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Abstract: The current review aims to summarise the biodiversity and biosynthesis of novel secondary
metabolites compounds, of the phylum Actinobacteria and the diverse range of secondary metabolites
produced that vary depending on its ecological environments they inhabit. Actinobacteria creates a
wide range of bioactive substances that can be of great value to public health and the pharmaceutical
industry. The literature analysis process for this review was conducted using the VOSviewer software
tool to visualise the bibliometric networks of the most relevant databases from the Scopus database in
the period between 2010 and 22 March 2021. Screening and exploring the available literature relating
to the extreme environments and ecosystems that Actinobacteria inhabit aims to identify new strains
of this major microorganism class, producing unique novel bioactive compounds. The knowledge
gained from these studies is intended to encourage scientists in the natural product discovery field
to identify and characterise novel strains containing various bioactive gene clusters with potential
clinical applications. It is evident that Actinobacteria adapted to survive in extreme environments
represent an important source of a wide range of bioactive compounds. Actinobacteria have a
large number of secondary metabolite biosynthetic gene clusters. They can synthesise thousands
of subordinate metabolites with different biological actions such as anti-bacterial, anti-parasitic,
anti-fungal, anti-virus, anti-cancer and growth-promoting compounds. These are highly significant
economically due to their potential applications in the food, nutrition and health industries and thus
support our communities’ well-being.

Keywords: microbial ecology; aquatic and marine environments; drug-resistant pathogens; Strepto-
myces; natural products; VOSviewer software

1. Introduction

Global demand for new chemotherapeutic compounds and antibiotics with high
bioactivity and low toxicity has increased recently due to the emergence of life-threatening
microorganisms and multidrug resistance agents among viruses, bacteria and fungi [1].
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Additionally, the detection of secondary metabolites molecules with unique modes of ac-
tion established various therapeutic agents’ strategies for treating many illnesses [2]. To be
more specific, endophytic Actinobacteria are microorganisms that represent a new produc-
tion source of a large number of secondary metabolites, including alkaloids, beta-lactams,
sulfonamides, aminoglycosides, glycopeptides, siderophores, quorum-sensing molecules,
immunosuppressants, polyene macrolides, saccharides, pyrazoloisoquinolinones, buteno-
lides, nucleosides and degradative enzymes [3]. In fact, it has been reported that more than
10,000 various bioactive compounds have been discovered from Actinobacteria [4].

Endophytic microbes refer to a group of microorganisms, mostly fungi and bacteria,
that exist in the host plant’s intracellular space. It usually causes no obvious harmful effect
or symptoms of the disease and could produce various associations such as trophobiotic
communalistic, mutualistic and symbiotic co-existence [5]. Endophytes in woody plant
hosts could exist within host tissues and protect host plants against herbivores and other
pathogenic microorganisms [6]. ActinobacteriaActinobacteria are Gram-positive bacteria
with high guanine and cytosine (G + C) content in their genomes, and they are classified
into 6 classes, 79 families of 46 orders and 10 fresh families of 16 new orders based on
phylogeny using 16S rRNA sequences. The Actinobacterial classes consist of Thermoleophilia,
Rubrobacteria Nitriliruptoria, Coriobacteria, Actinomycetia and Acidomicrobiia Salam et. al. [7].
Actinobacteria have ubiquitous characteristics. They are present in diverse ecosystems on
the earth such as endophytically with plants and in terrestrial and aquatic environments.
An abundance of Actinobacteria species have been recorded in ordinary, extraordinary and
extreme environments with high or low temperatures, high radiation, acidic/alkaline pH,
salinity, low levels of available moisture and nutrients [8].

The genus Streptomyces is a Gram-positive bacteria. It is the largest genus of the
phylum Actinobacteria, which has complex growth and can produce various secondary
metabolites [8]. In addition, there are more than 800 Streptomyces species that have been
found to date (see http://www.bacterio.net/Streptomyces.html (accessed on 20 August
2020) [9]. Streptomyces is the major microbial genus of the most antibiotic-producing bacteria
in the microbial world discovered so far, where streptomycin, gentamycin, rifamycin,
chloramphenicol and erythromycin are produced by Streptomyces [10].

