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A B S T R A C T

Microorganisms can be genetically engineered to solve a range of challenges in diverse including health, environmental protection and sustainability. The natural
complexity of biological systems makes this an iterative cycle, perturbing metabolism and making stepwise progress toward a desired phenotype through four major
stages: design, build, test, and data interpretation. This cycle has been accelerated by advances in molecular biology (e.g. robust DNA synthesis and assembly
techniques), liquid handling automation and scale-down characterization platforms, generating large heterogeneous data sets. Here, we present an extensible Python
package for scientists and engineers working with large biological data sets to interpret, model, and visualize data: the IMPACT (Integrated Microbial Physiology:
Analysis, Characterization and Translation) framework. Impact aims to ease the development of Python-based data analysis workflows for a range of stakeholders in
the bioengineering process, offering open-source tools for data analysis, physiology characterization and translation to visualization. Using this framework, biologists
and engineers can opt for reproducible and extensible programmatic data analysis workflows, mediating a bottleneck limiting the throughput of microbial engineering.
The Impact framework is available at https://github.com/lmse/impact.
1. Introduction

Microorganisms serve important roles in diverse areas of fundamental
and applied research such as health and sustainability. Modern tools in
biotechnology have accelerated the characterization and engineering of
microbes to face these new challenges. In the past two decades, there
have been significant advancements in the field of systems biology, to
rapidly characterize and develop models for organisms of interest
(Metzker, 2009; King et al., 2015b), and in the field of synthetic biology,
to design and synthesize biological constructs (Hillson et al., 2012;
Cameron et al., 2014). Simultaneously, laboratory throughput has been
significantly increased, owing to advanced analytics and automation
(Huber et al., 2009; Jacques et al., 2017). These advancements have
drastically improved our understanding and ability to engineer biology to
solve new challenges (Lee et al., 2012).

From cell culture experiments, a microbe's physiology and metabolic
state can be assessed, often studied in batch, semi-batch, or chemostat
culture. To engineer these microbes, their metabolism is perturbed based
on metabolic hypotheses to be tested. This process is generally iterative,
composed of four main stages: design, build, test, and learn (DBTL) (Liu
et al., 2015). Although our understanding of microbes is rapidly
improving, reaching desired microbial performance requires many cycles
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through this process. Metabolic engineering continues to strive for
modular and predictable designs common to other engineering disci-
plines (Nielsen et al., 2016; Salis et al., 2009; Olson et al., 2014), but the
complexity of metabolism imposes significant challenges.

To overcome this lack of predictability, large libraries of strains can
be developed and characterized. To improve the throughput, fermenta-
tions have been scaled-down to a microtiter plate and even to the droplet
scale (Wang et al., 2014), generating significant amounts of features (e.g.
analytes) to understand the metabolism of the microorganism(s)
involved. The complexity of acquiring key data types can vary signifi-
cantly, especially at different fermentation scales; accordingly, the
measured data types can vary significantly. At the bioreactor scale,
on-line pH, dissolved oxygen, and feed additions are commonly moni-
tored. Modern methods also exist to monitor these features at the
microplate scale (Unthan et al., 2015), although they generally require
specialized equipment. Typically, at any scale, the composition of the
fermentation medium can be sampled (given sufficient volume) and
analyzed by numerous chromatography methods, the gas phase can be
sampled or monitored continuously using a process mass spectrometer
and the biomass concentration can be monitored using optical density.
Advancements in mass spectrometry have enabled the rapid generation
of metabolomic profiles of strains with relatively small sample volumes
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Fig. 1. The software tool stack that depicts the tools available for various users
to access and handle experimental data. Users with varying level of coding
expertise can employ the Impact framework using different interfaces to read
and analyze their data before storing it in a database.
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(Petzold et al., 2015). This type of data can be synthesized into some key
performance indicators, such as titer, rate, and yield (TRY) for measured
components, all of which are important to understanding the physiology
of the microbe.

