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SUMMARY

Neonicotinoids have been implicated in the large declines observed in insects such
as bumblebees, an important group of pollinators. Neonicotinoids are agonists of
nicotinic acetylcholine receptors that are found throughout the insect central ner-
vous system and are the main mediators of synaptic neurotransmission. These re-
ceptors are important for the function of the insect central clock and circadian
rhythms. The clock allows pollinators to coincide their activity with the availability
of floral resources and favorable flight temperatures, as well as impact learning,
navigation, and communication. Here we show that exposure to the field-relevant
concentration of 10mg/L imidacloprid caused a reduction in bumblebee foraging ac-
tivity, locomotion, and foraging rhythmicity. Foragers showed an increase in day-
time sleep and an increase in the proportion of activity occurring at night. This could
reduce foraging and pollination opportunities, reducing the ability of the colony to
grow and reproduce, endangering bee populations and crop yields.

INTRODUCTION

Bumblebees are a diverse and important group of pollinators and are major pollinators of both crops and wild-

flowers. Of the five most important crop pollinators in Europe, three are bumblebees (Nieto et al., 2014). Many

crops are particularly reliant on bumblebee pollination (Willmer et al., 1994; De Luca and Vallejo-Marı́n, 2013),

and crop pollination in Europe is worth over V22bn per annum and is essential for food security (Nieto et al.,

2014). Unfortunately, despite their ecological andeconomic value, bumblebees face dramatic population losses,

with 46% of species in Europe in decline and 24% threatened with extinction (Nieto et al., 2014). Due to crop

losses to insect pests, demand for insecticides remains high (Casida and Durkin, 2013; Popp et al., 2013). The

most common insecticides worldwide are neonicotinoids, global sales of which are worth US$1 billion/year

(Popp et al., 2013; Casida, 2018). Neonicotinoids are agonists of nicotinic acetylcholine receptors (nAChR),

the main neurotransmitter system in the insect nervous system, and they share target site cross-resistance (Mat-

suda et al., 2020). They were branded safe compared with their predecessors because they do not act on

mammalian nAChRs (Casida, 2018;Matsuda et al., 2020). However, before their introduction tomarket, sublethal

effects were not fully identified in beneficial insects, for which neonicotinoids have proven potent neurotoxins.

Most research on the effects of neonicotinoids on pollinators has used the honeybee, Apis mellifera (Blacquière

et al., 2012). However, honeybees and bumblebees show differential responses to neonicotinoids, with bumble-

bees potentially experiencing a higher risk (Cresswell et al., 2012; Stoner, 2016; Gradish et al., 2018). This high-

lights the importanceof increasing the diversity of pollinators studied todetermine the ecological consequences

of neonicotinoid use.Concentrations as low as 1 mg/L (or 1 part per billion [ppb]) imidacloprid can cause reduced

foraging motivation in Bombus terrestris (Lämsä et al., 2018). A dose of 6 ppb imidacloprid has been shown in

laboratory studies to cause lethargywithin the nest (Crall et al., 2018), and cause long-termeffects on nest growth

and queen production in the field (Whitehorn et al., 2012). This has been replicated in a large-scale study in Swe-

den, which looked at the effects of neonicotinoid seed coating on wild bees in the field and found reduced col-

ony growth and reproduction in bumblebees (Rundlöf et al., 2015). Neonicotinoids have high solubility and

persistence in the environment (Wood and Goulson, 2017), meaning insects are still at risk of exposure, despite

the current European Union ban on imidacloprid.

Due to the abundance and importance of nAChRs in the insect central nervous system, the potential sub-

lethal effects of neonicotinoids are very broad. Their effect on many behaviors vital to pollination, such as
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circadian rhythms and sleep, are still unknown. The circadian clock is integral to pollinator foraging effi-

ciency as flower opening, scent release, and nectar production are dependent on time of day (Bloch

et al., 2017;Willmer and Stone, 2004). Neonicotinoids have already been shown to have a detrimental effect

on pollination, with thiamethoxam exposure of caged B. terrestris resulting in reduced pollination of apple

trees and fewer seeds in the fruit (Stanley et al., 2015). Circadian rhythms also affect other behaviors, such as

sleep, caring for offspring, and learning, with honeybees learning novel, rewarding odors better in the

morning (Lehmann et al., 2011; Bloch et al., 2017). This helps them find new foraging patches, as most

flowers are nectar-rich in the morning (Bloch et al., 2017).