Actinobacteria have a large number of secondary metabolite biosynthetic gene clusters.
Biosynthetic gene clusters (BGCs) are known as genes comprising locally clustered groups
encoding a secondary metabolite biosynthetic pathway. In addition, BGCs contain genes
encoding all enzymes required to produce secondary metabolites and pathway-specific
regulatory genes. The Actinobacteria have diverse physiology and metabolic flexibility
with high potential to produce novel bioactive compounds and enzyme production [11].

The current review aims to summarise the biodiversity, biosynthesis of novel bioactive
secondary metabolites, detection of new resources, and strategies to search for potential
bioactive compounds producers. In addition, it aims to determine the effects of envi-
ronments and ecosystem on the phylum Actinobacteria that produce potential bioactive
compounds in the pharmaceutical industry market. The VOSviewer software tool was used
to visualise bibliometric networks to support Scopus’s prevalent bibliographic databases.
This information would be helpful to other scholars who attempt to discover and isolate
specific bioactive compounds from phylum Actinobacteria under different ecosystems.
Besides their utilisation by people, the perception of the function and distribution of micro-
bial products is regarded as significant to understand microbial families and their impact
on biogeochemical cycles.

2. Methods and Protocol
2.1. Study Design and Search Strategy

The methodology of this review was conducted as demonstrated in Figure 1. The
process involved six main steps: Step 1 was an identification of the target articles through
the Scopus database in the period between 2010 and 22 March 2021 using the general
keywords “Actinomycetes” OR “Actinobacteria,” OR “Streptomyces”. The number of

http://www.bacterio.net/
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articles obtained was n = 70,618. In Step 2, the resulting articles were further screened
using more specific keywords, including “Natural Products” OR “Secondary Metabolites”
(n = 15,141). Then, in Step 3, from that number of articles, further screening was carried
out using more specific keywords, which included antibiotics, anti-fungal, anti-cancer, anti-
parasitic, “antimalarial,” OR anti-inflammatory (n = 13,041). In Step 4, from the preceding
number of articles, screening was implemented using more precise keywords, such as
endophytic, thermophilic, halophilic OR marine (n = 5435 was extracted). Subsequently,
in Step 5, from the total number of articles, further screening was considered using more
specific keywords, including “mechanism of action” OR “mode of action” (n = 985). Finally,
in Step 6, from these articles, the final screening was executed using more specific keywords
“drug-resistance” OR “resistant”. The number of articles based on keywords is (n = 436),
extracted studies based on related titles was n = 336; reviewed studies out of limitations
were n = 31; records excluded based on the validity of the study data and clear contributions
were n = 260, and out of limitations were n = 46. Finally, the number of studies included
in this review was n = 116. A review scheme was conducted to determine all research
documents published only in the English language, presented in Figure 1.

Figure 1. Phases of the review protocol. The process involved six main steps using the general keywords “Actinomycetes”
OR “Actinobacteria,” OR “Streptomyces”.

2.2. Data Analysis

The VOSviewer software was used to visualise the bibliometric networks to build
assistance for common bibliographic databases from the Scopus database. The most
important journals, articles, authors, organisations and states among such articles were
identified. Besides this, bibliographic coupling and most utilised keywords in the abstracts
with keywords and titles were identified.
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The majority of diversity keywords from the reviewed and cited papers based on
the Scopus database were Streptomyces, Actinobacteria, natural products, primary, sec-
ondary metabolites, habitat effects of environments, pharmaceutical industry, as shown
in Figure 2A.

This analysis includes diverse secondary metabolite molecules induced by environ-
mental factors such as antibiotic agents, biological products, antineoplastic agent, anti-
fungal, and agent with antimalarial activity, as shown in Figure 2B. The reviewed and
cited papers based on the scattered keywords of the antimicrobial isolated from 2010 to
2021 from phylum Actinobacteria were vancomycin, polyketide, tetracycline, cyclopeptide,
erythromycin, streptomycin, macrolides and amphotericin B, as represented in Figure S1.
The percentage of keywords diversification from the Scopus database for Streptomyces,
Actinobacteria, natural products, primary, secondary metabolites, habitat effects of envi-
ronments, pharmaceutical industry and anti-infective agents occurrence using VOSviewer
software tool to analyse and visualise scientific literature is shown in Figures S2 and S3.
The most reviewed and cited papers based on the scattered keywords of the countries for
the publication and citation were USA (46 %), UK and India (13% each), Germany (11%),
China (6%) and Thailand (3%), while KSA, Egypt, Pakistan, Malaysia had only 2% each, as
shown in Figure 2C and Figure S4.