Given the quantities of biological data being generated, there has
been widespread standardization of data formats, databases, and analysis
tools (NCBI Resource Coordinators, 2016; Galdzicki et al., 2014; King
et al., 2016; Mahadevan et al., 2005). Biological systems are often
characterized using -omics technologies, including genomics, prote-
omics, metabolomics and fluxomics (describing the flow of metabolites
through metabolism). The fluxome is generally determined using cul-
tures with isotopic labeling and mass spectrometry data to estimate
fluxes using a least squared algorithm (Zamboni et al., 2009; Quek et al.,
2009; Tang et al., 2009); however, this can require complex setups and
expensive substrates. The predictive power of these constraint based
metabolic models has been improving, and they can often be used to
predict complex phenotypes (Bordbar et al., 2014). In lieu of the detail
required to determine the fluxome, culture features such as changes in
product titers and substrate concentrations can be used to estimate mi-
crobial exchange fluxes. Then, the model can be constrained using these
rates, and an objective function can be used to predict an internal flux
distribution. These types of algorithmic analyses can be challenging
when structured data are lacking.

Typically, data are handled in spreadsheet applications using custom
data processing templates. This process is cumbersome, non-transparent
and it does not lend itself to facile data sharing. In the recent past, several
software tools have been developed to serve as standardized repositories
for experimental data storage (Rocca-Serra et al., 2010; Morrell et al.,
2017). However, an open-source framework that facilitates storage and
analysis of experimental data to gain useful insights from the data does
not exist. Here we present Impact framework (integrated microbial
physiology: analysis, characterization, translation framework), an inte-
grated framework for analyzing microbial physiology. The Impact
framework aims to aid scientists and engineers analyze, characterize and
translate raw data describing microbial physiology. To do so, the Impact
framework relies on a standardmetadata schema to describe experiments
and uses this data to parse it into a logical hierarchical format. From here,
features are extracted to provide an augmented view of this data. Finally,
this organized data structure can be queried for plotting, or downstream
analyses in Python. Alternatively, these analyses can be perform in a
variety of tools which can connect and utilize data from a relational
database (e.g. Excel, Tableau).

The framework is modularly designed to promote contribution from a
range of stakeholders in the bioengineering pipeline. To do so, the Impact
framework relies on a number of open-source packages, to keep the code
base small and agile. Thus, the framework is not aimed to be a “black-
box” solution for data analysis, but rather promote contributions to the
data warehousing and analysis pipeline in order to arrive at a
community-driven consensus on data analysis best practices. Through
standards in the software development life cycle (e.g. testing and
continuous integration), we anticipate that contributions to the frame-
work wcan remain comprehensive and robust.

2. Methods

2.1. Architecture

The Impact framework aims to provide a high-level interface for
analyzing data for microbial physiology. This process often involves a
range of stakeholders with varying levels of coding experience, from
biologists to software developers. The complex and iterative nature of
biological engineering necessitates communication between many of
these stakeholders, accelerated by easy access to underlying data sets.
Impact can be used as a framework to power a range of workflows
catering to unique needs in the process of engineering biological systems,
ensuring a unified structure for all analysis pipelines. For example, the
2

framework can be used to power a simple front-end web application, as
well as complex programmatic data analysis pipelines. We expect this
parallel structure to improve communication between stakeholders and
reduce development times (Fig. 1).

This concept has motivated a majority of design decisions in the
Impact framework. First, the most important design decision was the
choice of programming language: Python. This choice was clear owing to
the popularity of Python amongst developers and data scientists (htt
ps://insights.stackoverflow.com/survey/2018/#technology). In addi-
tion, a significant number of packages for scientific computing (e.g.
numpy, scipy, and scikit-learn) and continuous integration (e.g. unittests,
travis ci, and coverage) exist for Python.

Although this package can be used through any preferred interface,
we encourage the use of Jupyter notebooks (https://jupyter.org), since it
allows workflows to be represented as narratives, which serve as a uni-
fied place for the storage of the motivation, workflow, and results of a
study. This drastically improves the ability of workflows to be shared and
interpreted.

