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Gene‑regulatory network 
analysis of ankylosing spondylitis 
with a single‑cell chromatin 
accessible assay
Haiyan Yu1,2, Hongwei Wu3, Fengping Zheng1, Chengxin Zhu1, Lianghong Yin3, Weier Dai4, 
Dongzhou Liu1, Donge Tang1*, Xiaoping Hong1* & Yong Dai1*

A detailed understanding of the gene‑regulatory network in ankylosing spondylitis (AS) is vital for 
elucidating the mechanisms of AS pathogenesis. Assaying transposase‑accessible chromatin in single 
cell sequencing (scATAC‑seq) is a suitable method for revealing such networks. Thus, scATAC‑seq was 
applied to define the landscape of active regulatory DNA in AS. As a result, there was a significant 
change in the percent of CD8+ T cells in PBMCs, and 37 differentially accessible transcription factor 
(TF) motifs were identified. T cells, monocytes‑1 and dendritic cells were found to be crucial for 
the IL‑17 signaling pathway and TNF signaling pathway, since they had 73 potential target genes 
regulated by 8 TF motifs with decreased accessibility in AS. Moreover, natural killer cells were involved 
in AS by increasing the accessibility to TF motifs TEAD1 and JUN to induce cytokine‑cytokine receptor 
interactions. In addition, CD4+ T cells and CD8+ T cells may be vital for altering host immune functions 
through increasing the accessibility of TF motifs NR1H4 and OLIG (OLIGI and OLIG2), respectively. 
These results explain clear gene regulatory variation in PBMCs from AS patients, providing a 
foundational framework for the study of personal regulomes and delivering insights into epigenetic 
therapy.

Ankylosing spondylitis (AS) is a chronic, inflammatory, rheumatic disease that predominantly affects the axial 
skeleton of young  men1. Consequently, it causes characteristic inflammatory back pain, leads to structural and 
functional impairments and decreases the quality of  life2. Various immune cells have been reported to play impor-
tant roles in the initiation, progression and regulation of AS. For example, dendritic cells (DCs) are involved in 
Th17 immune responses, which are associated with manifestations of  AS3. Natural killer (NK) cells can recognize 
HLA class I through the expression of genes named killer immunoglobulin-like receptors (KIRs). Interestingly, 
this recognition determines NK cell functions, one of which is recruiting other immune cells, resulting in an 
excessive immune state in  AS4. T cells are able to mediate inflammatory responses by secreting inflammatory 
cytokines in AS, and B cells are reported to have a positive correlation with the Bath Ankylosing Spondylitis 
Disease Activity Index (BASDAI) in  AS3. However, the number of these immune cell subsets and their roles in 
the pathogenesis of AS are still debatable. The precise etiology of AS remains unclear, which includes a lack of 
knowledge about the cell-type-specific regulatory program in the pathogenesis of AS.

Recently, assaying transposase-accessible chromatin in single cell sequencing (scATAC-seq) was devolved 
to map open chromatin regions and identify regulatory  regions5. This method is not only simple and sensitive 
but also capable of recognizing different cell types, including subtle and rare cell subtypes, and it can reveal cell-
type-specific regulatory regions and explore related transcription factors (TFs). Moreover, some recent studies 
have displayed the power of scATAC-seq for understanding regulatory principles. For example, the single-cell 
chromatin assay has successfully mapped the regulatory landscape of adult mouse tissues, characterized 85 
distinct chromatin patterns, annotated key regulators in diverse mammalian cell types and identified cell types 
underlying common human traits and  diseases6. Another group used scATAC-seq to study the mouse forebrain 
at eight developmental stages, and they found cell-type-specific transcriptional regulation and provided insight 
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into forebrain  development7. In addition, the application of scATAC-seq has identified cell-type-specific cis- and 
trans-regulatory elements without using antibodies and reconstructed trajectories of cellular differentiation in 
human blood; in addition, this method has disclosed regulatory networks in basal cell  carcinoma8.

Notably, chromatin accessibility plays important roles in genome stability and gene regulation. As changes in 
chromatin accessibility patterns may alter the accessibility of key proteins to regulatory regions of the genome, 
these patterns are emerging as essential component of human  diseases9. Using scATAC-seq to profile accessible 
chromatin of AS is a promising avenue for unveiling important cell subsets involved in AS pathogenesis without 
bias, and this process can explain how the chromatin regulatory elements govern transcription in each cell type. 
Thus, we take advantage of scATAC-seq to assess the landscape of open chromatin regions of peripheral blood 
mononuclear cells (PBMCs) from 9 AS patients and 12 healthy controls. Through analysis of scATAC-seq data, 
we performed cell identification without using antibodies. Then, we investigated novel and rare cell populations 
and evaluated the changes in immune cell numbers in AS patients compared to healthy controls. Finally, we 
analyzed cell-type-specific regulatory patterns. These results provided mechanistic insights into AS-associated 
pathogenesis.