Figure 2. Cont.
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Figure 2. VOSviewer software tool to analyse and visualise scientific literature from 2010 to 2021 for phylum Actinobacteria.
(A) Diversity of keywords from the Scopus database for Streptomyces, Actinobacteria, natural products, primary, secondary
metabolites, habitat effects of environments, pharmaceutical industry; (B) Spread of reviewed and cited papers based on the
dispersed keywords of anti-infective agents and occurrence. (C) The countries with the highest numbers of publication and
citation. N.B: The name of countries in small letters from the VOSviewer software itself.
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3. Primary and Secondary Metabolites Natural Products

Actinobacteria synthesise diverse metabolite molecules that have key roles in their
heterogeneous and complex microenvironments. Natural products, also known as sec-
ondary metabolites, are useful compounds developed by microbes. These are not usually
needed for natural cell development, but they provide advantages to the cells in other
ways [12]. Such compounds could play roles in inhibition, communication, nutrient ac-
quisition, or other associations with nearby environments or organisms.

Natural products have been utilised for a long time. In fact, the Chinese are amongst
users of traditional medicines with more than five thousand plants and microbes’ products
in their pharmacopoeia [13]. Therapeutic plant species have been, and are still being, used
in traditional medicine in several countries [12]. Primary metabolites are chemicals required
for ordinary growth, development and reproduction of organisms as well as maintenance
of cellular function, representing the key role in the survival of organisms. Besides this, the
primary metabolite plays an active role in the anabolic and catabolic processes in many
organisms or cells [14]. The secondary metabolites are substances formed during the end
or near the stationary stage of organisms’ development. They are very significant for
nutrition and health and are, therefore, economically important [14]. Even though they
serve different survival actions in nature, they do not necessarily play a critical role in the
growth and development of the organism producing them [15].

4. History of Isolation of Secondary Metabolites from Actinobacteria

Historically, in (1940), Waksman and Woodruff isolated actinomycin D from soil bac-
teria [16]. Then, Schatz et al. in 1944 [17] isolated streptomycin, an effective antibiotic
against tuberculosis. Furthermore, hundreds of various antibiotics were reported from the
genus Streptomyces [18]. Actinobacteria are among the secondary metabolites producers
and hold high pharmacological and commercial interest. It has great capability to pro-
duce secondary metabolites such as immunomodulators [19], antibiotics [20], anti-cancer
drugs [21], growth factors [22], anthelminthic enzymes and herbicides [23]. Supplementary
Table S1 describes the historical isolation of bioactive compounds from Actinobacteria from
the first isolation by Selman Waksman [20].

Several anti-fungal, anti-parasitic, bioactive compounds, growth-promoting com-
pounds and anti-cancer compounds with their chemical classification and application
isolated from Actinobacteria and Streptomyces sp. are represented in Supplementary Table
S2. The molecular structures of several bioactive compounds isolated from Actinobacteria
and Streptomyces are demonstrated in Figures 3–5.
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Figure 3. The molecular structure of Actinomycin D; Streptomycin; Gramicidin; Cephamycin C; Fumaramidmycin; and
Crisamicins C.
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Figure 4. The molecular structure of Simocyclinones D4 and D8; Fistupyrone; Streptocidins A–D; Cedarmycin A and B.
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Figure 5. The molecular structure of Munumbicins E-4 and E-5; Avermectin; JBIR-06; JBIR-11; and JBIR-26. Cyclo-
(L-Val-L-Pro), Cyclo-(L-Leu-L-Pro), Cyclo-(L-Phe-L-Pro), N-(7-Hydroxy-6-Methyl-Octyl)-Acetamide, Cyclo-(L-Val-L-Phe),
Cyclo-(L-Tryptophanyl-L-Prolyl) and Chloramphenicol.

