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This review selectively explores some areas of pain research that, until recently, have been poorly
understood. We have chosen four topics that relate to clinical pain and we discuss the underlying
mechanisms and related pathophysiologies contributing to these pain states. A key issue in pain
medicine involves crucial events and mediators that contribute to normal and abnormal pain signaling,
but remain unseen without genetic, biomarker or imaging analysis. Here we consider how the altered
genetic make-up of familial pains reveals the human importance of channels discovered by preclinical
research, followed by the contribution of receptors as stimulus transducers in cold sensing and cold pain.
Finally we review recent data on the neuro-immune interactions in chronic pain and the potential targets
for treatment in cancer-induced bone pain.
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1. Introduction

One of the most important issues in pain research is the transla-
tion of basic science findings to the patient, as well as back-translation
so that clinical phenomena can be explored and modeled in pre-
clinical studies. Interaction between scientists and clinicians is essen-
tial for this process and one obvious shared area of interest is the
pharmacological processes that underlie pain conditions. This review
selectively explores some areas of pain research that, until recently,
have been poorly understood. We have chosen four topics that relate
to clinical pain and we discuss the underlying mechanisms and
related pathophysiologies contributing to these pain states. A key
issue in pain medicine involves crucial events and mediators that
contribute to normal and abnormal pain signaling, but remain unseen
without genetic, biomarker or imaging analysis. Here we consider
how the heritable pain states reveal the importance of channels
discovered by preclinical research of pain disorders, followed by the
contribution of receptors as stimulus transducers in cold sensing and
cold pain. Finally we review recent data on the neuro-immune
interactions in chronic pain and the potential targets for treatment
in cancer-induced bone pain.
2. Familial pain syndromes

Adequate analgesic treatments for a number of chronic pain
conditions remain a challenge, partly due to the robust inter-
individual variability in sensitivity to pain and analgesics, as well
as the individual susceptibility to developing chronic pain Table 1.
There is now increasing evidence that a large component of the
pain experience is inherited and that pain phenotypes result as a
variation in genetic-environmental interactions, including a role
for epigenetic factors.

The increasing sophistication and decreasing cost of high-
throughput methodologies for identification of genetic compo-
nents that contribute to human pain disorders have successfully
highlighted numerous channelopathies and mutations that under-
lie familial pain syndromes. Genome-wide linkage mapping,
quantitative trait locus mapping and microarray-based gene
expression profiling are all advancing techniques, and here we
discuss their revelation of some inherited pain states.
Table 1
Inherited pain syndromes and associated channel dysfunctions. PE: Primary erythrome
insensitivity to pain; FHM: familial hemiplegic migraine; HSAN: hereditary sensory and

Inherited
disorder

Gene (protein) Gain (þ)/loss
(þ)

Change in channel function

PE SCN9A (NaV1.7) þ Hypolarized voltage-dependence
slowed deactivation

PEDP SCN9A (NaV1.7) þ Impaired Inactivation

CIP SCN9A (NaV1.7) − Frameshift splicing alteration and
FHM1 CACNL1A4 (Cav2.1) þ Reduced activation threshold and
FHM2 ATP1A2 Naþ/Kþ

ATPase
− Impaired pump action

FHM3 SCN9A (NaV1.1) þ/− Loss or gain of function dependin
HSAN-V NGF (β-NGF) − Impaired β-NGF signaling through
FEPS TRPA (TRPA1) þ Increased activation current at re
2.1. Sodium channel Nav1.7 mutations

Nine sodium channels have been identified in the nervous
system, of which the tetrodotoxin-sensitive Nav1.7 channel is
expressed in almost all dorsal root ganglia neurones. Nav1.7 has
fast activation and inactivation kinetics, and is also characterised
by slow closed-state inactivation, permitting the channel to
respond to small slow depolarisations and thereby acting as a
threshold channel to amplify generator potentials to sub-threshold
stimuli (Dib-Hajj et al., 2007). Recent human studies have directly
linked Nav1.7 to four pain disorders: Primary erythromelalgia (PE),
paroxysmal extreme pain disorder (PEPD), Nav1.7-associated con-
genital insensitivity to pain (CIP) and small fibre neuropathy
(Dib-Hajj et al., 2007; Faber et al., 2012). A difference in perceived
pain intensity among neuropathic pain patients is also linked to an
SCN9A single nucleotide polymorphism and in normal individuals
this has been shown to affect heat pain sensitivity (which is
predominately C fibre-mediated) (Reimann et al., 2010). PE was
the first human pain disorder mapped to an ion channel mutation,
where Yang et al. used linkage analysis to identify two missense
mutations in the SCN9A gene that encodes Nav1.7 (Yang et al.,
2004).

More than ten independent mutations of SCN9A are now linked
to PE of varying severity, characterised by intense episodic burning
pain and redness in the extremities that are triggered by warm
stimuli or exercise (Yang et al., 2004). The clinical onset of PE has
been reported in early childhood with severity of pain worsening
with age. Effective pain relief can be achieved by repeated
immersion of hands and feet in ice-cold water, although this can
lead to skin lesions (Michiels et al., 2005). The ‘gain-of-function’
channel mutations underlie hyperexcitability of nociceptors and
reduced activation thresholds for action potentials. The redness
and swelling of extremities that accompanies PE pain likely
involves a dysfunction in sympathetic innervation of the vascu-
lature in affected limbs (Rush et al., 2006).

Another autosomal dominant pain disorder resulting from a
different set of ‘gain-of-function’ Nav1.7 mutations is PEPD, for-
merly known as familial rectal pain. PEPD patients suffer from
excruciating burning pain and flushing in the anorectal region or
around the eyes, also from early childhood (Fertleman et al., 2006).
Ocular attacks tend to dominate over rectal pain with increasing
lalgia; PEPD: paroxysmal extreme pain disorder; CIP: Nav1.7-associated congenital
autonomic neuropathy; FEPS: familial episodic pain syndrome.

Pathophysiology

(reduced activation theshold) and Nociceptor hyperexcitability

Nociceptor hyperexcitability;
persistent sodium currents/repetitive
neuronal firing

premature mtermination of protein Impaired nociceptor function
enhanced open channel probability Enhanced cortical spreading depression

Increased Kþ in extracellular space

g on mutation type Neuronal hyperexcitability
p75NTR Reduced nociceptive acitivity

sting membrance prtential Excessive neuronal firing
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age, and these attacks can be triggered by temperature changes
and bowel movements.

Functional analysis of mutant channels has revealed a reduc-
tion in fast inactivation, giving rise to a persistent current that is
not present in the wildtype channel and promotes repetitive firing
of nociceptors that underlies paroxysmal pain (Fertleman et al.,
2006). Interestingly, most patients with PEPD, but not PE, respond
favourably to treatment with carbamazepine due to effective
blocking of the persistent current in the PEPD-related M1627K
mutant channel (Fertleman et al., 2006).

Estacion et al. (2008) reported a new Nav1.7 mutation, A1632E,
in a patient with a unique mixture of symptoms that included
clinical characteristics of both PE and PEPD. This mutation was
localised near the PEPD missense mutation M1627K, resulting in
fast inactivation, deactivation, and a persistent inward current. The
associated phenotype of A1632E and evidence that alternative
splicing can impact the functional consequences of IEM or PEPD
mutations suggests that SC9NA mutations are likely to produce a
broad range of PE- or PEPD-like clinical outcomes with varying
severity (Estacion et al., 2008; Jarecki et al., 2009).

A further series of gain of function variants in SCN9a have been
associated with the development of small fibre neuropathy. This is
a neuropathic pain syndrome associated with distal degeneration
of small diameter axons associated with burning pain in the
extremities and in some cases autonomic dysfunction. These
variants produce gain of function changes rendering dorsal root
ganglion neurons hyper-excitable (Faber et al., 2012). In some
cases variants render superior cervical ganglion neurons hypo-
excitable and these are associated with more severe autonomic
symptoms (Han et al., 2012).