Results
Benchmarking analysis of scATAC‑seq. PBMCs from both AS patients (AS_PBMC) and healthy con-
trols (NC_PBMC) were obtained and analyzed by scATAC-seq. In our study, patients treated with immune sup-
pressants such as non-steroidal anti-inflammatory drugs (NSAIDs), corticosteroids (CS), methotrexate (MTX) 
and sulfasalazine (SSZ) within 3 months before sample collection were excluded (Table 1). After quality control 
was performed, 217,542,359 cleaned, paired-end reads from the AS_PBMC data and 222,111,738 paired-end 
reads from the NC_PBMC data were obtained. A total of 5,988,120 peaks of DNA accessibility from AS_PBMC 
library and 5,950,637 peaks from NC_PBMC library were identified. At single-cell resolution, approximately 
fourfold enrichment of fragments proximal to TSSs (relative to distal regions) from the AS_PBMC data were 
observed, and a similarly assessed fivefold enrichment from the NC_PBMC data were observed; these data 
reflect a high fraction of fragments captured within open rather than closed chromatin. The AS_PBMC library 
was sequenced at an average depth of 26,084 raw reads per cell, generating chromatin accessibility profiles for 
8340 cells with a median of 6190 unique fragments per cell. Meanwhile, the NC_PBMC library contained 26,464 
raw reads per cell, producing profiles for 8393 cells with a median of 5344 unique fragments per cell. In the 
AS_PBMC library, 19.12% of the fragments were assigned to TSSs, 13.01% were mapped to enhancer regions, 
11.77% were linked to promoter regions, 22.36% were in nucleosome-free regions, 70.60% were mapped to a sin-
gle nucleosome, and the fraction of total read pairs mapped confidently to the genome was 86.59%. In the NC_
PBMC library, the related percentages were 21.57%, 13.25%, 14.29%, 23.71%, 69.04% and 86.77%, respectively.

Cell‑type‑specific clustering of PBMCs. Clustering was performed with Cell Ranger ATAC pipeline, 
and 9 clusters were obtained for both AS_PBMC and NC_PBMC libraries after tSNE analysis. Following aggre-
gating reads from all cells within a cluster to form ‘pseudobulk’ accessibility profiles and examining chromatin 
accessibility at known marker loci, 7 different functional cell types were recognized and annotated: NK cells 
(cluster 3), monocytes (cluster 4), memory CD4+ T cells (cluster 5 and cluster 8), CD8+ T cells (cluster 6), B cells 
(cluster 7) and DCs (cluster 9) (Supplementary Fig. S1). Meanwhile, none of the marker loci were significantly 
located in cluster 1 and cluster 2, and differential TF motifs between AS_PBMC and NC_PBMC libraries were 
hardly observed in these clusters. Since lymphocytes, monocytes and DCs were the focus of our research, cells 
from the relevant 7 annotated clusters were selected for reclustering and subsequent analysis, which included 
4960 cells from the AS_PBMC library and 4094 cells from the NC_PBMC library.

As a result, 8 clusters were obtained and identified: NK cells (cluster 1), monocytes-1 (cluster 2), T cells 
(cluster 3), CD8+ T cells (cluster 4), CD4+ T cells (cluster 5), B cells (cluster 6), DCs (cluster 7) and monocytes-2 
(cluster 8) (Fig. 1a,b). More specifically, CD4+ T cells were identified by CD3G, CD4, IL2RA and IL7R gene 
promoter  accessibility10; CD8+ T cells were identified by CD3G, CD8A and CD8B gene promoter  accessibility11; 

Table 1.  Clinical features of patients with AS and NC studied for scATAC-seq experiments. AS, ankylosing 
spondylitis; NC, healthy controls; PBMC, Peripheral blood mononuclear cells; NA, not applicable; 
ESR, Erythrocyte sedimentation rate; CRP, C-reactive protein; BASDAI, Bath AS disease activity index. 
*Mean ± standard deviation.

Clinical characteristic (number of samples) AS (n = 9) HC ( n = 12)