5. Microbial Ecology of Actinobacteria

The diversity of Actinobacteria has been investigated in several special or extreme envi-
ronments, such as Actinobacteria in terrestrial environments, Actinobacteria in aquatic and
marine environments, and thermophilic as well as alkaliphilic and haloalkaliphilic Actinobacteria.
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5.1. Actinobacteria in Terrestrial Environments

Terrestrial Actinobacteria have several antimicrobial capabilities, including three
active compounds determined as 2,3-heptanedione, butyl propyl ester and cyclohexane
with an antimalarial activity isolated from Streptomyces SUK 08 [24].

The diketopiperazines compounds and chloramphenicol were isolated from Strep-
tomyces SUK 25 isolated from the Zingiber spectabile plant in Malaysia [25]. Meanwhile,
Streptomyces sp. CAH29 isolated from the rhizosphere environment can produce tetran-
gomycin, possessing potent anti-bacterial and anti-fungal action against Candida albicans,
methicillin-resistant Staphylococcus aureus, Streptococcus pyogenes and Staphylococcus aureus
having 14, 10, 12 and 8 mm inhibition zones, respectively [26]. Besides this, the isolate
revealed a marked anti-tumour action with 1.1 µg/mL and IC50 3.3 against colorectal
(HCT116) and hepatocellular (HepG2) carcinoma cell lines, respectively [27]. Actinomycin
D, which has anti-tumour and anti-bacterial activity, was extracted from Streptosporangium
sp. (AI-21) at Hardwar district in Uttarakhand state, India [28]. The list of the terrestrial
and rhizosphere Actinobacteria isolation and screening for their antimicrobial activity are
shown in Table S3.

5.2. Actinobacteria in Aquatic and Marine Environments

Marine Actinobacteria are abundant sources for marine drug discovery causal for
many bioactive compounds of biomedical appearance. Almost 30 strains of actinomycetes
were separated and determined from various families of genus Streptomyces. The Strepto-
myces isolates of M93, W108, W38, M72, M71 and M1 are amongst all the chosen strains
revealed to show potent antimicrobial action against the multidrug-resistant bacteria
(MDRB) [29]. Furthermore, antitumor compounds produced by marine Actinobacteria is re-
ported [30]. Moreover, antimalarial activity was also described from marine Actinobacteria
as bioactive compounds [28]. Additionally, from freshwater sediments, 84 Actinobacteria
were separated and isolated into a prevalent genus Streptomyces as well as eight uncommon
genera such as Micrococcus, Kocuria, Nocardiopsis, Promicromonospora, Saccharopolyspora, Amy-
colatopsis, Prauserella, and Rhodococcus. All strains revealed significant inhibition potentials
against yeast pathogens, Gram-negative bacteria and Gram-positive bacteria [5].

Moreover, Saccharopolyspora sp. IMA1 was separated from the coral reef environment.
Its metabolites existed in aquatic bacterial pathogens Vibrio vulnificus, Vibrio parahemolyticus
and Vibrio harveyi. The IMA1 crude extract revealed excellent antioxidant activity, where
2,2′-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) has a radical scavenging ac-
tivity [31]. Almost 52 strains of Actinobacteria were isolated from the marine sediment of
the Portuguese coast. The isolates’ greatest fraction were from the genus Micromonospora,
from which six Streptomyces strains were active against Candida. albicans, with minimum
inhibitory concentration (MIC) values ranging from 3.90 to 125 µg mL−1 [2].

The list of bioactive compounds isolated from aquatic and marine Actinobacteria are
demonstrated in Table 1.

5.3. Thermophilic Actinobacteria

Thermophilic Actinobacteria can withstand temperatures in the range of 40–80 ◦C [8].
They thrive on organic debris that has decomposed (dead plant and animal materials).
Thermophilic Actinobacteria are divided into two types: moderately thermophilic and
strictly thermophilic. Certain strains of moderately thermophilic Actinobacteria may
develop at temperatures ranging from 37 to 65 ◦C, whereas some grow between 28 and
60 ◦C and require 45–55 ◦C for maximal growth. However, maximum proliferation happens
at 55–60 ◦C.
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Table 1. List of bioactive compounds, producers, source of isolation and screening for their bioactivity isolated from aquatic
and marine Actinobacteria.