CIP is associated with ‘loss-of-function’ mutations of Nav1.7
that produce a profound insensitivity to pain from birth, whilst
retaining intact functionality of all other sensory modalities (Cox
et al., 2006). Affected individuals have been reported to display
painless burns and fractures with no response to injury or noxious
stimulation, but still appear to exhibit normal autonomic and
motor responses. Cox et al. studied three families and identified
three homozygous nonsense mutations of Nav1.7 – S459X, I767X,
and W897X – that produced truncated, non-functional proteins,
and a further nine have been reported (Cox et al., 2006; Goldberg
et al., 2007). Preclinical studies using Nav1.7 nociceptor-specific
knockouts reproduce a pain insensitive phenotype, thus validating
the crucial requirement of Nav1.7 function for nociception (Nassar
et al., 2004).

The spectrum of clinical phenotypes of Nav1.7 channelopathies
remains intriguing, ranging from gain-of-function mutations to
produce localised pain (IE and PEPD) to loss-of-function muta-
tions resulting in a global insensitivity to all modalities of pain.
Mutations of SCN9A have also been linked to febrile seizures
(Singh et al., 2009), and so the extensive effects SCN9A channel
mutations on neuronal excitability implicate essential roles for
Nav1.7 function in human neurophysiology, and distinctly, noci-
ceptive neurotransmission.

2.2. Calcium channels and inherited migraine

As with sodium channels, mutations of voltage-gated calcium
channels also underlie several inherited diseases, including
migraine, cardiac arrhythmia and periodic paralysis. Sodium and
calcium channels share some structural similarities; the pore-
forming α1 subunits of voltage-gated calcium channels resemble
the α subunits of sodium channels with four internally repeated
domains (I–IV) with associated auxiliary units (Pietrobon, 2005).
The Cav2 subfamily (CaV2.1, CaV2.2, and CaV2.3) comprises the
primary calcium channels that initiate neurotransmitter release at
fast conventional synapses, and mutations of Cav2.1, located in
somatodendritic membranes and in high density in presynaptic
terminals throughout the CNS, have been implicated in inherited
migraine (Pietrobon, 2005).

Migraines affect more than 10% of the population and research
implicates the cause of these disabling, episodic headache pains
to activation of the trigeminovascular system and meningeal
nociceptors, as well as sensitisation of medullary dorsal horn
neurones (Olesen et al., 2009). Familial hemiplegic migraine
(FHM) is a rare autosomal dominant form of migraine that is
associated with moderate to severe hemiplegia, ataxia and
seizures.

FHM is linked to three genes; the first, CACNL1A4 (FHM1) codes
for the α1 subunit of the Cav2.1 neuronal voltage-gated calcium
channels (Ophoff et al., 1996). The majority of the 25 known
mutations result in a gain-of-function phenotype, where the
activation threshold for the channel is reduced (De Vries et al.,
2009). Knock-in mouse models of the disease carrying the human
FHM1 R192Q or S218L mutations show reduced threshold and
increased strength of excitatory neurotransmission in thalamocor-
tical neurones that could mediate cortical spreading depression,
the phenomenon that underlies migraine aura (Tottene et al.,
2009; van den Maagdenberg et al., 2004). In individuals with
visual disturbances, cortical spreading depression originates as a
short burst of depolarisations from the occipital lobe, self-
propagating towards the frontal cortex (van den Maagdenberg
et al., 2004). Other genetic factors relating to migraine are
associated with missense mutations of ATP1A2 (the Naþ/Kþ

ATPase ion channel pump α2 subunit; FHM2) and SCN1A (Nav1.1
sodium channel; FHM3) (Dichgans et al., 2005; Segall et al., 2005).

The facilitations of cortical spreading depression in FHM1 mice
link increased cortical excitation to abnormal sensory processing
in migraine. Changes in synaptic strength and neuronal excitability
that produce cortical hyperexcitability and CSD are likely to be key
targets for novel preventive migraine treatment (Tottene et al.,
2009).

2.3. Hereditary and sensory autonomic neuropathy

The hereditary sensory and autonomic neuropathies (HSANs)
comprise a group of clinically heterogeneous disorders associated
with sensory dysfunction and varying degrees of autonomic
dysfunction. Loss of sensation, lancinating pain (especially related
to SPTLC1 mutations) and autonomic dysfunction are the most
common symptoms of HSANs. Associated skin injuries can lead
to chronic skin ulcers, osteomyelitis and extrusion of bone
fragments. The most common, HSAN-1 (hereditary sensory radi-
cular neuropathy), involves progressive degeneration of dorsal
root ganglion and motor neurones, leading to distal sensory loss
and later distal muscle wasting and weakness (Nicholson et al.,
1996). The autonomic effects are variable across HSAN types,
but can include altered hyperhydrosis/anhydrosis, cardiovascular
dysregulation and gastrointestinal dysmotility.

Patients with autosomal dominant forms of HSAN typically
show juvenile- or adult-onset sensory neuropathy. By contrast, the
autosomal recessive forms of HSAN typically show an earlier onset
(Rotthier et al., 2012). Positional cloning and functional candidate-
gene approaches have led to the identification of 12 causal genes
for HSANs; one interesting mutation is of nerve growth factor
(NGF) gene NGFB, underlying the development of HSAN-4
(Carvalho et al., 2011). NGF belongs to the neurotrophin family
of proteins that regulate neuronal survival, development and
function. In adults, NGF is a potent mediator of pain; it mediates
inflammatory and immune responses following tissue injury by
initiating and maintaining peripheral sensitisation (Nicol and
Vasko, 2007). It is presumed the HSAN phenotypes are related to
binding of mutant forms of NGF to its receptors.



S. Sikandar et al. / European Journal of Pharmacology 716 (2013) 188–202 191
NGF signals through both the TrkA receptor and the low-affinity
NGF receptor p75NTR, which facilitates interactions between β-NGF
and Trk-A and also enables Trk-A-independent signalling (Nicol and
Vasko, 2007). The p75NTR signaling pathway leads to an increase in
ceramide and sphingosine-1-phosphate levels, which evokes sensi-
tisation of peripheral neurones. In vitro studies have shown lower
binding affinities of the mutant β-NGF to p75NTR and its failure to
evoke nociception when injected into mice (Capsoni et al., 2011;
Covaceuszach et al., 2010). Moreover, β-NGF secretion is more
pronounced in the frameshift mutation compared to missense
mutants, which is likely related to the more severe phenotype of
patients with frameshift mutations compared to patients with
missense mutations (Carvalho et al., 2011). Better understanding
of NGF interactions in the nervous system will clarify how its
reduced efficiency in HSANs contribute to neuropathic effects.

2.4. Familial episodic pain syndrome

Transient receptor potential (TRP) channels are cation channels
that have multiple roles in sensory transduction, including
mechanosensation, thermosensation, vision, olfaction and chemo-
sensation (Nilius, 2007). TRP mutations have been associated with
various human physiological disorders, i.e. mutations in TRPV4 are
linked to two neurodegenerative diseases, scapuloperoneal spinal
muscular atrophy and Charcot–Marie–Tooth disease type 2C (Deng
et al., 2010; Landoure et al., 2010), as well as skeletal dysplasias
(Krakow et al., 2009). Yet only one TRP mutation has been
associated with a pain syndrome that was first identified in a
Colombian family with familial episodic pain syndrome (FEPS)
(Kremeyer et al., 2010). FEPS involves painful episodes triggered by
conditions of fatigue, fasting, and cold, resulting in severe pain
localised principally to the upper body. It is associated with a
missense gain-of-function mutation in the TRPA1 gene (N855S),
attributing a five-fold increase in activation current of the channel
(by cold or chemical stimuli) at normal resting potential. TRPA1 is
expressed in primary afferent nociceptors in rodents and man, and
excessive activity in these sensory afferents is thought to underlie
the spontaneous pain episodes experienced by FEPS patients,
although the precise mechanisms linking the channelopathy with
FEPS remain unclear. The rising popularity of genome-wide
association studies is likely to illuminate how other TRP channel
mutations also contribute to human pain states.