Age (years)* 37 ± 6 34 ± 9

Sex, Female/Male 7/2 6/6

ESR(mm/hr)* 35 ± 38 NA

CRP(mg/l)* 18 ± 21 NA

Inflammatory back pain 8/9 NA

HLA-B27 positivity 7/9 NA

Schober test (cm)* 1.5 ± 1.4 NA

Hand to floor distance (cm)* 16.5 ± 16.5 NA

Chest expansion (cm)* 2.6 ± 2.0 NA
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Figure 1.  Cell-type-specific clustering of human PBMCs according to scATAC-seq. (a) Schematic of cell types 
in AS_PBMC group; (b) Schematic of cell types in NC_PBMC group; (c) Open chromatin signals for each cluster 
at several marker gene loci; (d) tSNE visualization of deviations in accessibility at marker gene promoters across 
the 8 clusters; (e) Heatmap representation of log twofold change in the 579 variable TF motifs (rows) across all 
scATAC-seq clusters (columns). PBMCs, peripheral blood mononuclear cells; scATAC-seq, assaying transposase-
accessible chromatin in single cell sequencing; AS_PBMC, PBMCs from patients with ankylosing spondylitis 
(AS); NC_PBMC, PBMCs from healthy controls; NK cells, natural killer cells; TF, transcription factor.
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NK cells were identified by CD160, GNLY, GZMB, NKG7 and KLRF1 gene promoter  accessibility12; B cells were 
identified by CD19, CD79A and MS4A1 gene promoter  accessibility10,12; monocytes were identified by CD14, 
CD68, S100A12 and FCGR1A gene promoter  accessibility12; and DCs were identified by CD83, CD1C and IL3RA 
gene promoter  accessibility10,12,13 (Fig. 1c,d). Notably, monocyte-1 and monocyte-2 were really different, because 
we found that the maker gene promoter accessibility of CX3CR1 and CD16 was different in cluster 2 (mono-
cyte-1) and cluster 8 (monocyte-2), which divided monocytes into different subgroups (Supplementary Fig. S2).

Regarding the identified fragments that overlap with the list of TF motifs from the Cell Ranger ATAC pipeline, 
the most significantly enriched TF motifs in each cluster (Student’s t-test, p < 0.01; fold change (FC) > 1.2) with no 
significant difference between AS_PBMC and NC_PBMC libraries were annotated to show cell-type specificity. 
Notably, more than 30 TF motifs in monocytes (39 and 48 in monocytes-1 and monocytes-2, respectively) were 
observed; thus, only the top 10 significantly enriched TF motifs were annotated. As a result, CEBPA, FOS, Nfe2l2, 
NEUROG2 and SPI1 were critical for monocytes, FOSL2, JUND, CEBPD, CEBPG and FOSL1 were enriched for 
monocytes-1, and OLIG (OLIG1 and OLIG2), TEAD2, TEDA1 and BHLHE22 were enriched in monocytes-2; 
GCM1 was increased in T cells, especially CD4+ T cells; CEBPB and CEBPE were abundant in DCs; and TBX20, 
TBX21, TBX2 and TBR1 were specific to NK cells, which was consistent with data from a previous  publication8 
(Fig. 1e, Supplementary Table S1, Supplementary Spreadsheets S1 and Supplementary Fig. S3).

Epigenomic analysis of AS_PBMC and NC_PBMC libraries. When comparing the 8 clusters in both 
AS_PBMC and NC_PBMC libraries (Table 2), the cell number in cluster 4 was significantly lower in AS patients 
(CD8+ T cells, p < 0.05, FDR < 0.15) than it was in healthy controls (Fig. 2a), and a total of 37 TF motifs across 
the genome were significantly different (p < 0.05), including 27 more enriched and 10 less active motifs in the 
AS_PBMC data (Fig. 2b and Supplementary Spreadsheets S2). In detail, 2 different TF motifs (OLIG) were found 
in CD8+ T cells; among the remaining 7 clusters without significant differences in the cell number ratio, the 
total number of differential TF motifs in NK cells (TEAD1 and JUN), monocytes-1 (REL and RELA) and CD4+ 
T cells (NR1H4) was 5; meanwhile, 19 and 15 different TF motifs were found in T cells and DCs, respectively; 
neither cell numbers nor TF motifs were changed in B cells and monocytes-2.

Notably, several TF motifs (such as OLIG) in monocytes-2 from the AS_PBMC group were more accessible 
than those of the NC_PBMC group, but there were no significant differences (Fig. 2c). Obviously, there were 
cells sharing the same TF motifs with significant differences (p < 0.05) between the AS_PBMC and NC_PBMC 
libraries (Fig. 2d). In detail, TEAD1 and JUN were more enriched in both NK cells and T cells, while REL and 
RELA were less accessible in both monocytes-1 cells and DCs.

Gene regulatory network analysis of the AS_PBMC library. According to the databases ENCODE, 
ITFP, Marbach 2016, TRED and TRRUST, 12,430 target genes were found to be related to the significantly differ-
ential TF motifs between the AS_PBMC and NC_PBMC libraries, which were validated by ChIP-seq. Since no 
related genes were ever recorded for TFs of Arid3b, Bach1::Mafk, Dmbx1, Klf12, Nfe2l2, Stat5a::Stat5b, TEAD2 
and Znf423, only 29 TFs were used for subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis. As a result, , 21 TFs could regulate 11,823 target genes with more accessible binding 
sites in the AS_PBMC group, while the remaining 8 TFs participated in the expression of 8,164 target genes with 
less accessible binding regions. Based on GO analysis, it was shown that 7868 genes involved in AS pathogenesis 
had a molecular function of protein binding (Fig. 3a). With further KEGG analysis, the 20 most significant path-
ways related to both more active TF motifs (Fig. 3b) and less active TF motifs (Fig. 3c) were revealed, and the 
8 less enriched TF motifs from the AS_PBMC library were found to play an important role in AS pathogenesis 
through the IL-17 signaling pathway and TNF signaling pathway (Fig. 3c). Of note, 4 less accessible TF motifs, 
CREB1, CREB3, ELK4 and ZNF740, were from T cells, and the other 4 less active TF motifs, REL, RELA, T and 
HMBOX1, were from DCs. Meanwhile, REL and RELA were also less enriched in the monocytes-1 (Fig. 3d and 
Supplementary Spreadsheets S3).