Bioactive
Compound Producer Chemical Group Bioactivity Source of Isolation References

Unknown M72, M1, M71, W38,
W108 and M93 N/A Anti-bacterial Chenab River

Sediments [29]

Lynamicins,
spiroindimicins Streptomyces sp. Bisindole pyrrole Anti-bacterial Deep sea marine

sediment [32]

Anandins Streptomyces anandii Steroidal Alkaloids Cytotoxic
Marine sediments

from
mangrove zone

[33]

Paulomycin G Micromonospora
matsumotoense

Paulomycin
derivatives

Anti-tumor
properties

Deep sea marine
sediment [34]

Rifamycin B Salinispora sp. Polyketides Anti-bacterial Sediment [35]

Manzamine A Micromonospora sp. Alkaloid Antimalarial
Symbiont to sponge

Acanthostrongy-
lophora

[36]

Violapyrone B Streptomyces
somaliensis α-pyrone Anti-bacterial Deep sea marine

sediment [37]

Abbreviation: S. = (Streptomyces), N/A; not applicable.

Thermotolerant Actinobacteria, on the other hand, can withstand temperatures as
high as 50 ◦C [38]. Determining fresh bioactive compounds from taxonomically sole
strains of extremotrophic or extremophilic Actinobacteria resulted in the anticipation that
mining such groups might provide an alternate dimension to the route of subordinate
metabolite resources [39]. Thermotolerant and thermophilic Actinobacteria are unique for
having specific metabolic rates and physical features, which are useful in several ecological
functions. It was also reported that thermotolerant Actinobacteria like Streptosporangium
sp., S. lanatus, S. coeruleorubidis, S. toxytricini and Streptomyces tauricus, are claimed to
inhibit the rhizosphere of several plants in the Kuwait desert during hot seasons [11].
Thermophilic Actinobacteria have not been widely investigated. However, they have
developed significant antibiotics like thermomycin from Streptomyces thermophilus and
anthramycin, an anti-tumour drug created by Streptomyces refuineus [40].

The Streptomyces strain Al-Dhabi-2 found in Saudi Arabia’s thermophilic region in-
dicated antimicrobial capabilities against pathogenic microorganism [41]. Three strains
identified as DJT 15 Streptomyces thermoviolaceus subsp. apingens, DJT 32 Saccharomonospora
viridis, and DJT 36 Saccharomonospora glauca exposed inhibitory activity in bioassays with re-
spect to the Enterobacter species (ESKAPE) pathogens, Pseudomonas aeruginosa, Acinetobacter
baumannii Klebsiella pneumoniae, Staphylococcus aureus and Enterococcus faecium. Apart from
that, DJT 32 and 36 prevented the growth of Aspergillus fumigatus, a filamentous fungus
isolated from the same compost. Azole-resistant human pathogenic strains of Aspergillus
fumigatus were also shown to be inhibited by strain DJT 32 [42].

5.4. Alkaliphilic and Haloalkaliphilic Actinobacteria

An alkaliphilic and mildly halophilic bacterial strain develops optimally at pH ranging
from 9.0 to 10.0, with 5–7% (w/v) NaCl [43]. Haloalkaliphilic ActinobacteriaActinobac-
teria are found in pristine coastal habitat in the saline soil. These unique Actinobacte-
riaActinobacteria are hereditarily different, developing at high salt concentrations [44].
Alkaliphilic ActinobacteriaActinobacteria are, thus, classified into three main categories:
alkali-tolerant ActinobacteriaActinobacteria (developed in the pH range between 6 and
11, abstemiously alkaliphilic (developed in a pH ranging from 7 to 10 but display weak
development at pH 7.0), and alkaliphilic (grow optimally at pH 10–11) [11].