In Drosophila, circadian entrainment (synchronicity within the clock and communication between the light-

sensing organs and the central clock) is reliant upon nAChR signaling (Helfrich-Förster et al., 2002; McCar-

thy et al., 2011; Sheeba et al., 2008), as are the post-synaptic mushroom body (MB) output neurons that

regulate sleep (Barnstedt et al., 2016; Palmer et al., 2013). Given the similarity in nAChR expression in

the brains of Drosophila and the honeybee, this suggests that the clock and sleep of bees may be affected

by neonicotinoid exposure (Dupuis et al., 2012). The bee central clock neurons also share similarities with

those of Drosophila. In Drosophila, honeybees, and bumblebees, there are bundles of lateral and dorsal

clock neurons, including a set of lateral neurons that express the neuropeptide pigment dispersing factor

(PDF) (Beer et al., 2018; Weiss et al., 2009; Lin et al., 2004). Both PDF and nAChR expressing lateral pace-

maker clock neurons with extensive branching patterns are also present in other insects, including crickets

and cockroaches (Weiss et al., 2009; Numata et al., 2015; Baz el et al., 2013; Helfrich-Förster et al., 1998),

demonstrating that clock circuitry is well conserved across insects. In the honeybee, in which the PDF neu-

rons have been well mapped, they have been shown to project to brain regions such as the visual circuitry,

pars intercerebralis and pars lateralis (Beer et al., 2018), both of which control locomotor activity and sleep

in Drosophila (King and Sehgal, 2018). Furthermore, honeybee clock neurons are important for the sun-

compass pathway (Beer et al., 2018), a vital navigational tool allowing the communication of resource loca-

tion via the waggle dance (von Frisch, 1967). The clock also dictates the timing of sleep, which is required

for many vital physiological processes including memory consolidation and synaptic homeostasis (Fisher

et al., 2013; Zwaka et al., 2015; Beyaert et al., 2012; Donlea et al., 2009; Stern, 2018; Bushey et al., 2015).

Furthermore, sleep timing in bumblebees is important for round-the-clock care of offspring (Nagari

et al., 2019). Therefore, circadian and sleep disruption is likely to have detrimental effects to the pollination

services, behavior, and fitness of beneficial insects. Due to the importance of nAChR signaling in the insect

clock and sleep centers, we hypothesized that neonicotinoids would disrupt bee rhythmicity and sleep. We

therefore tested the effect of field-relevant concentrations of imidacloprid on B. terrestris foragers.

RESULTS

The activity of isolated B. terrestris foragers in individual tubes was measured using the locomotor activity

monitor to assess behavior in both 12 h:12 h light:dark (LD) conditions and constant darkness (DD), (see

Supplementary Information, Transparent Methods). Rhythmicity under LD conditions was studied as this

provides a more naturalistic reflection of how day/night behavior may be affected in the field and also al-

lows sleep to be investigated. The removal of light cues under constant conditions in DD reveals the

endogenous circadian rhythm and clock function.

Field-Relevant Concentrations of Imidacloprid Affects Rhythmicity in Isolated Bumblebee

Foragers in 12 h:12 h Light:Dark Conditions

Exposure to field relevant concentrations of 1–10 mg/L imidacloprid disrupted the rhythmicity and quantity

of locomotor activity in isolated foragers (Figure 1A). The rhythmicity statistic (RS) was calculated as a mea-

sure of rhythm strength (Levine et al., 2002), with RS > 1.5 by convention taken to indicate rhythmic behavior

(Hodge and Stanewsky, 2008). In LD conditions, imidacloprid decreased mean rhythmicity (Figure 1C) and

both 1 and 10 mg/L increased the proportion of foragers that were arrhythmic (Figure 1B), from 10% in con-

trol foragers to 36% and 67% respectively. Imidacloprid also reduced the total activity of foragers, with

1 mg/L reducing activity during both day and night and 10 mg/L reducing daytime activity (Figure 1D).