Table 2.  Comparison of 8 clusters in both AS_PBMC and NC_PBMC libraries. AS_PBMC, peripheral blood 
mononuclear cells (PBMCs) from AS patients; NC_PBMC, PBMCs from NC; AS, ankylosing spondylitis; NC, 
healthy controls; p value, Student’s t-test; FDR, false discovery rate; TF, transcription factor; NK cells, natural 
killer cells.

Clusters Cell types

Cell number 
ratio

p value FDR Number of differential TF motifs (p < 0.05)AS NC

1 NK cells 28.73 21.25 0.222 1.000 2

2 Monocytes-1 20.42 13.68 0.205 1.000 2

3 T cells 15.16 18.93 0.479 1.000 19

4 CD8+ T cells 6.47 17.59 0.016 0.141 2

5 CD4+ T cells 8.83 9.57 0.857 1.000 1

6 B cells 7.82 6.81 0.784 1.000 0

7 Dendritic cells 6.57 8.04 0.690 1.000 15

8 Monocytes-2 5.99 4.13 0.548 1.000 0
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As mentioned above, the expression of CD8+ T cells was decreased in the AS_PBMC group, while the TF 
motif OLIG in this cell type was significantly enriched (p < 0.05). Based on the databases mentioned above, OLIG 
was found to be responsible for the transcriptional regulation of 78 and 139 genes, respectively. After dedupli-
cation, 142 genes were used for KEGG analysis. 14 genes including CIITA, TAP and HLA-D were found to be 
abnormally regulated by OLIG2 and they were critical for dysregulated functioning of CD8+ T cells through 
antigen processing and presentation pathways (Fig. 3e). Noteworthy, CIITA could also be regulated by OLIG1 
to participate in the same pathway.

For CD4+ T cells, the TF motif NR1H4 was more accessible in the AS_PBMC group than it was in the 
NC_PBMC group. With further KEGG analysis, 791 genes could be regulated by NR1H4. Meanwhile, 35genes 
including ADCY6, ARRB1, BRAF, CCL, CCR, CRK, CXCL, ELMO1, FOXO3, GNB5, GNG, HCK, IKBKG, 
NFKB1, PF4, PPBP, PREX1, RAP1, RELA, SOS1, SRC, TIAM1 and WAS were identified as able to be regulated 
to participate in a chemokine signaling pathway (Fig. 3f).

Apart from T cells, monocytes and DCs, NK cells were also found to take part in driving AS progression by 
regulating 1495 genes with more enriched TF motifs of TEAD1 and JUN. Specifically, TEAD1 was able to regulate 

Figure 2.  Epigenomic analysis of human PBMCs. (a) Percentage of cells in each cell type for comparison of cell 
number ratio in the AS_PBMC and NC_PBMC libraries; (b) Volcano plots of 579 TF motifs in the AS_PBMC 
library compared to NC_PBMC library; (c) Heatmap representation of average counts in the 37 significantly 
differential TF motifs (rows) across all scATAC-seq clusters from both AS_PBMC and NC_PBMC libraries 
(columns); (d) Venn-diagram showing distribution of 37 significantly differential TF motifs between the 
AS_PBMC and NC_PBMC libraries. PBMCs, peripheral blood mononuclear cells; AS_PBMC, PBMCs from 
patients with ankylosing spondylitis (AS); NC_PBMC, PBMCs from healthy controls; NK cells, natural killer 
cells; TF, transcription factor.
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60 genes to be associated with cytokine-cytokine receptor interactions and natural killer cell-mediated cytotoxic-
ity, and JUN could regulate 34 genes to be involved in this pathway (Fig. 3g). Notably, TEAD1 was responsible 
for the regulation of 1267 genes according to KEGG analysis, while JUN was only involved in the regulation of 
297 genes. At the same time, 69 genes were found to be regulated by both TEAD1 and JUN.