Moreover, Streptomyces clavuligerus (strain Mit-1) was isolated from Mithapur (Western
Coast, Gujarat, India) and is described as a salt-tolerant alkaliphilic actinomycete. Note
that this strain secreted alkaline protease [45]. Besides this, Thakrar et al. [46] issued the
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capability to produce protease from the two halo-tolerant and alkaliphilic actinomycetes
extracted from the salt-enriched soil of Coastal Gujarat in India. These strains are identified
as Nocardiopsis alba OM-4 and Nocardiopsis alba TATA-13. In addition, the phylogeny
and multiplicity of the haloalkaliphilic ActinobacteriaActinobacteria study represent a
concise and comprehensive account utilising conventional and molecular techniques. This
includes the occurrence and cultivation of the marine actinomycetes from the seawater and
sediments of pristine coastal habitat in Gujarat (India).

They found that the ActinobacteriaActinobacteria belonged to Prauseria, Streptomyces,
Brachybacterium and Nocardiopsis [47]. Besides this, the multiplicity of alkali tolerant Acti-
nobacteriaActinobacteria in numerous soils is gathered from various Algerian Sahara areas.
Almost 29 alkali-tolerant ActinobacteriaActinobacteria strains were separated by utilising a
complex agar medium. The strains were then tested for non-ribosomal peptide synthetases
and genes encoding polyketide synthases, as well as antibiotic behaviour against a broad
microorganisms’ variety. They found that some strains can create subordinate metabolites
against several pathogenic microbes [19].

A list of bioactive compounds isolated from thermophilic, alkaliphilic and haloalka-
liphilic ActinobacteriaActinobacteria is shown in Table 2.

Table 2. List of bioactive compounds from thermophilic, alkaliphilic and haloalkaliphilic Actinobacteria.

Bioactive Compound Producer Chemical Class References

Thermomycin Streptomycesthermophilus Polyketide Antibiotic [40]

Anthramycin Streptomycesrefuineus Benzodiazepine
Alkaloid [40]

Pyridine-2,5-diacetamide Streptomyces sp. DA3-7 Antimicrobial [48]
1, 4-butanediol, adipic

acid, & terephthalic acid Thermomonospora fusca aliphatic-aromatic
copolyesters [49]

6. The Important Antibiotics Isolated from Actinobacteria against
Drug-Resistant Pathogens

Yücel and Yamaç [50] showed that extracts from Streptomyces sp. 1492 exhibited an-
timicrobial activity against MRSA, Vancomycin-resistant Enterobacter faecium (VRE) and
Acinetobacter baumanii with 125 µg/mL and 250 to 1000 µg/mL of MICs and MBCs, respec-
tively. From Verrucosispora sp. strains isolated from the Japan Sea’s sediment, Goodfellow
and Fiedler [51] identified atrop-abyssomicin C and proximicins A, B and C. It inhibits the
formation of p-aminobenzoate during tetrahydrofolate synthesis in Gram-positive bacteria
with methicillin-resistant Staphylococcus aureus (MRSA). The Streptomyces malachitofuscus
has anti-fungal action against Candida albicans and Mucor miehei, as Sajid et al. [52] reported.
The spoxazomicins was extracted from Streptosporangium oxazolinicum sp. nov., obtained
from the root of numerous orchids at Okinawa. The study also isolated spoxazomicins
A-C from Streptosporangium oxazolinicum K07-0460 (T) with antitrypanosomal activity [53].
Besides this, the arylomycine isolated from Streptomyces sp. HCCB10043 show activity
against Gram-positive bacteria, among which included Staphylococcus aureus [54]. The
chlorocatechelins A and B extracted from Streptomyces sp. are fresh siderophores encom-
passing an acylguanidine structure and chlorinated catecholate sets that inhibit various
bacteria and fungi [55]. An extremely potent subordinate metabolite formed by endophytic
strain is known as Streptomyces sp. HUST012. It showed antimicrobial and anti-tumour
activities separated from the medicinal plant stems, Dracaena cochinchinensis Lour [56]. The
updated list of antibiotics separated from ActinobacteriaActinobacteria and Streptomyces is
given in Table 3.