Field-Relevant Concentrations of Imidacloprid Do Not Reduce Rhythmicity in Isolated

Bumblebee Foragers in Constant Darkness

Conversely, in DD, exposure to either concentration of imidacloprid had little effect on the forager’s activity

or rhythmicity (Figure 2). Foragers fed 1 or 10 mg/L imidacloprid had the same mean rhythmicity and levels
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of activity as control foragers (Figures 2B and 2C). The proportion of each population that was arrhythmic

was also similar, with 40% of control foragers arrhythmic compared with 33% at 1 mg/L and 50% at 10 mg/L

imidacloprid (Figure 2A).

Field-Relevant Concentrations of Imidacloprid Increase Sleep in Isolated Bumblebee

Foragers

Foragers who were fed 10 mg/L imidacloprid showed an increase in inactivity lasting longer than 5 min, usu-

ally taken as a proxy for sleep (Helfrich-Förster, 2018; Eban-Rothschild and Bloch, 2008), compared with

controls. This was particularly notable during the day (Figures 3A and 3B) and is likely due to the increased

number of daytime sleep episodes (Figure 3C) initiated by these foragers. The length of these sleep epi-

sodes was the same as in control foragers (Figure 3D).

Figure 1. Field-Relevant Concentrations of Imidacloprid Affects Rhythmicity in Isolated Bumblebee Foragers in

12 h:12 h Light:Dark Conditions

(A) Representative actograms for a Bombus terrestris forager on control food, or food containing 1 mg/L or 10 mg/L

imidacloprid (IM).

(B) Proportion of foragers that were arrhythmic (RS %1.5) in LD for each treatment.

(C) Mean rhythmicity for either control foragers or those fed 1 or 10 mg/L imidacloprid, in LD conditions (F2,58 = 5.3, p =

0.008).

(D) Mean locomotor activity for foragers in each treatment group in LD conditions, during the day (F2,44 = 6.7, p = 0.003)

and the night (F2,44 = 5.4, p = 0.008). Each data point represents a single bee, n = 19–22 bees for each treatment group.

Data are represented as mean G SEM, *p % 0.05, **p % 0.01, tested via 1-way ANOVA with Tukey’s multiple

comparisons.
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Field-Relevant Concentration of Imidacloprid Reduces Foraging Rhythmicity and Activity in

Bumblebee Foragers within the Colony in 12 h:12 h Light:Dark Conditions

B. terrestris foragers in a full colony setting showed diurnal rhythms in foraging activity (Figures 4 and 5).

This rhythmicity was decreased in foragers exposed to 10 mg/L imidacloprid in both LD (Figure 4) and con-

stant darkness (Figure 5). In LD conditions, imidacloprid decreasedmean rhythmicity of foragers (Figure 4C)

and increased the proportion of foragers who were arrhythmic from 48% to 65% (Figure 4B). Imidacloprid

decreased foraging activity for both daytime and night-time (Figure 4D).

Imidacloprid Reduces Foraging Rhythmicity and Activity in Bumblebee Foragers within the

Colony in Constant Darkness

In DD conditions, imidacloprid reduced mean rhythmicity for foragers (Figure 5B) and increased foraging

activity during the subjective night (the 12 h that were dark during the entrainment period) (Figure 5C). The

proportion of foragers that were arrhythmic for control and imidacloprid-exposed bees were similar in DD,

31% and 36% respectively (Figure 5A).

Therefore, field-relevant imidacloprid concentrations disrupted circadian rhythmicity and increased mis-

timed daytime inactivity or sleep in isolated B. terrestris foragers and reduced foraging rhythmicity for for-

agers in the colony. Foragers both in isolation and the colony showed that neonicotinoids cause a profound

disruption of timing of activity with reduced daytime activity.