2.2. Data structure

2.2.1. Models
Being written entirely in Python, the Impact framework is imple-

mented using object oriented programming (OOP). Using inheritance,
native data structures can be extended to include new analytes, features,
or analysis methodologies. Furthermore, this structure allows the
convenient application of an object-relational mapping (ORM) which can
translate these Python data structures into a range of relational databases
for facile storing and query.

2.2.2. Schema
The data schema of the framework (Fig. 2) is based on the logical

structure of experimental design. Typically, an experiment is proposed to
determine the validity of a hypothesis and this experiment will consist of
a number of independent trials. Each of these trials will have a set of
analytes of interest (e.g. substrate, product, and reporter) and may be
performed in replicates.

� Trial identifier Every datum has an associated metadata component.
Detailed entry of this metadata is important to ensure that the data
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are parsed correctly, and can then be stored and queried efficiently.
New formats for trial identifiers can be created to allow more flexi-
bility for parsing from different equipment. Currently, the trial
identifier is a flat string which can be used to identify quantification
events (e.g. HPLC injections) directly on analytical equipment.

� Time point, time course, and analyte data The most basic form of
analyte data is a time point, and each analyte can have one or many
time points, depending on the setup of the experiment. If several time
points are present, the time points are built into a time course, which
allows us to extract temporal features of the data. In addition, each
analyte type (e.g. substrate, product, and reporter) inherits from this
base time course class in order to implement different models to fit
this data and extract unique parameters.

� Single trial A single trial is considered as an independent fermenta-
tion volume (e.g. a flask, or well in a plate), and thus consists of all of
the analytes of interest from one trial.

� Replicate trial A replicate trial contains one or more single trials
which are considered as replicates and can be used to extract features
from these replicates such as mean and standard deviation, as well as
check for consistency between replicates.

� Experiment Finally, an experiment contains one or more single trials
in order to group relevant experiments together. A replicate trial can
belong to multiple experiments, in case one trial can be used to
answer multiple hypotheses.

2.2.3. Object-relational mapping
A number of Python-based object-relational mapping packages exist,

but the two most popular packages are Django (https://www.djangopro
ject.com/) and SQLAlchemy (https://www.sqlalchemy.org/). Both
packages provide similar functionality, although they differ in their
implementation. The simplicity of Django can be powerful, but the use of
this ORM outside of a backend web application (the typical use case for
Django) can be cumbersome. Instead, the Impact framework relies on
SQLAlchemy because of its Pythonic syntax and portability in a range of
Python environments.

2.3. Features

From the raw data stored in the hierarchical data schema, unique
features can be extracted. As data moves up the data hierarchy, more
complex features can be extracted. Analyte features are those which can
be calculated with a single data vector, such as model-fitted parameters
or numerically determined rates (gradients). Trial features are those
which require several analytes, such as specific productivity or product
yield. Replicate features are those which require multiple replicates, such
as mean and standard deviation. Experiment features are typically rele-
vant for all trials performed at a given time, such as relevant blanks or
specific fermentation stages. The list of features will continue to be
expanded, and new features can be added by creating, registering and
committing them to the package (see documentation).

2.4. Availability, continuous integration, and contributing

The Impact framework is written and tested for Python � 3.5 and can
be installed on any system with a current Python 3 distribution.

The framework is open-source under the GPL v3 license and available
on github (https://github.com/lmse/impact). Instructions for installing
the framework along with all its dependencies are available on the github
page for the framework. The documentation is available on readthedocs
(http://impact.readthedocs.io).

The github repository has hooks connected to Travis CI (https://
travis-ci.org/nvenayak/impact) to automatically run tests when new
commits are merged with the repository, all new contributions should
include relevant tests. The repository is also connected to codecov, to
3

ensure that a majority of the code base is tested (https://codecov.io/gh/
nvenayak/impact).

