shafto & Goodman, 2008). We would like to add 
to these considerations that human social norms, behav-
ioral codes within social groups that regulate human 
social interactions, may have evolved, to some extent, 
to reduce uncertainties in the social world (for a similar 
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argument, see Veissière, Constant, Ramstead, Friston, & 
Kirmayer, 2019). From early on, infants seek to under-
stand (Köster & Hepach, 2019), comply with (Haun, 
Rekers, & Tomasello, 2014), and enforce social norms 
(Rakoczy & Schmidt, 2013). In a similar vein, it has been 
argued that social learning, resulting in decreased pre-
diction errors in complex social exchanges, may thus 
be inherently rewarding and, at the same time, help 
others to reduce their prediction errors (de Bruin & 
Michael, 2018). Thus, a PP perspective has theoretical 
implications for infants’ motivation to learn about their 
complex social environments and their preference for 
structured environments.

Limitations of the predictive 
processing account

Despite its success, the PP framework has gotten its 
share of criticism. One of the main criticisms of the 
framework regards its claim to be a unifying theory of 
the brain (Colombo & Wright, 2017; Klein, 2018). 
Colombo and Wright (2017) argued that the brain is a 
complex interplay between multiple systems, which 
renders any grand unifying hypothesis unjustified. 
Instead, neuroscientific progress is suggested to rely on 
experimental and theoretical work trying to answer 
different smaller questions simultaneously. Another 
major criticism of the PP framework regards its test-
ability. For example, Kogo and Trengove (2015) have 
argued that the PP framework does not specify how 
the more fine-grained neuronal mechanisms underlying 
the basic computational principles, such as error com-
putation and minimization, are implemented in the 
neurophysiology of the brain.

Applying these critiques to infancy research, central 
questions are (a) how a unifying perspective on several 
learning phenomena may advance our overall under-
standing of infant brain development and learning and 
(b) which specific testable hypotheses we can derive 
from a PP perspective on infant learning.

Understanding predictive processes  
in the infant brain

It is, in our view, remarkable how a PP framework is 
compatible with and unifies central phenomena in 
infants’ early learning at very different levels, from sta-
tistical learning to motor development and social learn-
ing. However, research on PP in the infant brain is in 
its infancy. Although there is accumulating evidence that 
the adult brain might be working on the basis of the 
principles of the PP framework (e.g., Egner, Monti, & 
Summerfield, 2010; Wacongne et al., 2011), our knowl-
edge on the predictive nature of the infant brain is sparse 
(but for recent research on PP in infants, see Emberson 

et al., 2015; Kayhan, Heil, et al., 2019; Kayhan, Hunnius, 
et al., 2019; Kayhan, Meyer, et al., 2019; Kouider et al., 
2015). These studies provided initial evidence that the 
infant brain is already capable of forming predictions 
on the basis of prior knowledge and physiologically 
responds to violations of these predictions.

Oakes and Rakison (2019) have pointed out that 
developmental attainments built on each other and that 
early developmental changes in a specific domain lay 
the ground for future developments. This idea corre-
sponds closely to a cornerstone of Bayesian learning: 
Each time new evidence is received, the prior (predic-
tive model) is updated to a new posterior (adjusted 
model), which becomes a new prior for making infer-
ences when next evidence is observed. To give an 
example: Priors of the visual environment in relation 
to the body are updated when the infant learns to stand 
up or is put in a walker. The adjusted models then help 
the infant navigate the environment when moving on 
two feet (Dahl et al., 2013). Furthermore, according to 
Oakes and Rakison (2019), developmental cascades 
originate in the structure and development of the ner-
vous system. This notion is highly interesting regarding 
the hierarchical structure proposed by the PP frame-
work. Predictive models are formed at each level of the 
hierarchy and in different domains, and the interplay 
between different levels and domains is not well understood. 
For example, many physical and social concepts emerge 
before infants can put them into words (e,g, Bergelson & 
Swingley, 2012) or action (e.g., Köster, Itakura, Omori, & 
Kärtner, 2019; see also Köster & Kärtner, 2019), which 
suggests that these cognitive capacities develop inde-
pendently from specific motor abilities. For future 
research, it will be intriguing to understand the develop-
ment at different levels of the hierarchy and interdepen-
dency between different hierarchical levels.

From a developmental cognitive neuroscience view, 
crucial questions are at which ages specific predictive 
processes develop and how these relate to structural and 
neuro-computational changes in the maturing infant 
brain. Is the infant brain indeed a “prediction machine” 
(cf. Clark, 2013), constantly generating predictions about 
own action outcomes and the social and physical world? 
How do infants use prediction errors to update predictive 
models? Which are the neural markers of the formation 
and refinement of predictive models in the infant brain? 
Which are the optimal learning conditions, and how big 
should prediction errors be to facilitate the updating of 
internal models? How do these computational foundations 
interact with basic human needs and motives? Answering 
these questions will be essential to better understand how 
the PP framework can inform our conception of infant 
learning and early cognitive development.

From an applied perspective, understanding PP in 
the context of infant brain development and learning 
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may guide the design of child care and learning envi-
ronments. For example, these environments could be 
designed to stimulate infant learning by offering an 
optimal balance between predictability (so as not to 
overwhelm infants) and opportunity for prediction error 
such that infants can build up and fine-tune more and 
more complex and precise internal models of the world 
(closely resembling the Vygotskian idea of proximal 
development; Vygotsky, 1978). Moreover, it has recently 
been argued that a predictive processing account as a 
general framework for early human development may 
have important implications for developmental robotics 
(Nagai, 2019).

Overall, although the PP framework is a prevailing 
account of human brain functioning and organization, 
it has, to date, been applied only to specific domains 
of early human development and learning. We have 
highlighted how the PP account may provide a useful 
and unified theoretical framework to understand a 
range of developmental phenomena in early infancy. 
For a better understanding of PP in the infant brain, it 
will be crucial to much better understand basic com-
putational principles of PP at early developmental 
stages and show their implications for developmental 
trajectories across several domains of infant learning. 
This work would make a strong case for the PP as a 
general framework for research and theory on infant 
development and learning.
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