DISCUSSION

We report the effects of imidacloprid on pollinators, such as reduced locomotion and foraging activity, and

go on to show that imidacloprid causes mistiming of these activities, increasing the proportion of foraging

that occurs at night and increasing daytime inactivity. Imidacloprid has previously been shown to reduce

locomotion in isolated B. terrestris (Cresswell et al., 2014), sweat bees like Melipona quadrifasciata

Figure 2. Field-Relevant Concentrations of Imidacloprid Do Not Reduce Rhythmicity in Isolated Bumblebee

Foragers in Constant Darkness

(A) Proportion of Bombus terrestris foragers that were arrhythmic (RS % 1.5) in DD for foragers on control food or food

containing 1 or 10 mg/L imidacloprid (IM).

(B) Mean rhythmicity (RS) for foragers in each treatment group in DD conditions (F2,47 = 0.5, p = 0.637).

(C) Mean locomotor activity for foragers in each treatment group in DD conditions, during the subjective day (F2,47 = 0.1,

p = 0.947) and night (F2,47 = 0.6, p = 0.541). Each data point in the histograms represents a single bee, n = 14–22 bees for

each treatment.

Data are represented as mean G SEM, tested via one-way ANOVA with Tukey’s multiple comparisons.
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(Tomé et al., 2012), and solitary bees likeOsmia bicornis (Azpiazu et al., 2019), and to reduce in-nest activity

in another bumblebee B. impatiens (Crall et al., 2018). We found that imidacloprid exposure also reduced

the foraging activity within the colony, with foragers making fewer foraging trips in LD conditions. This is

similar to previous laboratory studies, for example, imidacloprid exposure can cause reduced and less effi-

cient foraging for sucrose solution in B. impatiens (Muth and Leonard, 2019) and mixed exposure to thia-

methoxam and clothianidin has been shown to reduce foraging effort for both sucrose solution and pollen

in B. terrestris (Fauser-Misslin et al., 2014). Other field-based studies have shown a reduction in pollen

foraging efficiency in B. terrestris following exposure to imidacloprid (Gill and Raine, 2014; Gill et al.,

2012), although with no reduction in the quantity of nectar collected per foraging bout. Neonicotinoid

exposure appears to interfere with foraging efficiency, limiting the capacity of bees to handle flowers, carry

out buzz pollination, and changing their flower preferences (Whitehorn et al., 2017; Stanley and Raine,

2016; Gill and Raine, 2014). Our study, and the other laboratory studies mentioned, focus on the foraging

motivation within the colonies, which also appears to be reduced. This could in part be driven by the

apparent appetite suppression that imidacloprid can cause, with 10 mg/L shown to decrease feeding by

30% in B. terrestris (Cresswell et al., 2012). Or it could be a result of reduced mobility, an effect that has

been observed for imidacloprid exposure (Williamson et al., 2014).

We also show that field-relevant doses of imidacloprid impact locomotor and foraging rhythmicity. Imidacloprid

reduced the rhythmicity of daily activity in foragers in LD conditions, suggesting that the neonicotinoid may be

interfering with light input into the clock. Light signaling from the visual circuit and the Hofbauer-Buchner eyelet

(another light sensing organ) to the clock neurons is dependent on nAChRs, so this is a potential route for disrup-

tion (Helfrich-Förster et al., 2002; Muraro and Ceriani, 2015). InDrosophila, imidacloprid appears to affect circa-

dian rhythmicity and to prevent day/night differences in arborization and PDF accumulation in the small lateral-

ventral neurons (sLNv) or pacemaking neurons of the clock, which receive light input from theHofbauer-Buchner

(HB) eyelet (Tasman et al., 2020). Foraging rhythmicity in DD was also reduced, possibly due to the reduction in

entrainment during the LD stage of the experiments. Previous work showed that nAChR agonists can directly

stimulate clock neurons in a cockroach Rhyparobia maderae causing increased calcium influx through

voltage-gated calcium channels (Baz El et al., 2013). Likewise, nAChR agonists increase calcium influx of

Figure 3. Field-Relevant Concentrations of Imidacloprid Increase Sleep in Isolated Bumblebee Foragers

(A) Mean total sleep achieved for control Bombus terrestris foragers and those fed 1 mg/L (pale green line) or 10 mg/L (dark

green line) imidacloprid (IM), per 30 min bin over the 24 h period.