Discussion
Ankylosing spondylitis (AS) is characterized by inflammatory low back pain and progressive ankyloses of spine. 
This definition has explained that immune cells play a vital role in AS pathogenesis. Since the immune cells cir-
culate in the body through blood, research on PBMCs contributes to finding out markers for diagnosis and target 
therapy. For example, a recent study on PBMC of AS patients has mentioned that GM-CSF could be detected in 
plasma from 14/46 (30%) AS patients compared to 3/18 (17%) HC, and GM-CSF neutralization can be a poten-
tial novel therapeutic approach for the treatment of  AS14. In our study, the landscape of active regulatory DNA 
in PBMCs from AS patients was surveyed at single-cell resolution using the sensitive method of scATAC-seq. 
Of note, it’s better if the sex ratio between AS patients and HCs is the  same15. But we used fresh sample in our 
experiment for higher data quality, and we didn’t obtain samples with the same sex ratio between AS patients 
and HCs as expected in the hospital. Besides, our study focus on the difference of immune cells between AS 
patients and the healthy controls instead of cell heterogeneity in AS patients. In addition, there is no significant 
difference between the result from scATAC-seq of 6 healthy male controls plus 6 female healthy controls and the 
one from 7 male healthy controls plus 2 female healthy controls. Thus, it is acceptable to have different sex ratio 
between AS patients and HCs. Based on chromatin accessibility at known marker loci, cells were separated into 
8 clusters by type without using antibodies through this method, and T cells, B cells, NK cells, monocytes and 
DCs were recognized. Notably, two subtypes of monocytes were found. In addition, cell-type-specific TF motifs 
were identified, such as CEBPA for monocytes, GCM1 for T cells, PRDM1 for B cells, and TBX20 for NK cells, 
which could be used to identify each cluster in the future.

Since scATAC-seq was able to screen out cells that were involved in the pathogenesis of AS, 8 clusters in both 
AS_PBMC and NC_PBMC libraries were compared. Consequently, a significant difference in the cell number 
ratio was observed in CD8+ T cells, suggesting a possible mechanism for AS pathogenesis in which fewer CD8+ T 
cells fight against inflammation in the AS_PBMC group. Next, all TF motifs among the 8 clusters were analyzed, 
and 37 differential TF motifs were found. Interestingly, differential TF motifs were hardly observed in the cluster 
with a significant differential cell number ratio between the AS_PBMC and NC_PBMC libraries, except that TF 
motif OLIG was more enriched in CD8+ T cells from the AS_PBMC library. Meanwhile, 19 and 15 different TF 
motifs were found in T cells and DCs, respectively. This result may reveal that most cells take unique actions 
to promote disease: either they change cell numbers, or they adjust accessibility of their TF motifs. Besides, the 
34 (equal to 19 + 15) differential TF motifs may reflect that the normal epigenomic signature of homeostasis for 
both T cells and DCs was lost in AS patients. In addition, T cells and DCs may contribute to AS progression 
by altering gene expression. As neither cell numbers nor TF motifs were changed in B cells and monocytes-2, 
these cells may play a role in AS pathogenesis through other pathways, such as posttranscriptional regulation.

Based on GO and KEGG analysis, 12,430 target genes related to the significantly differential TF motifs 
between the AS_PBMC and NC_PBMC libraries were found, and 7557 genes were ready for regulation through 
different TF motifs with opposite changes. This result suggested that these genes may be involved in multiple 
regulatory networks. Moreover, 7868 genes involved in AS pathogenesis had a molecular function of protein 
binding and the 8 less enriched TF motifs from the AS_PBMC library were found to play an important role in 
AS pathogenesis through the IL-17 signaling pathway and TNF signaling pathway, this was in agreement with 
previous  publications16.

IL-17 is produced mainly by T cells and is a proinflammatory cytokine. It is involved in AS pathogenesis 
either by itself or through synergy with other cytokines, such as TNF, to trigger the release of inflammatory 
mediators and increase the number of immune  cells16. From our results, all 8 less active TF motifs were found to 
be critical to the IL-17 signaling pathway because of their regulation of 73 target genes. As the serum concentra-
tion of IL-17 was higher in AS  patients16, our results indicated that the 8 less active TF motifs may contribute to 
higher expression of the 73 target genes, which resulted in a significant increase in activity of the IL-17 signaling 

Figure 3.  Functional analysis of significantly differential TF motifs between the AS_PBMC and NC_PBMC 
libraries. (a) GO analysis of 12,430 target genes related to the 29 recorded significantly differential TF motifs; 
KEGG analysis revealing the 20 most significant pathways involved in (b) the 21 more accessible TF motifs 
and (c) the 8 less enriched ones from the AS_PBMC group; (d) Boxplot showing counts of the 8 less active TF 
motifs from dendritic cells, monocytes-1 and T cells; Enriched KEGG analysis displaying the 5 most significant 
pathways related to TF motifs (e) OLIG (OLIGI and OLIG2), (f) NR1H4, and (g) TEAD1 and JUN. *, p < 0.05; 
**, p < 0.01, ***p < 0.001, p-value was calculated with Loupe Cell Browser 3.1.1 through the difference analysis 
part, and it was adjusted using the Benjimini-Hochberg correction for multiple tests. TF, transcription factor; 
PBMCs, peripheral blood mononuclear cells; AS_PBMC, PBMCs from patients with ankylosing spondylitis 
(AS); NC_PBMC, PBMCs from healthy controls; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and 
Genomes.
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pathway. In fact, the 21 more accessible TF motifs were also involved in the IL-17 signaling pathway, but they were 
far less statistically significant in their change than the 4 less active ones (p value: 0.04 vs 1*10–7). Thus, T cells, 
monocytes-1 and DCs performed their crucial role in the inflammatory response in AS patients by regulating 
73 potential target genes through decreasing the accessibility of TF motifs.