2.5. Discussion

Although the genetic components underlying some familial
pain syndromes have been identified, the alterations in nociceptor
excitability at the molecular and systems levels underlying patho-
physiology are not well understood. SCN9A provides a fascinating
example whereby distinct mutations can produce episodic pain
conditions with very different anatomical distributions or even a
distal degeneration of small diameter axons. Nevertheless, a key
element of the inherited pain states reviewed here is the imbal-
ance between excitability and inhibition of nociceptive pathways.
Some studies are still at an early stage, but the advancement of
genetic profiling techniques will yield key insights that lead to
deeper mechanistic understanding of the pathophysiology under-
lying these familial pains, and eventually lead to novel and
effective analgesic therapies.
3. Molecular and neuronal components of cold sensory
processing

Sensory afferents can detect a wide range of temperature
changes—a process shown to be predominantly dependent on
transient receptor potential channels. Cold temperatures can elicit
a range of sensations from pleasant, refreshing and cooling to
aching, pricking and somewhat paradoxically, a sensation of
burning. Abnormal cold sensitivity is a common feature of
chemotherapy-induced neuropathy, although indeed, treatment
is often restricted owing to neurotoxic side effects. Estimates
suggest a 19% prevalence of cold allodynia among patients with
neuropathy (Maier et al., 2010), yet very little is known of the
mechanisms involved in its manifestation or cold detection com-
pared to the transduction of heat stimuli.

3.1. Primary afferent fibres and central pathways

Defining the boundaries between innocuous to noxious cold is
complex as cold pain thresholds can vary according to the rate of
cooling (Harrison and Davis, 1999). Innocuous cool is commonly
defined as temperatures between 30 1C and 15 1C, whereas nox-
ious cold is generally perceived at temperatures below 15 1C.
In primates, cold responsive fibres have been identified with
receptive fields consisting of one or many cold spots (Kenshalo
and Duclaux, 1977) and are thought to conduct in the Aδ and C
fibre ranges. In the rat, a subset of slowly adapting mechanosensi-
tive Aδ fibres can be excited by noxious cold, and in humans these
may be responsible for pricking sensations given the reduction of
cold sensation following A fibre block (Simone and Kajander,
1997). Microneurography has been used to isolate C fibres in
human skin responding to innocuous and noxious cold stimulation
(Campero et al., 2001, 1996). Although low threshold C fibres are
excited by cooling, the perception of innocuous cooling is likely to
be dependent on Aδ fibres; selective A fibre block from pressure
and ischemia results in a loss of touch and cool sensitivity and a
perception of burning in response to cold stimulation (Simone and
Kajander, 1997). This is likely mediated by a release of central
inhibition of C fibres by A fibres, thereby unmasking a burning
pain sensation (Yarnitsky and Ochoa, 1990). This can be experi-
enced with low concentrations of topically applied menthol,
whereas higher concentrations can produce cold and mechanical
allodynia in control uninjured areas and paradoxical analgesia in
injured areas in neuropathic subjects (Wasner et al., 2008).

Lamina I neurones in the superficial dorsal horn receive
convergent input from Aδ and C fibres, and cold stimuli can induce
Fos expression in lamina I neurokinin 1 receptor-expressing
neurones that is graded with stimulus intensity (Doyle and Hunt,
1999). Furthermore, exposure of rats to ambient cool temperatures
induces Fos expression in parabrachical and hypothalamic neurones—
also the projection targets of lamina I neurones (Kiyohara et al.,
1995). Electrophysiological studies indicate that 86% of wide
dynamic range neurones in the rat deep dorsal horn respond to
cold and heat stimuli in an intensity-dependent manner (Khasabov
et al., 2001). In humans, functional magnetic resonance imaging
of the brain reveals common areas of activation following noxious
heat (46 1C) and noxious cold (5 1C) stimulation, including the
thalamus, insula, and cingulate, somatosensory, premotor and
motor corticies (Tracey et al., 2000). Spinal processing of sensory
information is under dynamic descending modulation by supra-
spinal structures, and therefore stimulation of the periaqueductal
gray can selectively inhibit spinal neurones responding to noxious
cold stimulation (Leith et al., 2010). Lidocaine block of the rostral
ventromedial medulla has also been shown to attenuate cold
hypersensitivity in models of neuropathy (Taylor et al., 2007).

3.2. Cold transduction and hypersensitivity

At the molecular level, cold is detected by the transient
receptor potential melastatin 8 (TRPM8). This non-selective cation
channel is activated by menthol, is expressed on a subset of
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nociceptive afferents and has an activation threshold below 20 1C
(McKemy et al., 2002; Peier et al., 2002). TRPM8 is a six trans-
membrane channel with C and N terminals located intracellularly
and is thought to form functional channels as tetramers (Stewart
et al., 2010). Temperature-dependent gating is conferred by
structures contained in the C terminus as demonstrated by
chimeras of TRPM8 and TRVP1 channels (Brauchi et al., 2006).
TRPM8 channels can undergo post-translational modification;
N-glycosylation facilitates trafficking of channels to the membrane
(Erler et al., 2006), whereas removal of the N934 N-glycosylation
site results in a shift in the voltage dependency and decreased
responses to cold and menthol (Pertusa et al., 2012). TRPM8 is
also subject to intracellular modulation by phosphatidylinositol
4,5-bisphosphate (PIP2) and phospholipase C, which underlie
calcium-mediated adaption to cold mimetic compounds such as
menthol (Daniels et al., 2009).

Consistent with the expression of TRPM8 in nociceptive neu-
rones, TRPM8-deficient mice have dramatically reduced cold-
sensitive dorsal root ganglia neurones, and show severe deficits
in behavioral cool thermosensation (both acute and in response to
injury) (Bautista et al., 2006; Colburn et al., 2007; Dhaka et al.,
2007). Moreover, behavioural tests in TRPM8 and TRPA1 double
knockout mice suggest that aversion to noxious cold is dependent
on TRPM8 and not TRPA1 (Knowlton et al., 2010), although
menthol has been shown to reversibly block TRPA1 in rodents
(Karashima et al., 2007).

Initially, immunohistochemical analysis of dorsal root ganglia
in the mouse revealed expression of TRPM8 in a subpopulation of
primary afferents distinct from neurones expressing the heat
sensor VR1, as well as the nociceptive markers CGRP and IB4
(Peier et al., 2002). TRPM8 protein and mRNA has also been
detected in rat arterial myocytes, implicating TRPM8 in the
regulation of vasomotor responses to cooling (Johnson et al.,
2009). On the other hand, cells counts of menthol- and
capsaicin-responsive dorsal root ganglia nociceptive neurones in
culture have reported 50% of TRPM8-expressing neurones also
expressing vanilloid receptor 1 (TRPV1) (Babes et al., 2004;
McKemy et al., 2002). Moreover, the peripheral and central
projections of TRPM8 positive neurones have been identified with
the insertion of GFP at the TRPM8 locus (Dhaka et al., 2008).
TRPM8 afferent terminals target the superficial layer of the
epidermis, including mystacial pads, and TRPM8-expressing neu-
rones also predominantly project to lamina I in the dorsal horn.
This study also confirmed previous findings that TRPM8 positive
neurones are not CGRP, IB4 or NF150 positive, although did report
co-expression of TRPM8 and TRPV1 that increases following
inflammatory insult (Peier et al., 2002; Story et al., 2003). This
co-expression may underlie the paradoxical burning sensation
associated with noxious cold, however the perceptual outcomes
relating to the quality of a sensation are confounded by relative
contributions of sensory coding in the periphery versus thalamo-
cortical processing.

Indeed, the use of cold mimetic compounds is now validated as
an effective tool to induce and investigate cold hypersensitivity.
A high concentration of 40% topical L-menthol application has
been used in humans to produce cold hyperalgesia, increased
mechanical sensitivity and pinprick hyperalgesia, substantiating a
role for both sensitisation of C fibres and activation of Aδ fibres in
cool sensory processing (Binder et al., 2011; Wasner et al., 2008).