(B) Mean total sleep (min) for each treatment group in the day (F2,87 = 4.9, p = 0.010) and the night (F2,87 = 4.1, p = 0.019).

(C) Mean number (No.) of sleep episodes initiated for each treatment group during the day (F2,87 = 5.4, p = 0.006) and the

night (F2,87 = 0.490, p = 0.614).

(D) Mean sleep episode length for each treatment group during the day (F2,87 = 1.7, p = 0.182) and the night (F2,87 = 1.5,

p = 0.238). Each data point in the histograms represents a single bee, n = 28–31 bees for each treatment.

Data are represented as mean G SEM, *p % 0.05, **p % 0.01, tested via one-way ANOVA with Tukey’s multiple

comparisons.
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Drosophila PDF-releasing lateral ventral neurons (LNvs) (Wegener et al., 2004; Lelito and Shafer, 2012).

Conversely nAChR antagonists block spike-dependent nAChR synaptic signaling required for rhythmic LNv ac-

tivity (McCarthy et al., 2011).Work in another cockroach, Periplaneta americana, showed that neonicotinoids can

also act on the thoracic ganglia, which control motor function in insects (Tan et al., 2007). Thus, neonicotinoids

may be acting directly through multiple neurons regulating both locomotion and circadian regulation of loco-

motion, causing activation and/or depolarization block and hence compromising rhythmic foraging activity. In

addition to direct classical pharmacological drug-receptor interactions, neonicotinoid exposure changes

expression of hundreds of genes in worker bumblebees (B. impatiens), including genes that are involved in loco-

motion (Tan et al., 2007).

Figure 4. Field-Relevant Concentration of Imidacloprid Reduces Foraging Rhythmicity and Activity in Bumblebee

Foragers within the Colony in 12 h:12 h Light:Dark Conditions

(A) Representative actograms for a Bombus terrestris forager on control food and food containing 10 mg/L imidacloprid

(IM).

(B) Proportion of foragers that were arrhythmic in LD for each treatment group.

(C) Mean rhythmicity for either control foragers or foragers fed 10 mg/L IM in LD (t125 = 2.0, p = 0.048).

(D) Mean foraging activity for foragers in each treatment group in LD, during the day (t170 = 3.8, p < 0.001) and the night

(t170 = 2.0, p = 0.042). Each data point in the histograms represents a single bee, n = 48–79 bees for each treatment for

rhythmicity, n = 74–100 bees for each treatment for activity.

Data are represented as mean G SEM, *p % 0.05, ***p % 0.001, tested via one-way ANOVA with Tukey’s multiple

comparisons.
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The reduction in rhythmicity observed for foragers in LD conditions and within the colony suggest that the

effect of imidacloprid on rhythmicity cannot be mitigated by strong zeitgebers (i.e., time-givers or entrain-

ment signals) such as light or social cues (Jurgen Stelzer et al., 2010; Bloch, 2010). This may imply that the

reduction in foraging rhythmicity observed for bumblebee colonies exposed to imidacloprid in the labo-

ratory are likely to reflect deleterious consequences in the field, as is the case for reductions in foraging

activity (Gill and Raine, 2014; Muth and Leonard, 2019). A disruption of the clock in foragers may further

reduce their foraging efficiency as they will not be able to form the time-memories required to accurately

visit different flowers (van Nest et al., 2018; Bloch et al., 2017). The clock also feeds into the sun-compass

navigation pathway that foragers use to navigate (Beer et al., 2018). Neonicotinoids have previously been

shown to reduce homing ability in bees (Tosi et al., 2017; Fischer et al., 2014), although Stanley et al. found

no effect (Stanley et al., 2016). If navigation is affected, then disruption to the clock could be a contributing

factor to this. The reduced foraging motivation observed here is likely to compound the reduced pollen

foraging efficiency observed in the field (Gill and Raine, 2014; Gill et al., 2012; Feltham et al., 2014) and

is likely to reduce the capacity of the colony to grow and reproduce. Reduced feeding and foraging are

associated with less brood production (Laycock et al., 2012) and smaller colonies, which are less resilient

and less likely to produce queens (Whitehorn et al., 2012). The colony also responds to reduced foraging

by producing and sending out more foragers, increasing forager mortality, and resulting in fewer workers

to carry out in-nest tasks such as brood care (Gill et al., 2012).