Concerning the TNF signaling pathway, TNF was able to recruit receptor-interacting serine/threonine-protein 
kinase 1 (RIPK1), adaptor protein TNFR1-associated death domain (TRADD), and TNRF-associated factor 2 
(TRAF2) to form complex I after binding TNFR1, which could trigger related phosphorylation and ubiquitination 
processes. Finally, mitogen-activated kinase (MAPK) and nuclear factor kB (NF-kB) were activated to produce 
proinflammatory effects in AS  patients17. As a result, 87 target genes were involved in this pathway, and they 
were regulated by the same 8 TFs with low accessibility that were found in the IL-17 signaling pathway. For the 
21 TF motifs that were more accessible in the AS_PBMC group than they were in the NC_PBMC group, only 20 
TFs were able to regulate related genes and take part in the TNF signaling pathway. The TF of OLIG1 could be 
more active in CD8+ T cells from the AS_PBMC group than in CD8+ T cells from the NC_PBMC group, but it 
was not involved in the TNF signaling pathway. This result may indicate that the binding of OLIG was competi-
tive. Similarly, the significance of KEGG analysis for the 20 more active TF motifs in the AS_PBMC group was 
much lower than it was for the 8 less accessible TF motifs (p value: 0.01 vs 8*10–7). Since macrophages, including 
monocytes and DCs, have been reported to secrete IL-23, which in turn stimulates T cells to produce IL-17 in AS 
 patients4, our results confirmed that T cells, monocytes-1 and DCs were very active in AS progression and had 
diverse roles, such as mediating the IL-17 signaling pathway and TNF signaling pathway to cause inflammation 
from the perspective of gene transcriptional regulation.

In CD8+ T cells, 14 genes were found to be abnormally regulated and critical for dysregulated cell functioning 
through antigen processing and presentation pathways. This result was consistent with the report that a particular 
antigen-specific subset of CD8+ T cells was involved in AS  pathogenesis18. The TF motif NR1H4 from CD4+ T 
cells was more accessible in the AS_PBMC group than it was in the NC_PBMC group, and NR1H4 was able to 
regulate 35 genes to participate in chemokine signaling pathway. As CD4+ T cells mediate AS progression by 
producing chemokine receptors and  cytokines19, our results suggested that NR1H4 from CD4+ T cells may be 
vital for the production of cytokines to cause inflammation. NK cells can recruit other immune cells to produce 
an excessive immune state by sending activating signals by their receptors in  AS20. From our results, NK cells 
were involved in driving AS progression through regulating 60 and 34 genes by more enriched TF motifs of 
TEAD1 and JUN, respectively, which were associated with cytokine-cytokine receptor interaction and natural 
killer cell mediated cytotoxicity. This suggests that TEAD1 and JUN may be involved in recruiting other immune 
cells to produce an excessive immune state. That is, higher accessibility of TEAD1 and JUN could be a signature 
of malignant NK cells.

In conclusion, T cells, B cells, NK cells, monocytes and DCs were identified without using antibodies. The 
CD8+ T cell number in AS patients was significantly lower than it was in healthy controls, and 37 differential 
TF motifs associated with genes responsible for several inflammatory pathways were found. Further, T cells, 
monocytes-1 and DCs were found to be critical for the IL-17 signaling pathway and TNF signaling pathway 
through regulating 73 potential target genes, which was the result of 8 TF motifs being less active than they 
were in healthy controls. Meanwhile, NK cells were able to mediate AS progression by enriching the TF motifs 
TEAD1 and JUN to regulate 1495 related genes and induce cytokine-cytokine receptor interactions and natural 
killer cell-mediated cytotoxicity. In addition, CD4+ T cells, as a subset of T cells, may be vital for altering host 
immune functions by producing cytokines, as the TF motif NR1H4 responsible for the chemokine signaling 
pathway was more accessible in the AS_PBMC group than it was in the NC_PBMC group. However, for CD8+ T 
cells, the cell number was lower; on the other hand, TF motif OLIG, which is involved in the pathway of antigen 
processing and presentation, was more active in the AS_PBMC group than they were in the NC_PBMC group. 
As for B cells, neither the cell number ratio nor its TF motifs were altered, which suggested that other pathways 
rather than regulatory elements may play an important role in AS pathogenesis. These findings may explain the 
core transcriptional circuitry in AS from the perspective of gene transcription regulation by different TF motifs 
from specific cells, which provides a basic framework to study personal regulomes, and it reveals insights into 
epigenetic therapy. In the future, differentially expressed genes and proteins can be identified to offer a more 
theoretical framework for precision medicine. Besides, the reseachers can continue the study based on our results, 
such as using scATAC-seq to analyze monocyte-1 and find out the most important cells relevant to the disease.