3. Results and discussion

3.1. Design, build, test, learn

Metabolic engineering typically proceeds iteratively through a
design-built-test-learn cycle (Fig. 3). Impact is a framework to accelerate
the learning process, by automating the analysis of raw data. Thus, the
framework requires raw quantified analyte data as input, which can be
directly parsed from analytical equipment or a laboratory information
management system (LIMS).

In brief, quantified raw data are extracted from analytical equipment
without significant curation and saved into a spreadsheet (typically.xlsx).
These spreadsheets can then be parsed by the Impact framework into the
data schema (Fig. 2). Using this data schema, features can be extracted
and finally plotted as needed. This process is divided into four stages:

1. Analyze: The process of parsing raw data into the data schema
2. Characterize: The process of extracting features or parameters from

the data either directly or using a model.
3. Translate: The process of generating visualizations or extracting

insight from raw data and calculated features.
4. Store & share: The process of saving data for future query by the

initial user or others.

3.2. Analyzing raw data

3.2.1. Trial identifier (metadata)
The Impact framework divides the trial identifier into three distinct

components (1): the strain (2), the media, and (3) the environment. The
strain describes the organism used and any genetic engineering. To do so,
strains are described using a parent genus and species (the wild-type),
associated knockouts, and plasmids. Each strain will of course behave
differently depending on the medium used, and thus we describe the
formulation of each media and associate that to a given data set. Finally,
we describe the environment in which this strain was grown, including
temperature, shaking speed and the labware used (microplate, flask,
bioreactor, etc.)

Most effectively, this identifier should be used to label samples on
primary analytical equipment (e.g. HPLC injections). Then, this data can
be directly parsed by the Impact framework and raw data remaining in
analytical software can be referenced. In this case, the identifier should
be provided in a flat format, for example:
strain:MG1655jmedia:M9jstrain__plasmid:pTrc99a. The entire trial can
be described here, or identifiers can be defined externally and referenced
by shorthand name.

3.2.2. Parsing raw data into the Impact framework schema
Parsing is an essential part of data interpretation, organizing raw data

into logical elements which can be stored in relational tables and queried.
To do so, The Impact framework makes a clear distinction between two
elements: the identifier, which is responsible for metadata, and the data
itself, describing the sample time and concentration. The Impact frame-
work uses metadata to sort raw data into a hierarchical structure based
on a typical experimental setup and data analysis workflow (Fig. 2).

The data structure is built around trials, which can be considered as
an independent bioreactor, flask or well in a plate. Each of these trials can
be composed of multiple analytes, which in turn are built from raw time
and data vectors. Replicate single trials are combined to form a replicate
trial object, which can then extract statistical information such as aver-
ages and standard deviations. This organization process is handled solely
by the parser, and the user typically will not need to modify this process
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Fig. 2. Overview of the data flow, from raw data to visualization, in the
Impact framework.
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except to handle new raw data formats.

3.2.3. Data formats
Data describing microbial phenotypes are varied, depending on the

particular attributes of interest for a given project. Here we provide
parsers for two common pieces of equipment: HPLC and plate reader. The
HPLC is a workhorse in metabolic engineering, providing the external
concentration of diverse metabolites which can be readily be parsed by
the Impact framework (Table S1). Apart from its widespread use in
enzyme assays, the plate reader is commonly used to measure growth
profiles via optical density, or specific aspects of metabolism using
fluorescent probes, and we provide parsers for data from SoftMax Pro
(Table S2) and more typical readers (Table S3).

Depending on the complexity of the data set, parsers are generally
simple to write and register to the framework. The raw data are parsed
Fig. 3. Overview of key elements in the design, built, test, learn cycle of
metabolic engineering.
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into a basal data type (e.g. a time point), and then standard parsing
functions organize the data into the appropriate data structures. The
process of creating a new parser is described in detail in the
documentation.

3.3. Characterizing physiological features

The Impact framework provides a set of core features, which are
derived from the raw quantified data. These features are extracted at
different stages, corresponding to the data required. A set of features is
provided in the current version, and new features can be created as
needed and contributed back to the package.