Field-relevant concentrations of imidacloprid also increased sleep or total inactivity, with 10 mg/L

increasing daytime sleep or total inactivity in foragers, hence the reduction in daytime locomotor and

foraging activity observed. It is common practice to use 5 min of continuous inactivity as a proxy for

sleep, and this practice has been validated (Helfrich-Förster, 2018; Eban-Rothschild and Bloch, 2008;

Hendricks et al., 2020). However, as imidacloprid can cause immobilization, in this case it is not possible

Figure 5. Imidacloprid Reduces Foraging Rhythmicity and Activity in Bumblebee Foragers within the Colony in

Constant Darkness

(A) Proportion of the B. terrestris foragers that were arrhythmic in DD on control food and food containing a field-relevant

concentration of 10 mg/L imidacloprid (IM).

(B) Mean rhythmicity for foragers in each treatment group in DD conditions (t125 = 2.2, p = 0.029).

(C) Mean activity for foragers in each treatment group in DD conditions, during the subjective day (t169 = 1.6, p = 0.105)

and night (t114 = �2.0, p = 0.043). Each data point in the histograms represents a single bee, n = 53–73 bees for each

treatment for rhythmicity, n = 74–100 bees for each treatment for activity.

Data are represented as mean G SEM, *p % 0.05, tested via one-way ANOVA with Tukey’s multiple comparisons.
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to differentiate between sleep and immobilization (Williamson et al., 2014). There are possible routes for

either effect. The mushroom bodies, which are known to regulate the sleep/wake cycle in insects, contain

groups of both wake- and sleep-promoting Kenyon neurons and signal via nAChRs to the mushroom

body output neurons, which are also important for sleep regulation (Pitman et al., 2006; Helfrich-Förster,

2018; Barnstedt et al., 2016). Sleep-promoting neurons have been shown to be specifically activated by

nAChRs (Aso et al., 2014), providing a possible route for imidacloprid to induce sleep. Furthermore,

whole-cell patch-clamp recordings from honeybee Kenyon neurons from the mushroom body showed

that they were directly stimulated by imidacloprid (Moffat et al., 2016). However, as mentioned above,

the thoracic ganglia and motor neurons are also nicotinic, allowing possible stimulation or depolarizing

block of these. Imidacloprid has been shown to cause immobilization, increased time spent upside

down, and difficulty in motor tasks in bees (Williamson et al., 2014). Either way, increased immobility

or sleep in the colony reduces opportunities for foraging and potentially for in-nest tasks such as brood

care.

Neonicotinoids reduce activity and foraging motivation in pollinators (Muth and Leonard, 2019; Fauser-

Misslin et al., 2014; Gill and Raine, 2014; Gill et al., 2012). Here we demonstrate that very low field-relevant

concentrations of neonicotinoids disrupt rhythmicity of foraging activity as well as increasing daytime

immobility, further reducing the opportunities for bees to forage and pollinate and having knock-on effects

on circadian and sleep-regulated physiological and behavioral processes in the bee. This is likely to have a

detrimental effect on colony fitness in the field as well as reducing the yield of crops and wild plants reliant

on bee pollination. Furthermore, we establish a number of highly sensitive (down to 1 ppb neonicotinoids)

high-throughput behavioral assays for measuring the detrimental sublethal effects of insecticides on

pollinators.

Limitations of the Study

A key limitation of the study is the inability to differentiate between sleep and inactivity. Another is that the

dose consumed by each bee was not quantified exactly, although bees were allowed to feed freely from

sugar syrup with a field-realistic concentration of imidacloprid and the dose estimated from the average

quantity consumed.

Resource Availability

Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Dr. James Hodge (james.hodge@bristol.ac.uk).

Materials Availability

No novel materials or reagents were used for these experiments.