Methods
Human PBMC collection. Human subjects. Samples were obtained with informed consent in accordance 
with protocols approved by the ethics committees of both Shenzhen People’s Hospital and Guangzhou Institutes 
of Biomedicine and Health (Guangzhou, China) (LL-KY-2019363). All AS subjects fulfilling the modified New 
York  criteria21 (n = 9, male/female = 7/2, mean age 37 ± 6 years), and healthy controls (n = 12, male/female = 6/6, 
mean age 34 ± 9 years) were recruited from outpatient clinics or were medical staff in Shenzhen People’s Hospital 
(Shenzhen, China). No patient was treated with immune suppressants within 3 months of sample collection.

Human PBMC collection. Eight milliliters of venous peripheral blood was withdrawn from both patient and 
control subjects and preserved in heparin tubes. PBMCs were separated by adding equal proportions of Ficoll-
Hypaque solution, and then subjected to density-gradient centrifugation (2700  g, 25  min, 25  °C). Next, red 
blood cell (RBC) lysis buffer was added to remove the remaining RBCs. Finally, PBMCs were washed with 
chilled PBS, quantified with a cell counting plate and stored on ice for subsequent scATAC-seq analysis.
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scATAC‑seq library construction and sequencing. All protocols for performing nuclei isolation and 
library construction, have been described  previously8 and are also available here: https ://suppo rt.10xge nomic 
s.com/singl e-cell-atac. The important details are as follows:

Nuclei isolation. Nuclei suspensions were obtained by incubating lysis buffer (10 mM Tris–HCl, 3 mM MgCl2, 
10 mM NaCl , 0.1% Tween-20, 0.1% Nonidet P40 Substitute, 1% BSA) with 1,000,000 cells for 5 min on ice.

Library construction. scATAC-seq libraries were generated according to the Chromium Single Cell ATAC 
protocol (10 × GENOMICS, CG000168) as described  previously8. Briefly, nuclei suspensions were incubated 
in a transposition mix that included a transposase and adaptor sequences, which fragmented the DNA in open 
regions of chromatin; then, barcoded gel beads, transposed nuclei, a master mix, and partitioning oil were loaded 
on a Chromium Chip E to generate GEMs. Next, silane magnetic beads were used to remove leftover biochemi-
cal reagents from the post GEM reaction mixture, and solid-phase reversible immobilization (SPRI) beads were 
added to eliminate unused barcodes from the samples; after addition of a sample index (P7) and a read 2 (Read 
2N) sequence, the final libraries were constructed via PCR with P5 and P7 primers in Illumina bridge ampli-
fication. As the Illumina-ready sequencing libraries were produced, Illumina sequencer compatibility, sample 
indices, sequencing depth and run parameters, library loading and pooling were analyzed.

scATAC‑seq data processing. All protocols for data quality control, genome alignment, peak analysis, 
clustering and TF motif analysis, have been described  previously8 and are also available here: https ://suppo 
rt.10xge nomic s.com/singl e-cell-atac/softw are/pipel ines/lates t/algor ithms /overv iew. The main details are as fol-
lows:

Barcode processing. To improve data quality, the occasional sequencing error in barcodes obtained from the 
‘I2’ index read were fixed. In detail, if barcodes outside the whitelist had Hamming distance less than 2 and their 
probability of being the real barcodes (based on the abundance in the read data and quality value of the incorrect 
bases) was more than 90%, they were corrected to whitelist  barcodes8.

Genome alignment. Reference-based analysis was performed using the Cell Ranger ATAC pipeline (https ://
suppo rt.10xge nomic s.com/singl e-cell-atac/softw are/overv iew/welco me). First, the adapter and primer oligo 
sequences were trimmed off. In the current chemistry, a reverse complement of the primer sequence may be 
found in the 3′ end of a read if the read length was greater than that of the genomic fragment. Thus, the cuta-
dapt  tool22 was used to identify and trim the reverse complement. Then, BWA-MEM23 was applied with default 
parameters to align the trimmed read pairs that were greater than 25 bp to GRCh38.

Duplicate marking. Duplicate reads were found by identifying groups of read pairs across all barcodes, where 
the 5′ ends of both R1 and R2 have identical mapping positions on the reference. Finally, the unique read pair 
was reported as a fragment in the file.

Peak analysis. As already  described8, the merged position-sorted BED file was used for peak calling through 
 MACS224. In detail, the number of transposition events at each base pair along the genome was first counted. 
Next, a smoothed profile of these events with a 401 bp moving window around each base pair and fitting a 
ZINBA-like mixture model was generated. Then, a signal threshold was set to determine whether a region was 
a peak signal or noise based on an odds ratio of 1/5. Finally, peaks within 500 bp of each other were to produce 
a position-sorted BED file. For each barcode, the mapped high-quality fragments that passed all filters were 
recorded, and the number of fragments that overlapped any peak regions was used to separate the signal from 
noise. After filtering to contain only cell barcodes, the matrix was used in subsequent analyses, such as dimen-
sionality reduction, clustering and visualization.