3.3. Cold and analgesia

Although cold stimulation can be nociceptive and produce
hypersensitivities, it is well known that cooling compounds can
also produce pleasant sensations and even analgesia. Over the
counter topical applications of menthol in the form of creams and
patches are readily available to provide pain relief. Some clinical
trials employing topical menthol administration include patients
with neck pain (3.5% topical menthol to the upper trapezius and
neck muscles; ClinicalTrials.gov identifier: NCT01542827) and
patients with migraine without aura (10% menthol applied to the
forehead and temporal area; (Borhani Haghighi et al., 2010).
Topical menthol has also been reported to provide pain relief in
chemotherapy-induced peripheral neuropathy following applica-
tion to areas of pain or sensory disturbance (Storey et al., 2010).

Electrophysiological characterisation of rat spinal neurones and
behavioural tests reveal a biphasic effect of topical menthol on
cold-evoked responses, reducing the thermal thresholds and
avoidance of colder temperatures at low concentrations, whereas
increased thermal thresholds and enhanced cold avoidance are
reported at higher concentrations (Klein et al., 2010,, 2012). It is
possible that the inhibitory effects of menthol at higher concen-
trations are related to penetration of the skin to intradermal nerve
endings and the recruitment of more primary afferents, and given
the co-expression of TRPA1 and TRPV1 (Story et al., 2003, Salas
et al., 2009), menthol may indirectly affect TRPV1 via inhibition of
TRPA1. Nonetheless this does not correlate with human pain
threshold with respect to the nociceptive effects of high topical
menthol concentrations, as well as the lack of reduction in TRPA1
activity with increasing concentrations of menthol (Binder et al.,
2011; Xiao et al., 2008). Instead, GABAergic inhibition of peripheral
nociceptors may be enhanced (Hall et al., 2004). Moroever,
inhibitory neurones in the superficial dorsal horn may recruited
proportionally with increasing concentrations of peripherally
applied menthol to inhibit cold-evoked firing of dorsal horn
neurones (Takazawa and MacDermott, 2010).

Following sciatic nerve ligation, intrathecal or peripheral
administration of the cold mimetic compounds menthol and icilin
can suppress thermal and mechanical hypersensitivity, an effect
reversed by intrathecal antisense knockdown of TRPM8 (Proudfoot
et al., 2006). The analgesic effect of TRPM8 activation is centrally
mediated and is thought to rely on type II/III metabotropic
glutamate receptors and not endogenous opioid signaling, given
the failure of naloxone to reverse the analgesic behavioural effects
of cooling compounds. While cooling is analgesic in both phases of
the formalin test in wildtype mice, deletion of TRPM8 inhibits
cooling-induced analgesia in the first but not second phase,
suggesting a key role of TRPM8 afferents in the induction of
cold-sensing (Dhaka et al., 2007).

Activation of TRPM8 by menthol shifts the channel voltage
dependence to negative potentials, thereby increasing channel
opening at physiological temperatures. Antagonising channel
activity, i.e. with PBMC, shifts voltage dependence towards more
positive potentials and so PBMC treatment produces a dose-
dependent hypothermia in wildtype animals while TRPM8-
knockout mice remained unaffected (Knowlton et al., 2011).
Systemic PBMC also diminished cold hypersensitivity in inflam-
matory and nerve-injury pain models. However, studies using
various TRPM8 modulators are often complicated by actions at
other TRP channels despite low homology between channels,
rendering the selective functional analysis of the channel difficult.
Nevertheless like TRPV1, TRPM8 is necessary for thermoregula-
tion, and the inhibition of peripheral but not central channels is
required for the hypothermic effects of TRPM8 antagonists
(Almeida et al., 2012).

Among the voltage-gated sodium channels, Nav1.8 is expressed
exclusively in a subset of small nociceptive afferents (Djouhri et al.,
2003) and Nav1.8 knockout mice are almost completely unrespon-
sive to noxious cold as shown by the cold plate test and also have
impaired responses to noxious mechanical stimuli (Zimmermann
et al., 2007). Unlike other sodium channels, the inactivation
kinetics of Nav1.8 are resistant to cold, which indicates a critical
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role Nav1.8-expressing neurones for the detection of noxious cold.
Furthermore, menthol is a state-selective blocker of the
tetrodotoxin-resistant Nav1.8 and Nav1.9 sodium channels, further
indicating a role for sodium channel blockade in the efficacy of
menthol as topical analgesic compound (Gaudioso et al., 2012).
3.4. Other leading candidates for cold transduction

A significant proportion of rodent DRG neurones are excited by
cooling but are insensitive to menthol (Munns et al., 2007). It is
clear that other transducers of noxious cold exist, though these are
yet to be identified.

Transient receptor potential subfamily A member 1, TRPA1, is
another TRP cation channel with an activation threshold below
17 1C and is expressed in peptidergic nociceptors expressing
TRPV1 (Story et al., 2003). It is targeted by pungent irritants from
mustard and garlic to produce inflammatory pain, and in human
tissue, TRPA1 activation by intracellular Ca2þ can occur via an EF-
hand domain to produce cold sensitivity (Bautista et al., 2006;
Zurborg et al., 2007). It is thought that TRPA1 activation maybe
increase peripheral drive in addition to primary afferent activity
linked to TRPM8 activation, yet the potential role of TRPA1 as a
sensor of noxious cold is controversial (Bautista et al., 2006; Kwan
et al., 2006; Nagata et al., 2005). Nevertheless, cold plate and tail-
flick experiments reveal TRPA1-dependent, cold-induced nocicep-
tive behaviour in mice, and a subset of cold-sensitive trigeminal
ganglion neurones are reported absent in TRPA1-deficient mice
(Karashima et al., 2009).

TRPC5 channels were discovered to be gated by cooling in the
range of 37–25 1C (Zimmermann et al., 2011). Although TRPC5
knockout mice have no overall changes in thermal and mechanical
thresholds, peripheral nerve recordings reveal that TRPM8-
expressing afferents form a larger component of cold sensing.

Inhibition of Kþ leak channels has been proposed to be
involved in cold transduction. Differences in potassium currents
identified between cold sensitive and cold insensitive trigeminal
neurones suggest the presence of a 4-AP-sensitive potassium
current in cold insensitive neurones acting as an ‘excitatory brake’
to prevent excitation during cooling (Viana et al., 2002). Cold
hypersensitivity may result as a loss of this ‘brake’ in high
threshold receptors to produce cold allodynia, i.e. in neuropathic
pain. The 2 pore domain potassium channels TREK and TRAAK are
expressed in sub-populations of TRPV1-, TRPV2- and TRPM8-
expressing rat trigeminal neurones. Both potassium channels have
been implicated in modulating mechanical, heat and cold nocicep-
tion (Alloui et al., 2006; Maingret et al., 1999). TREK1/TRAKK
double knockout mice exhibit increased thermal hyperalgesia,
increased cold avoidance and cold hypersensitivity after nerve
injury, suggesting TREK-1 and TRAAK may in tandem modulate
cold transmission (Noël et al., 2009).
3.5. Discussion

A body of evidence links TRPM8 to the core of cold sensory
processing from innocuous cooling, pain and analgesia. Back-
ground potassium currents, intracellular modulation and modifi-
cation of channels and differential expression on subgroups of
primary afferent fibres could in part explain how one molecular
entity can confer multiple aspects of cold sensing. Given the
specialised nature of cold fibres in the periphery and the emer-
gence of more selective modulators of channel activity, TRPM8 has
become an attractive target for the treatment of abnormal cold
sensitivity.
4. Immune cells and their interactions with nociceptive
signaling

Immune cells can influence neuronal function in various pain
states. Indeed, the activation of inflammatory cells is classically
associated with pain with respect to heat, swelling and abnormal
sensations. More recent research implicates immune cell activity
not only in inflamed tissues, but also in damaged peripheral
nerves and in the central nervous system. Here we review a host
of immune cells that are recruited during the inflammatory
response after tissue or nerve injury, followed by the release of
numerous chemical messengers that contribute to inflammation
and activation of associated nociceptive pathways.