3.3.1. Analyte features
Analyte features are those which can be calculated with only one

analyte.
Although state metrics, such as yield and titer, are often used to

describe microbial phenotypes, dynamic metrics such as rates and spe-
cific productivities can provide further insight. These rates are deter-
mined numerically, for each analyte, and used for subsequent
calculations. Alternatively, rates can be extracted via parameter fitting.

Typically microbial growth kinetics are described as exponential: dXdt ¼
μX⇔X ¼ X0eμt . However, since microbial growth is oftentimes char-
acterized through lag, log, and death phases, high order models may be
relevant. Anymodel can be added for analysis, and some commonmodels
such as the 5-parameter Richards curve or a generalized logistic function
(Zwietering et al., 1990) are included.

3.3.2. Trial features
Trial features are calculated from a single fermentation volume but

require several analytes. These features are widespread, and examples
include product yield (which requires a product and substrate), OD
normalization (normalization of data to cell density) or specific pro-
ductivity (which require biomass and an additional analyte).

The specific productivity is the unit most often used in constraint-
based models. It is defined as the rate of product export per unit of
biomass, usually with the units mmol

gdw h (h
�1 in the case of growth rate) and

can be directly used to constrain metabolic models.

3.3.3. Replicate features
Experimental replicates are typically used to ensure consistency in

data and conclusions. Thus, if multiple replicates are available, they are
combined to calculate statistical features. If no replicates are available,
themean is calculated from a single replicate.With small data sets, outlier
experiments can be easily identified and excluded. However, with large
quantities of data, this becomes challenging and can drastically affect
data interpretation. Thus, outliers can be detected as replicates which
deviate significantly from othersand be excluded from analysis. Param-
eters can be chosen to control the aggressiveness of this process.

3.3.4. Experiment features
Experiment features are those which are relevant to many indepen-

dent trials, such as the different stages in a production batch, or blanks.
Oftentimes, there can be a benefit of dividing a fermentation into distinct
stages, while optimizing different process parameters at each (Venayak
et al., 2015; Soma et al., 2014; Cress et al., 2015; Brockman and Prather,
2015). Analyzing each of these stages independently is often necessary to
extract more relevant metrics. For example, product yields can be more
insightful when only considering the production stage.

Blank or background subtraction is a common process to eliminate
background signal for more accurate quantification and can automati-
cally be performed. Typically, specific trials which do not contain cells
can be used as blanks, and these trials can automatically be assigned to
non-blank trials for subtraction.



Fig. 4. Sample data visualization for a metabolic engineering problem generated with the Impact framework - (a) time course data (b) titer (c) yield. Data adapted
from Nemr et al., 2018 where the aim was to develop a platform strain to produce 1,3-butanediol. Such a comparison of yields, titers, and productivities of different
microbial strains could help scientists decide on appropriate intervention strategies to improve the metric of their choice. For example, the data analysis by the Impact
framework seems to suggest that “strain_E” with the plasmid “pBD_3” has the highest end point titer of 1,3-butanediol (shown in panel ‘b’) while having a significantly
lower yield than other strains as seen in panel ‘c’. The Impact framework can perform this analysis and visualize the data within a few seconds while analysis of the
data, calculation of statistical information and plotting the processed data manually might take several hours.
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3.4. Translating and interpreting data

3.4.1. Visualization
By default, visualization is accomplished by defining subplots per

analyte and plotting the average data for each strain. Using this format,
figures ready for interpretation can easily be generated. The Impact
framework comes built with some basic plotting routines that assist the
user to generate time-course plots of analytes (e.g. substrate, product,
and reporter) or their features (e.g. biomass specific productivity). In lieu
of the provided options, figures can be generated directly using any
number of Python plotting packages such as Matplotlib (Hunter, 2007)
(Fig. 4).

In addition, this data can be used to constrain a metabolic model and
plot fluxes using other packages such as Escher (King et al., 2015a), a
Python based flux visualization package (Fig. 5).