Clustering and t‑SNE projection. Clustering and t-SNE projection were realized by Cell Ranger ATAC pipe-
line. To cast the data into a lower-dimensional space, dimensionality reduction was first performed via latent 
semantic analysis (LSA)25. The data were normalized via an inverse-document frequency (IDF) transform to 
provide greater weight to counts in peaks that occurred in rare barcodes. Singular value decomposition (SVD) 
was performed on this normalized matrix using IRLBA without scaling or centering to produce the transformed 
matrix in lower-dimensional space. Prior to clustering, normalization to depth was carried out by scaling each 
barcode data point to the unit L2-norm in the lower dimensional space. Specific to LSA, k-medoid clustering 
that produced 9 clusters for downstream analysis was provided. In addition, graph-based clustering and visuali-
zation via t-SNE were  provided26, and the data were normalized to unit norms before performing graph-based 
clustering and t-SNE projection.

TF motif identification. Peaks were enriched for transcription factor (TF) binding sites, and the presence of 
certain motifs was indicative of transcription factor activity. To identify these binding sites, the position weight 
matrix (PWM) of TF motifs was obtained from the JASPAR  database27, and each peak was scanned using 
MOODS (https ://githu b.com/jhkor honen /MOODS ) to find the match for each peak and TF. The threshold 
p-value was 1E-7, and the background nucleotide frequencies were set according to the peak regions in each 
GC-enriched region. The list of motif-peak matches was unified across these regions, thus avoiding GC bias in 
the scan.

https://support.10xgenomics.com/single-cell-atac
https://support.10xgenomics.com/single-cell-atac
https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/algorithms/overview
https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/algorithms/overview
https://support.10xgenomics.com/single-cell-atac/software/overview/welcome
https://support.10xgenomics.com/single-cell-atac/software/overview/welcome
https://github.com/jhkorhonen/MOODS
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TF motif enrichment analysis. Enrichment of motifs in the peaks was analyzed. First, the reads for a TF motif 
within a barcode were counted. Then, the ratio of this number to the total read number for that barcode was cal-
culated. Next, the value was normalized to depth. TF motif enrichment was detected by z-scoring the distribu-
tion over barcodes of these proportion values. To perform robust analysis, a modified z-score calculation using 
the median and the scaled median absolute deviation from the median (MAD) was used.

Differential accessibility analysis. To find differentially accessible motifs between groups of cells, the fast asymp-
totic beta test was performed in edgeR by Cell Ranger ATAC pipeline. For each cluster, the algorithm was run on 
that cluster versus all other cells, yielding a list of genes that were differentially expressed in that cluster relative 
to the rest of the sample (p-value < 0.5). Finally, the relative library size as the total cut site count for each cell 
divided by the median number was computed.

TF motif related genes GO enrichment analysis. Based on the database of  ENCODE28,  ITFP29,  TRED30 and 
 TRRUST31, targeted genes related to the specific TF motifs were identified. TF motif-related Gene Ontology 
(GO) enrichment analysis was performed. First, all peak-related genes were mapped to GO terms in the Gene 
Ontology database (https ://www.geneo ntolo gy.org/). Then, gene numbers were calculated for each term, and 
GO terms that were found to be significantly enriched when comparing peak-related genes to the genome back-
ground were defined by a hypergeometric test. p-values were calculated using the following formula:

N is the number of all genes with GO annotation; n is the number of peak-related genes in N; M is the number 
of all genes that are annotated to certain GO terms; and m is the number of peak-related genes in M. The calcu-
lated p-value was corrected by FDR, and an FDR of less than 0.05 was used as the threshold. GO terms meeting 
this condition were significantly enriched in peak-related genes. This analysis recognized the main biological 
functions of related genes.

TF motif related genes pathway enrichment analysis. TF motif-related gene pathway enrichment analysis was 
performed using Kyoto Encyclopedia of Genes and Genomes (KEGG), identifying significantly enriched meta-
bolic pathways and signal transduction pathways in peak-related genes compared to the whole genome back-
ground (database: T01001). The p-value was calculated using the same equation that was used in GO analysis.

N is the number of all transcripts with KEGG annotation; n is the number of peak-related genes in N; M is 
the number of all transcripts annotated to specific pathways; and m is the number of peak-related genes in M.

Notably, Cell Ranger ATAC software was used to perform initial data processing and downstream analysis as 
described above, while Loupe Cell Browser interactive visualization software was used to generate scATAC-seq 
peak profiles for cell clusters. p-value in this manuscript was calculated with Loupe Cell Browser 3.1.1 through 
the difference analysis part, and it was adjusted using the Benjimini-Hochberg correction for multiple tests.

Deep sequencing data. CBI Gene Expression Omnibus: sequencing data are available under the accession num-
ber GSE157595.
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