4.1. Neutrophils

Neutrophils (or polymorphonuclear leukocytes) are the earliest
inflammatory cell to infiltrate tissue and dominate the acute
inflammatory stage to play an important role in early phagocytosis
(Ainsworth et al., 1996). Neutrophils also release various inflam-
matory mediators and chemotactic factors, including lipoxygenase
products, nitric oxide, cytokines (e.g. interleukin-1 (IL-1) and
tumour necrosis factor-α (TNFα)), chemokines (e.g. IL-8) and
growth factors (G-CSF and GM-CSF). They are essential for recruit-
ment of other immune cells and triggering the onset and ampli-
fication the inflammatory response (Fig. 1).

Neutrophils use selectins and B2 integrins to extravasate from
the blood in order to seek and neutralise targets. The adherence of
neutrophils is a highly regulated process initiated by ‘rolling’ along
the luminal surfaces of capillaries which allows these leukocytes
to probe the endothelium and survey the environment, permitting
immediate responses to inflammation via transendothelial migra-
tion (Kishimoto et al., 1991). Released cytokines not only enable
adherence to endothelial cells with the production of reactive
oxygen species, but also attract other inflammatory cell types,
including macrophages, to mediate inflammatory hypersensitivity
(Witko-Sarsat et al., 2000).

In rodent models of inflammatory pain that are induced with
the injection of antigens, including zymosan, lipopolysaccharide
(LPS) or carageenan, the accumulation of neutrophils in the treated
tissue is critical for the development of evoked hypersensitivity
and standard inflammatory markers (Cunha et al., 2008). In the
intact uninjured nerve there in an absence of neutrophils, however
in rodent models of neuropathy (including partial nerve ligation
(Zuo et al., 2003), sciatic nerve crush (Perry et al., 1987) and
chronic constriction injury (Clatworthy et al., 1995)), neutrophils
migrate and infiltrate the site of the nerve lesion. Endoneurial
neutrophil invasion is thought to play a critical role in the
development of guarding behavior and thermal hypersensitivity
(Perkins and Tracey, 2000). Cumulatively the preclinical data
suggests that neutrophils may be important during the early
stages of neuropathic pain development, and their release of
chemokines at the injury site initiates a later accumulation of
macrophages and T-cells (Scapini et al., 2000).

4.2. Mast cells

Mast cells are critical resident effector cells for the allergic
response and are crucial for innate immunity (Galli et al., 2005).
In mammals, mast cells are widely distributed throughout vascu-
larised tissues and peripheral nerves (Galli et al., 2005). Adenosine
(Sawynok et al., 2000) and bradykinin (McLean et al., 2000) are
likely activators of mast cells following nerve injury to induce
degranulation and associated release of pro-inflammatory and
nociceptive mediators such as histamine, serotonin, nerve growth
factor (NGF) and cytokines (Galli et al., 2005; Metcalfe et al., 1997).



Fig. 1. Neuro-immune interactions in the periphery. Resident immune cells are present in the skin, nerve and DRG, surveying tissue for damage or disease. After tissue or
nerve injury, these cells release inflammatory mediators and further immune cells are recruited from the vasculature. Lymphocytes are recruited later and proliferate to
amplify the immune response. Collectively these cells release cytokines and chemokines resulting in increased expression of neuronal receptors for these inflammatory
mediators and increased postsynaptic excitability of sensory neurones. TNFα: tumour necrosis factor-α; IL-1β: interleukin-1β; IL-6: interleukin-6; NO: nitric oxide; COX2:
cyclooxygenase 2; TRPV1, transient receptor potential channel; B1/B2: bradykinin receptor; EP/IP: prostanoid receptor; ERK1/2: extracellular signal-regulated kinase 1/2;
Nav: voltage-activated sodium channel; PGs: prostaglandins; PKA/PKC: protein kinase A/C; TrkA, tyrosine receptor kinase A. (Adapted from Marchand et al. (2005))
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Some of these inflammatory mediators are stored in cytoplasmic
granules, whereas others, like cytokines, exist as precursors in the
cell or are attached to the cell (Stassen et al., 2002). Mast cell
degranulation is associated with vascular changes and recruitment
of other immune cell types including neutrophils and macro-
phages to amplify the inflammatory response and activity within
nociceptive circuits (Perkins and Tracey, 2000).

Activation of mast cells in human skin with compound 48/80 (a
polyamine that causes degranulation) produces erythema, pro-
found itch and marked thermal hyperalgesia (Drummond, 2004).
Further evidence for a role of mast cells in nociceptive processing
has been implicated among patients with interstitial cystitis and
chronic pancreatitis, who show a 3.5-fold increase in the number
of mast cells compared with patients without pain (Hoogerwerf
et al., 2005; Oberpenning et al., 2002).

In the golgi apparatus of mast cells, histidine is decarboxylated
to form histamine (White et al., 1987) that upon cutaneous
application to human skin produces a wheal, flare and distinct
pruritic sensations (Sikand et al., 2011). In neuropathic pain
patients, the processing of pruritic sensation is significantly altered
and cutaneous histamine results in a severe increase in sponta-
neous burning pain (Baron et al., 2001). In a rodent model of
peripheral nerve damage using a crush injury, an upregulation of
H1 receptors in small DRG neurones heightens sensitivity and
evoked activity of sensory neurones to histamine (Kashiba et al.,
1999).

The histamine H₄ receptor mediates several histamine-induced
cellular functions of leukocytes, including cell migration and
cytokine production, yet histamine signaling through the H₄
receptor can also have anti-pruritic and anti-nociceptive functions
as revealed by the H₄ antagonist INCB38579 that can reduce
histamine-induced itch in mice and carrageenan-induced acute
inflammatory pain in rats (Shin et al., 2012).

Mast cell-deficient mice are unable to develop the appropriate
pain behaviour and pathophysiology following of interstitial cysti-
tis as well as the appropriate thermoregulatory responses during
sepsis (Nautiyal et al., 2009; Rudick et al., 2008). This body of
evidence supports the role of mast cells in triggering the inflam-
matory response and pursuing nociceptive activity.

4.3. Macrophages

Under normal physiological conditions, macrophages are res-
ponsible for interstitial homeostasis by removing cellular debris.
In primed immune states, resident and blood-recruited macro-
phages phagocytose foreign material, microbes, other leukocytes
and injured tissue i.e., during Wallerian degeneration (Bruck,
1997). Endogenous (i.e., pro-inflammatory factors released by
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necrotic cells) and exogenous signals (foreign agents) can activate
macrophages, followed by their migration to the site of injury to
release pro-inflammatory mediators (cytokines TNFα and IL-1β,
NGF, nitric oxide and prostanoids).

The accumulation of macrophages and the release of mediators
have been shown to modulate pain processing experimentally. The
overt pain behaviour induced by intraperitoneal injections of
acetic acid, LPS or zymosan in rodents is exacerbated with
increasing macrophage concentrations, partly attributed to the
release of TNFα and IL-1β (Ribeiro et al., 2000; Thomazzi et al.,
1997). With anti-inflammatory cytokines or a vasodilator drug
(pentoxifyline), this inflammatory pain can be significantly
reduced with a decrease in production of cytokines from the
resident macrophages (Vale et al., 2003).