Data and Code Availability

Original data have been deposited to Mendeley Data: https://doi.org/10.17632/m8pykxzkyb.1.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101827.
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TRANSPARENT METHODS 

 

Further information and requests for resources should be directed to Dr James JL Hodge 

(james.hodge@bristol.ac.uk).  

 

Bombus terrestris colonies 

Bombus terrestris audax colonies (Biobest), containing cotton wool and between 80-100 workers, were 

ordered through Agralan (#BB121040-CF1). A total of 10 colonies were used, four for the isolated 

forager experiments and six for the colony wide experiments. They were maintained at 21°C, 12h:12h 

light: dark (LD) with lights on at 9am and off at 9pm, with a 30 mins dawn/dusk period where lights were 

at 50%. Colonies were provided with Biogluc® (Biobest) ad lib in the foraging arena and 1 tablespoon 

(15 ml) pollen (Agralan #BB008513) every 5 days which was introduced into the nest box. Pollen was 

not provided more regularly during the experiment in order to prevent any food-based entrainment and 

to keep conditions the same during the LD section as in the DD section. During constant darkness (DD) 

the set up could not be accessed and pollen could not be provided in order to prevent light 

contamination. Imidacloprid (PESTANAL Sigma-Aldrich #37894), was administered via the Biogluc®, 

at field relevant concentrations of either 1 or 10 µg/L[23]. Imidacloprid was taken from a 100,000 µg/L 

ddH2O frozen stock solution, mixed into 10ml ddH2O and then into 990 ml Biogluc using a magnetic 

stirrer and flea. As the actual concentration was not tested, the stated concentrations of 1 and 10 µg/L 

are nominal concentrations. For both concentrations, bees consumed approximately 0.2 ml of sucrose 

solution per day, resulting in approximate doses of 0.16-0.2 and 1.6-2 ng per bee (calculated by dividing 

the quantity of solution consumed over the ten days period by ten and by the number of bees).  Colonies 

were attached via a clear plastic tube (15 mm diameter and 200 mm length), to a foraging arena (1000 

× 500 × 500 mm) purpose built by the University of Bristol Mechanical Workshop out of UV-transmitting 

acrylic. A wide ramp from the entrance to the foraging arena to the floor of the arena was built from card 

and duct tape to ensure that foragers could return to the nest box in darkness, when they cannot fly 

(Reber et al., 2015).  

 

Circadian rhythm analysis for isolated foragers 
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For the collection of circadian and sleep data for bumblebees, a system was set up using the Locomotor 

Activity Monitor (LAM16, TriKinetics Inc, USA) (Beer et al., 2016). Large foragers, of around 15-16 mm 

in length were collected from the foraging arena and loaded into tubes (PGT16x100). Only foragers 

who were seen coming out of the colony to feed on the feeder were selected. A total of 30 foragers 

were taken from each colon, ten per treatment group and put into the LAM set up together. This was 

repeated for between three and four colonies (three colonies for LD data, four for sleep and DD). Only 

those foragers who were still active at the end of the study period were used for analysis. At one end 

of the tube was a rubber cap (CAP16-Black) with a 1 g silica packet glued inside to control the humidity. 

At the other end, a 15 mL Falcon tube with a small whole drilled near the base was attached. This 

contained Biogluc® with or without neonicotinoids, allowing bees to feed ad libitum throughout the 

experiment. The tubes were loaded into the LAM and monitored for five days in LD and five days in DD 

conditions. In the monitor an infrared beam crossed the diameter of the centre of the tube and every 

beam break was counted in real time by a host computer. Each beam break was counted as a single 

activity bout, allowing the total activity for each bee to be summed per day and per 30 mins bin for 

circadian analysis. For each bee, the rhythmicity statistic (RS), period length and total daily activity 

levels were then calculated. The rhythmicity statistic was calculated using conventional autocorrelation 

analysis (Levine et al., 2002). First, the data were filtered, using a low-pass Butterworth filter to remove 

any periodicities of less than four hours. The dataset was then paired with itself, gradually moved out 

of register with itself and the correlation coefficient plotted. At 0 hour, the two data sets are identical, 

and then, for rhythmic data, they return to high correlation approximately every 24 hours. The value of 

the third peak in the auto-correlogram is reported as the rhythmicity index (RI), a statistical 

representation of the rhythmicity of the bee’s activity. The RS is calculated as the ratio of this RI to the 

value of the 95% confidence line. This analysis was carried out using Flytoolbox (Levine et al., 2002) in 