3.4.2. Mass balance
A carbon balance or mass balance can be important to ensure that all

significant analytes are accounted for, including gaseous and liquid
phases. Oftentimes gaseous products are not analyzed, in which case CO2

can be estimated using an integrated metabolic model constrained using
known production and consumption rates (Fig. 6).

3.4.3. Missing data
Missing data pose a significant challenge for many data analysis tasks.

Missing data can be relatively common due to experimental or equipment
error. To overcome this limitation, we take advantage of the Pandas
package (https://pandas.pydata.org/), where data input with ’nan’
values will not be included in statistical calculations and data sets with
different time indices are handled seamlessly (Table 1).

3.4.4. Metabolic model integration
Using the aforementioned calculated specific productivities, basic

integration with metabolic models is relatively straightforward. A purely
stoichiometric metabolic model can be solved by constraining only the
substrate uptake rate and using an objective function to estimate the flux
distribution. With experimental data, we can follow a similar approach
but add additional constraints for all measured analytes and estimate
internal fluxes for additional insight into metabolism.
5

3.5. Data storage and retrieval

3.5.1. The object relational mapping
Although organization of raw data into a logical structure eases data

interpretation and visualization, sharing and collaboration are still
limited. Since the process of biological engineering is highly collabora-
tive and relies on data from a large number of scientists and engineers,
this is of paramount importance. The Impact framework aims to store all
this data in a standardized database, so it can be shared and queried.

Relational databases have become the workhorse for most data
storage tasks since they are highly structured and can be efficiently
queried. To avoid the complexity and domain knowledge associated with
such data structures, the Impact framework is built on top of an object
relational mapping (ORM) framework, SQLAlchemy. This allows de-
velopers to focus on adding new functionality using a familiar pro-
gramming language (Python) and programming paradigm (object
oriented programming), while still benefiting from the structured query
language of a relational database.

3.5.2. Narratives and the Jupyter notebook
The rate of data collection and the complexity of data analyses

continue to increase. Narratives allow scientists to disseminate complex
information by providing context and guiding their audience through
experiment setup, analysis, and the relevant conclusions. Jupyter note-
books provide the perfect platform for this type of narrative in a pro-
gramming context and as such is receiving significant interest (Shen,
2014). In addition to writing and sharing Jupyter notebooks locally,
significant progress has been made to deploy this platform on the cloud,
allowing scientists and engineers to begin writing narratives without any
local installation (KBase - https://kbase.us, JupyterHub - https://githu
b.com/jupyterhub/jupyterhub).

4. Conclusion

The increasing application of microbial solutions to diverse chal-
lenges has drastically accelerated the rate of data generation. Engineer-
ing these microorganisms is a highly iterative process through the design-
build-test-learn cycle, and evolving tools are continuing to reduce the
cycle time. Here, we present the Impact framework, a Python package
aimed to unify stakeholders in the bioengineering process and provide a
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Fig. 6. Carbon balance using an anaerobic E. coli simulation with iJO1366. for:
formate, ac: acetate, etoh: ethanol, succ: succinate.

Table 1
Example of missing data handling included with the Impact framework through
the Pandas package.

time 0 2 4 6

replicate #1 ✓ 0.5 ✓ 0.8 ✓ 0.9 ✓ 1.2
replicate #2 ✓ 0.6 ⨯ nan ✓ 1.0 ⨯ nan
replicate #3 ✓ 0.4 ✓ 0.7 ✓ 1.2 ⨯ nan
average 0.5 0.75 1.03 1.2
standard deviation 0.1 0.07 0.15 n/a

Fig. 5. Sample data visualization generated with Escher with data from the Impact framework.
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set of tools to characterize microbial physiology using programmatic
workflows. The architecture of the Impact framework is aimed to make
community contribution simple and make complex data workflows more
transparent and shareable. We expect that the application of such tools
following software development best practices (Yurkovich et al., 2017) to
continue to develop and accelerate the process of microbial engineering.
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