Prostaglandins are well-established mediators of inflammation
that trigger pain hypersensitivity by promoting nociceptor sensi-
tisation and hyperexcitability. Following activation of the ATP-
gated calcium channel P2�4, a multi-step enzymatic cascade that
includes the cytosolic phospholipase A2 cyclooxygenase (cPLA2/
COX) pathway leads to synthesis of prostaglandin E2 (PGE2), the
main prostaglandin produced during the inflammatory response.
In resting conditions, tissue-resident macrophages constitutively
express P2�4 and stimulation of these receptors in macrophages
triggers calcium influx and p38 MAPK phosphorylation, resulting
in cPLA2/COX-dependent release of PGE2. However, in response to
induced peripheral inflammation, mice lacking the P2�4 receptor
do not develop pain hypersensitivity and show a complete absence
of inflammatory PGE2 in tissue exudates (Ulmann et al., 2010).
The adverse side effects of non-steroidal anti-inflammatory drugs
(NSAIDS) calls for the development of new anti-inflammatory
drugs with analgesic properties, and so these findings suggest
that targeting the macrophage-specific P2�4 receptor could be a
useful principle in treating the early stages of osteoarthritis and
other inflammatory pain diseases (Jakobsson, 2010). Interestingly,
microglia also express the same surface markers as macrophages,
including P2�4 receptors, ascribing multiple cellular targets to
P2�4 receptor blockade for alleviating inflammatory pain (Zhuo
et al., 2011).

Several studies also demonstrate a role of macrophages in
neuropathic pain pathology, where a reduction in neuropathic
pain behaviours correlates with an attenuation of macrophage
recruitment into the damaged nerve (Liu et al., 2000; Myers et al.,
1996; Ransohoff, 1997; Sommer and Schafers, 1998). Indeed mice
with a delayed Wallerian degeneration show markedly reduced
thermal hyperalgesia compared to normal mice with a chronic
constriction injury of the sciatic nerve, temporally related to
the delayed recruitment of macrophages to the injured nerve
(Sommer and Schafers, 1998). Following nerve damage, resident
macrophages respond rapidly without the need for prior activation
of precursor cells and are joined by circulating macrophages, a
process that can occur for 2–3 days after damage. Recruited
macrophages quickly outnumber the resident cells and this
process is vital for nerve regeneration (Griffin et al., 1993;
Taskinen and Roytta, 1997). Their involvement in inflammatory
and neuropathic pain makes macrophages an obvious target for
study in chronic pain mechanisms but targeting of these cells need
to be tempered by the fact that they have a key role in repair.

4.4. T-Cells

Lymphocytes are a large group of circulating leukocytes com-
prising B-lymphocytes, T-lymphocytes and natural killer cells.
T-lymphocytes (T-cells) play a central role in cell-mediated immu-
nity by release of cytokines to activate immune cells or through
the destruction of infected cells. T-cells are classified either as
helper cells (CD4þ) or cytotoxic cells (CD8þ) with type 1 and
2 subtypes. Th1-cells are responsible for the release of proinflam-
matory cytokines, whereas Th2-cells release anti-inflammatory
cytokines that activate humoral immunity and strongly deactivate
macrophages. During an immune response naive T-cells produce
Interleukin 2, proliferate and release an array of pro-inflammatory
cytokines depending on their subtype (Th1 produce Interferon γ;
Th2 produce IL-4, IL-5 and IL-13) (O'Garra and Arai, 2000).

The elimination of subgroups of these cells in animals confirms
their central role in acquired immunity and autoimmune diseases.
In rheumatoid arthritis, CD4þ T-cells infiltrate the degenerating
rheumatoid synovium and produce cytokines—the T-cell blocker
abatacept partially inhibits inflammatory disease progression
among rheumatoid arthritis patients (von et al., 2012). In rat
Freund's adjuvant arthritis, nitric oxide-naproxen has been shown
in reduces T-cell proliferation and thereby oedema and pain-
related behaviour (Cicala et al., 2000). The infiltration of T-cells
into the dorsal horn has also been shown to contribute to the
development of neuropathic pain (Costigan et al., 2009).

4.5. Glial cells

Microglia, oligodendrocytes and astrocytes constitute the glial
cells of the central nervous system. Glial signaling is now under-
stood to be crucial for the development and maintenance of
chronic pain (Colburn et al., 1997). Under the normal influence
of the CNS microenvironment, microglia exhibit a “surveillance
state” with fine, long processes that continually survey their
environment. Following activation by pathological events or
microbial invasion, the cell morphology, gene expression profile
and functional behavior of these cells rapidly changes to the
“effector state” resulting in the release of numerous chemokines
and cytokines that facilitate an innate immune response (Gao
et al., 2009; Zhuo et al., 2011).

Glial cells are activated by several neuronal-derived signals and
thus express an array of receptors (Fig. 2), i.e. microglia have P2X
and P2Y receptors for ATP, CX3CR1 for fractalkine, neurokinin-1 for
substance P and CCR2 for monocyte chemotactic protein (MCP-1)
and erbB2, 3 and 4 for neuregulin-1. Activated microglia release
several pro-inflammatory cytokines, chemokines and growth fac-
tors such as brain-derived neurotrophic factor (BDNF) that mod-
ulate nociceptive processing by altering presynaptic release of
neurotransmitters and/or postsynaptic excitability. Inflammatory
mediators released include TNFα, IL-1β, IL-6, nitric oxide (NO),
ATP and prostaglandins (PGs), which initiate a selfpropagating
mechanism of further cytokine expression, ultimately leading to
an increase in intracellular calcium and activation of the down-
stream p38 and MAPK/ERK pathway within microglia (Zhuang
et al., 2005).

Both microglia and astrocytes are activated in response to
nerve injury, The chemokine CCL2 is produced and released in
an activity-dependent manner by damaged and undamaged pri-
mary afferents in neuropathic rats, and intraspinal administration
of CCL2 in naïve rats can activate spinal microglia to produce
neuropathic pain-like behaviour (Thacker et al., 2009). CCR2
knockout mice also fail to develop tactile allodynia following
nerve injury (Abbadie et al., 2003). Fractalkine is constitutively
expressed by neurones of the spinal cord and dorsal root ganglia,
and its receptor CX3CR1 in microglia is upregulated in a regionally
specific manner in two neuropathic pain models (Verge et al.,
2004). In the context of nerve injury microglia secrete cathepsin S
that cleaves transmembrane fraktalkine, which upon release binds
to its receptor on microglia promoting a ‘pro-algesic’ phenotype
(Clark et al., 2007). Furthermore, neutralising antibody against
rat CX3CR1 delays the development of mechanical allodynia and
thermal hyperalgesia, suggesting that prolonged release of frac-
talkine may contribute to the maintenance of neuropathic pain
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(Milligan et al., 2004). Neuregulin-1 (Nrg1) is expressed by DRG
cells and released upon peripheral nerve injury binding to erbB
tyrosine kinase receptors on microglia. In vitro Nrg1 promotes
microglial survival, proliferation, chemotaxis and Il-1 release and
in vivo contributes to the development of microgliosis and neuro-
pathic pain (Calvo et al., 2010).

Intraplantar and sciatic nerve injection of a more novel pro-
inflammatory cytokine, IL-17, induces mechanical allodynia and ther-
mal hyperalgesia associated with increased neutrophil infiltration in
mice. IL-17 knockout mice also show attenuated mechanical pain
hypersensitivity and decreased infiltration of T-cells and macrophages
to the injured sciatic nerve, associated dorsal root ganglia and spinal
cord segments in neuropathic mice (Kim and Moalem-Taylor, 2011).
IL-17 thus contributes to the regulation of immune cell infiltration and
glial activation following peripheral nerve injury.