MATLAB (MATLAB and Statistics Toolbox Release 2015b). Conventionally, an RS >2 is rhythmic, an 

RS of 1.5-2 is weakly rhythmic and an RS <1.5 is arrhythmic (Hodge and Stanewsky, 2008). The day 

and night activity levels for each bee were calculated using the daynight program (Julienne et al., 2017) 

in MATLAB. The individual bee’s period length was used to split the activity data into subjective days 

and nights and then the activity counts for each were summed. The mean daily activity in daytime and 

night-time for the five days was then calculated.  
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Sleep analysis for isolated foragers 

Sleep is defined as any inactivity lasting more than five minutes, as has been done in previous studies 

(Beyaert et al., 2012, Nagari et al., 2019, Eban-Rothschild and Bloch, 2015). Sleep analysis was carried 

out on the five days of LD (Buhl et al., 2019), using activity data that had been summed into both 1 min 

and 30 mins bins. Analysis was performed using the Sleep and Circadian Analysis MATLAB Program 

(SCAMP (Donelson et al., 2012)). The mean total quantity of sleep per 30 mins bin was calculated and 

displayed. Total quantity of sleep for the day and night for each bee was quantified and the mean taken 

for the five days. Other sleep measures reported were the number of sleep episodes initiated during 

the day and night and the mean length of these episodes.  

 

Foraging rhythmicity assay for bumblebees in the colony 

Circadian rhythmicity within the colony was assayed using a micro radio frequency identification (RFID) 

setup (Molet et al., 2008, Stelzer and Chittka, 2010). Approximately 40 foragers were collected from the 

foraging arena of the colony, three colonies per treatment group. Only foragers who were seen coming 

out of the colony to feed on the feeder were selected. These were anaesthetised using CO2 and an 

RFID tag (Microsensys GmbH mic3-TAG) was stuck to the centre of their thorax with superglue 

(Loctite). Foragers were then returned to the colony nest box. After a day for acclimatisation and 

recovery from the CO2 exposure, recording began. An RFID reader (Microsensys GmbH 

iID®MAJAreadermodule4.1) was placed at the entrance to the foraging arena so that foragers had to 

pass through the reader to enter the arena. The data from the readers were collected on a host 

(Microsensys GmbH iID®HOSTtypeMAJA4.1), for a 10 days period; 5 days LD and 5 days DD, as in 

the LAM experiments above. The data were then summed into 30 mins bins, with each pass through 

the reader being counted as a single activity bout. These data were then analysed. Only those that 

showed foraging activity every day of the study period were used for analysis, ensuring that only 

foragers were assessed. For control groups this was 24, 27 and 29 bees per colony. For the treatment 

group this was 10, 17 and 21 bees per colony. Pollen was provided the day before recording began 

and on day 5. Biogluc was available ad libitum in the foraging arena and was either untreated for control 

groups or contained 10 µg/L imidacloprid for treated groups. Three colonies were tested for each 

treatment group.  
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Statistical Analysis 

Analysis was carried out using a one-way ANOVA and the results displayed in figure legends. First the 

data was checked for normality using a Shapiro-Wilk test. The homogeneity of variance was also tested 

using Levene’s test for equality of variances. Means were then compared using a two-way ANOVA to 

quantify the effect of both treatment and colony. Once colony effects were shown to be nonsignificant, 

colony was removed as a factor and a one-way ANOVA was carried out with post hoc pairwise 

comparisons using Tukey’s multiple comparisons test. Statistical analysis was done in IBM SPSS 

Statistics 24. Graphs were created in GraphPad (Prism version 8.0.0). For all histograms, every data 

point was plotted with lines showing the mean ± standard error of the mean (SEM). Where post hoc 

tests were done, these were displayed as p ≤ 0.05*, p ≤ 0.01**, p ≤ 0.001***, p ≤ 0.0001****). 
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