Given the increasing evidence that glia play key roles in
neuropathic pain, these cells and their signaling molecules are
promising pharmacological targets for analgesic therapies. Even
the pharmacological inhibition of microglial activation, i.e. using
the second-generation tetracycline minocycline, can attenuate
behavioural hypersensitivities exhibited in neuropathy (Mika
et al., 2009). The therapeutic benefits of targeting glial signaling
molecules include fewer side effects on acute pain sensations
given that these molecules are predominantly upregulated only in
Fig. 2. Neuro-immune interactions in the dorsal horn The synaptic transmission betwe
microglia, T-cells and astrocytes, i.e. after nerve injury. The release of transmitters or
microglia in the dorsal horn projection region of primary afferents conveying injury. Mic
the dorsal horn through the aid of co-stimulatory molecules such as CD40 and transi
(requires the activation of ERK1/2 and p38MAPK), astrocytes proliferate and their proc
astrocytes release several pro-inflammatory cytokines, chemokines and other pro-infla
release of neurotransmitters and/or postsynaptic excitability, including as TNFα, IL-1β,
expression of the potassium-chloride exporter KCC2, thereby shifting the anion grad
excitability of the spinal cord. TNFα: tumour necrosis factor-α; IL-1β: interleukin-1β;
neurotrophic factor; AMPA: α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid;
MHC-II, major histocompatibility complex type 2; NGF, nerve growth factor; NK1R, n
ERK, extracellular signal-regulated kinase; p38 MAPK, p38 mitogen-activated protein ki
activated microglia, and thus only in pathological states (Zhuo
et al., 2011). However, this promise has not yet translated into
clinical benefit (Landry et al., 2012).

4.6. Discussion

Here we have highlighted the role of some immune cells in
nociceptive signaling and the generation of chronic pain states.
Neuro-immiune interactions are now thought to be essential in
both the peripheral and central nervous system, notably exempli-
fied by critical roles of the pro-inflammatory cytokines IL-1β and
TNF-α in maintaining pain behaviours. Indeed we cannot disregard
the potential role of the ‘non-immune’ Schwann cells in nocicep-
tive circuits, given their intimate contact with all sensory neurones
and their synthesis of pro-inflammatory mediators (e.g. NGF,
TNF-α, IL-1β, IL-6) that amplify the pool of signaling molecules
also released by immune cells.
5. Cancer-induced bone pain

Treating pain related to cancer is a clinical challenge in itself,
and a common problem is cancer-induced bone pain (CIBP)
(Mercadante, 1997). Despite drawing parallels with other pain
en sensory neuronal terminals and dorsal horn neurones is enhanced by activated
modulators from primary afferents stimulates the proliferation and chemotaxis of
roglia express MHC-II protein that presents antigens to T-cells that are recruited to
ent opening of the blood–spinal cord barrier. After initial microglial proliferation
esses hypertrophy into an effector state (requires ERK1/2 and JNK). Microglia and
mmatory mediators that modulate pain processing by affecting either presynaptic
IL-6, NO, ATP and prostaglandins. BDNF is also released by microglia that reduces
ient to allot GABA an excitatory action. All these factors contribute to enhanced
IL-6: interleukin-6; NO: nitric oxide; PGs: prostaglandins; BDNF: brain-derived
NMDA, N-methyl-D-aspartate; CCR2, CCL2 receptor; CX3CR1, fractalkine receptor;
eurokinin-1 receptor; P2X4, ionotropic purinoceptors; TLR4, Toll-like receptor 4;
nase.
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conditions, CIBP is a unique condition encompassing features of
both neuropathic and inflammatory pain by producing numerous
changes along the neuraxis and remains a considerable therapeu-
tic challenge in the clinical setting (Laird et al., 2010).

5.1. Clinical features

CIBP manifestations are multifaceted comprising of tonic pain
(ongoing), incident pain (pain on movement) and break-through
pain (manifests at rest or on movement being both intense and
unpredictable) (Laird et al., 2010). These different components can
occur as isolated events or in tandem and effective pain relief in
CIBP may require individual attention to each aspect. The first
symptom of metastatic bone cancer is usually the presence of a
constant dull and throbbing pain, the quality of which intensifies
as the disease evolves in response to progressive destruction of
bone (Mercadante, 1997). As the disease advances, episodes of
incident pain and break-through pain occur more frequently and
with greater intensity (Mercadante, 1997; Portenoy and Lesage,
1999). In the majority of these patients, opioid analgesia is the
preferred and sometimes only method of providing pain relief.
However, treatment for these painful episodes is hampered by the
need of higher than normal doses of opioids, which are accom-
panied by side effects such as sedation, constipation, tolerance and
opioid-induced hyperalgesia (Portenoy and Hagen, 1990; Portenoy
and Lesage, 1999; Serafini, 2001).

Break-through pain occurs in more than 50% of cancer patients
and is predictive of more severe pain, emotional distress, physical
disabilities and poor quality of life (Caraceni and Portenoy, 1999;
Portenoy and Lesage, 1999). A recent study profiling the character-
istics of CIBP correlated the worst pain experienced by patients
with break-through pain and the associated functional impairment
(Laird et al., 2010). Although break-through pain occurs transi-
ently, it is reported to have detrimental socio-economic impacts
due to work loss and hospitalisation-related medical costs (Fortner
et al., 2002).

5.2. Current CIBP therapies

Management of pain relief is key in maintaining quality of life
in patients with metastatic bone disease (Vasudev and Brown;
2010). Treatment for CIBP often comprises pharmacological and
non-pharmacological approaches, including administration of var-
ious analgesics, bisphosphonates, radiation and surgery (Levy,
1996; Vasudev and Brown; 2010).

Because cancer pain is a complicated mixture of nociceptive,
inflammatory, visceral and neuropathic pains, its treatment
requires a multi-modal therapeutic approach. NSAIDs are advo-
cated for use in mild to moderate cancer pain on steps 1 and 2 of
the World Health Organisation treatment algorithm for cancer
pain (Fig. 3).
Fig. 3. World Health Organisation (WHO) treatment algorithm. Benefits from using
NSAIDs in the management of cancer pain include low cost and wide availability,
familiarity to patients and ease of administration (step 1). Combinations of NSAIDS
and opioids (steps 2 and 3) are recommended for moderate to severe cancer pain.
Opioids can be used as stand-alone medications or in combina-
tion with NSAIDs to treat around-the-clock cancer pain. Although
opioids are chosen for individual patients on the basis of toler-
ability and accounting for the risk to benefit ratio for pain
management, their pharmacokinetic and pharmacodynamic pro-
file is given precedence for treating break-through pain (Colvin
and Fallon, 2008).

Oral transmuscosal fentanyl citrate is reported to produce
lower pain intensity and higher pain relief scores among patients
with a positive response to opioid treatment (Coluzzi et al., 2001).
It is the only medication currently licensed for management of
breakthrough pain in patients who are on maintenance opioid
therapy for underlying chronic cancer pain. Like most opioids,
transmuscosal fentanyl citrate requires dose titration to find the
minimal effective dose and product information in the UK suggests
that no more than 4 units of the minimal effective dose should be
administered per day. This suggests a potential limitation in the
number of rescue medication doses administered to patients who
experience more than four daily painful episodes. Accordingly, up-
titration and dose adjustments to find a new minimal effective
dose may delay pain relief.

A recent multi-center European study investigating break-
through cancer pain found that only 52 of 320 patients studied
experienced complete relief with their underlying and rescue
medication (Davies et al., 2011). This is unsurprising given that
the majority of patients were receiving a modal dose of either
oral morphine or oxycodone as both underlying and rescue
medication, and the pronlonged onset and peak effect for such
preparations may be inadequate to deal with the break-through
pain associated with metastatic bone pain. A study of CIBP
patients has reported that breakthrough pain has a very rapid
onset (o5 min) and a short duration (15 min) compared to
other cancer pains (Laird et al., 2010).

Bisphosphonates bind to areas of active bone metabolism to
inhibit osteoclastic bone resorption (Fig. 4) and thereby decrease
the osteolytic effects of a tumour. The most commonly prescribed
bisphosphonates for the treatment of bone metastases are clo-
dronate, pamidronate and zoledronic acid, although only the more
potent nitrogen containing bisphophonates; pamidronate and
zoledronic acid are approved for the treatment of metastatic
cancer in the US (Coluzzi et al., 2011).

Three large-scale clinical trials investigating the use of bispho-
sphonates in metastatic bone disease identified key biological
biomarkers, including bone-specific alkaline phosphotase and
skeletal-related events (Major and Cook, 2002). Skeletal-related
events were defined as: pathologic fracture, spinal cord compres-
sion, occurrence of bone pain that required palliative radiation
therapy, surgery to bone or hypercalcemia of malignancy. The
number of and time to first skeletal-related event during the study
was the primary efficacy measure employed in all three trials, and
as a result became the basis for drug approval for treatment of
bone metastases in the US (Coleman et al., 2005; Ibrahim et al.,
2003). The synonymous occurrence of a skeletal-related event
with the occurrence of pain likely underlies the analgesic effects of
bisphosphonates in patients with osteoclast-induced skeletal
metastases (Coluzzi et al., 2011). Nevertheless, the analgesic effects
produced by bisphosphonates in combination with opioids are
thought to be modest (Mercadante, 1997). As with NSAIDs, bispho-
sphonates are associated with gastrointestinal tract toxicity, fever,
and electrolyte abnormalities (Mantyh, 2002).

5.3. New targets for CIBP management

Gabapentinoids are not licensed for the management of CIBP, but
preclinical data suggests that they may prove an effective treatment
for metastatic cancer pain. In a rat model of CIBP, chronic treatment



Fig. 4. Factors leading to peripheral sensitisation in osteolytic tumours. Under normal conditons, osteoblast and osteoclast activity is coupled to permit appropriate
remodeling of the bone. Osteoblasts express RANK-L, a member of the tumour necrosis family that binds to RANK, which is found on osteoclasts and osteoclast progenitor
cells to increase their activation and differentiation, respectively. In the presence of a tumour, immune cells are recruited to secrete various pro-inflammatory mediators in
response to a change in the microenvironemnt. T-cells are can stimulate bone resorption independent of osteoblast activity (due to their expression of RANK-L). Osteoclast
activity is dependent on a low pH environment, and the activation of ASIC and TRPV1 channels by protons derived from osteoclast activity can facilitate nociceptive
processing. Moreover, structural weakening of the bone induced by increased osteoclast activity may distend the highly innervated periosteum to amplify the afferent
barrage into the central nervous system and drive pain perception. RANK receptor activator of nuclear factor κB-ligand; RANK-L: RANK ligand; TNFα: tumour necrosis
factor-α; IL-1/6: interleukin-1/6: NGF: nerve growth factor; PGs: prostaglandins; ET: endothelin.
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with gabapentin was found to ameliorate pain behaviours (Donovan-
Rodriguez et al., 2005). Furthermore it was previously reported by the
same group that there is phenotypic shift in lamina I neurones from
predominantly NS like to WDR-like neurones (Urch et al., 2005).
Chronic treatment with gabapentin was further found to reverse these
pathophysiological changes in lamina I back to a desensitised state
(Donovan-Rodriguez et al., 2005).

One early proof-of-concept study investigated the cytokine
RANK/RANK-L interaction in metastatic cancer using osteoprote-
grin, a decoy receptor for RANK-L (receptor activator of nuclear
factor κB-ligand). RANKL/RANK signaling regulates the formation
of multinucleated osteoclasts and their activation in normal bone
remodelling (Body et al., 2003). Osteoprotegrin protects the
skeleton from excessive bone resorption by binding to RANK-L
and preventing it from binding to its receptor, RANK (Boyce and
Xing, 2007). In 2003 a phase I randomised dose escalation study
determined both the safety and the effect of AMGN-0007 (a
recombinant osteoprotegrin) on bone resorption (Body et al.,
2003). Subcutaneous AMGN-0007 significantly suppressed bone
resorption compared to intravenous bisphosphonate pamidronate
measured by urinary N-telopeptide of collagen (NTX) (a surrogate
biomarker of bone resorption). Denosumab is a non-cytotoxic IgG2
monoclonocal antibody for the RANK-L ligand expressed on
osteoclasts and has been investigated in bisphosphonate naive
patients with breast cancer related metastases (Lipton et al., 2007,,
2008). Skeletal-related events were reported more frequently and
urinary NTX levels higher among intravenously bisphosphonate-
treated patients compared to the denosumab group, implicating a
similar if not better efficacy profile of denosumab compared to
bisphophonates, also in terms of delaying or preventing skeletal-
related events (Fizazi et al., 2011; Henry et al., 2011; Stopeck et al.,
2010). Together these studies set a strong precedence for the use
of denosumab as an alternative therapy in the armoury of
medications used to manage metastatic bone pain.

Another potential treatment for CIBP includes anti-nerve growth
factor (anti-NGF) antibodies, e.g. tanezumab. The release of NGF by
cancer cells (Sevcik et al., 2005) and the NGF-induced sensitisation of
primary afferent nerves in the tumour-laden bone (Pantano et al.,
2011) highlight potential mechanisms for pain relief with anti-NGF
antibodies. A recently completed phase II trial has investigated
the safety and efficacy of tanezumab as an add-on therapy to
opioids in treating pain related to bone metastases (clinicaltrial.gov
NCT00545129). However, the same approach used in patients with
osteoarthritic pain of the knee saw the studies halted early due to
early joint replacement in patients administered tanezumab compared
to those who received placebo (Lane et al., 2010).

A novel molecule currently under clinical investigation by
Sanofi Aventis includes SSR411298, a fatty acid amide hydrolase
(FAAH) inhibitor under evaluation as an adjunctive treatment for
persistent cancer pain for patients receiving WHO Step 2 and
3 cancer pain treatments (clinical trials.gov NCT 01439919). FAAH
is one of two principle enzymes responsible for the hydrolysis of
the endocannabinoids: N-arachidonoyl ethanolamine (ananda-
mide) and 2-arachidonoylglycerol. Both tetrahyrdocannabinol,
the psychoactive component of marijuana, and cannabinoid recep-
tor 1 antagonists are known to have analgesic properties, however
these are tainted by undesirable side-effects which limit their
usefulness (Ahn et al., 2009). The primary objective of the study
will evaluate the safety and efficacy of SSR411298 200 mg daily
compared to placebo as measured by a change in pain severity
from baseline using the numerical rating scale.

More recent approaches seek to improve the efficacy or
durability of licensed medications for the treatment of meta-
static cancer pain, including fentanyl buccal tablets with oxy-
codone (Clinicaltrials.gov NCT00463047). Fentanyl is a fast
acting opioid generally used for the management of cancer
break-through pain, given its faster onset of action. Similarly,
ketamine a N-methyl-D-aspartate (NMDA) receptor antagonist
may improve analgesia in patients with uncontrolled pain
receiving high doses of opioids and may also prove an effective
adjuvant that reduces opioid consumption and tolerance in
patients with CIBP (clinicaltrials.gov NCT00484484).
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5.4. Summary

A number of new targets are arising and are under review
for the management of CIBP. Numerous in vivo preclinical studies
and human studies, some of which we have discussed here,
have demonstrated that metastatic cancer pain is distinct from
other chronic pain states, yielding a need to improve currently
prescribed therapies and produce novel approaches to tackle this
debilitating yet poorly understood condition.
6. Summary

We have discussed the science and clinical picture of four
topics in pain research that have received growing interest in
recent literature. For some heritable pain states, the contributing
genetic factors have been identified with increasing sophistication
of genetic profiling techniques. Further preclinical modeling may
be able to bridge the knowledge gap between the effects of altered
nociceptor excitability at the molecular level to the underlying
pathophysiology. We have also reviewed mediators of cold sensory
processing as well as non-neuronal cells in the inflammatory
response. Indeed, a body of literature has now identified the
recruitment of specific immune cells and release of particular
pro-inflammatory mediators following insult that contribute to
chronic or persistent pain. Our last topic of review was the
challenges in treating cancer-induced bone pain and the need to
improve current therapies for this unique condition. Overall, we
have provided an overview of both the molecular and cellular
mechanisms and also the clinical manifestations of the reviewed
topics. Linking the ties between preclinical and clinical data will
yield further key insights into the mechanistic understanding of
pain pathophysiology and hopefully translate into effective analge-
sic treatments.
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