The existing literature reported 124 compounds from Actinobacteria with anti-MRSA
activity. Several bioactive pharmaceutical compounds generated by Actinobacteria was
found to be effective against Vancomycin-resistant Enterococcus (VRE), Methicillin-resistant
Staphylococcus aureus (MRSA) and other drug-resistant bacterial pathogens strains. Kakad-
umycin A was isolated from Streptomyces sp. NRRL 30566 inhibited the growth of MRSA
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American Type Culture Collection (ATCC) 33591 four times lower in MIC than van-
comycin at a concentration of 0.5 µg/mL compared to the concentration of vancomycin
of 2.0 µg/mL, as reported by Castillo et. al. [57]. In addition, polyketide antibiotic SBR-22
comes from a fresh actinomycetes strain, labelled as BT-408, a novel strain of Streptomyces
psammoticus. The strain showed anti-bacterial activity against MRSA, as documented by Su-
jatha et. al. [58]. Besides this, Yoo et. al. [59] isolated laidlomycin from Streptomyces CS684
obtained from the soil at Jeonnam, Korea, with potential activity against VRE. Meanwhile,
Laidi et. al. [60] isolated a new actinomycetes strain designated as SK4-6 from Egyptian soil
that demonstrated strong activity against bacteria, including MRSA and Micrococcus luteus.
Furthermore, Streptomyces sp. PVRK-1 was isolated from the Manakkudy mangroves in
Tamil Nadu, South India. This Streptomyces has been able to produce many small molecules
exhibiting potent anti-MRSA activity [43].

Table 3. The list of important producers and chemical classification of antibiotics isolated
from Actinobacteria.

Antibiotic Producer Chemical Class Reference

Cephamycin C Nocardia lactamdurans B- Lactam [61]
Chlortetracycline S. aureofaciens Tetracycline [62]
Clavulanic acid S. clavuligerus B- Lactam [63]

Cycloserine S. orchidaceus Peptide [64]
Daptomycin S. rodeosporus Lipopeptide [65]

Daunorubicin S. Peucetius Peptide [66]
FK506 S.tubercidicus Macrolide [67]

Fortimicin Micromonospora
olivasterospora Aminoglycoside [68]

Fosfomycin S. fradiae Phosphoric acid [69]
Fumaramidmycin S. kurssanovii Alkaloids [70]

Gentamycin Micromonospora spp Aminoglycoside [71]
Kanamycin S. kanamyceticus Aminoglycoside [72]

Lincomycinn S. lincolnensis Sugar—amide [73]
Neomycin S. fradiae Aminoglycoside [74]

Nikkomycin S. tendae Nucleoside [75]
Nocardicin Nocardia uniformis B- Lactam [76]
Novobiocin S. neveus Aminocoumarin [77]

Oleandomycin S. antibioticus Macrolide [78]
Oxytetracycline S. rimosus Tetracycline [79]
Paromomycin S.rimosus forma Aminoglycoside [80]

Rifamycin Amycolatopsis Ansamycin RNA polymerase (PK) [81]
Spiramycin S. ambofaciens Macrolide (PK) [82]

Streptomycin S. griseus Aminoglycoside [83]
Tetracycline S. aureofaciens Tetracycline (PK) [84]

Thienamycin S. cattleya β-Lactam
Peptidoglycan [85]

Tobramycin S. tenebrarius Aminoglycoside [86]
Vancomycin S.orientalis Peptidoglycan [87]

Abbreviation: S. = (Streptomyces).

In addition, Choi et. al. [88] claimed that Streptomyces sp. CS392 have anti-bacterial
activity against VRE and MRSA. Additionally, the strain Streptomyces sp (VITBRK2) can
yield strong antimicrobial activity against VRE and MRSA strains [89]. Moreover, Strepto-
myces rubrolavendulae ICN3 strain displayed potent antimicrobial activity towards MRSA,
with a 42 mm inhibition zone. The MIC was 500 µg/mL from the crude extracts, while the
cleansed compound was identified as C23 with MIC 2.5 µg/mL in the in vitro assay [90].
Similarly, from a mangrove forest soil on Peninsular Malaysia’s east coast, the MUSC 135T
strain was isolated. It can produce broad-spectrum antibiotic bacitracin against MRSA
strain ATCC BAA-44 [91]. Correspondingly, from the stems of Dracaena Cochinchinensis
Lour plant, Streptomyces sp. HUST012 was isolated, producing two potent antimicrobial
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compounds towards MRSA ATCC 25923 with MIC of 62.5 and 0.04 µg/mL, identified as
SPE-B11.8-B5.4 [56]. Streptomyces sp. KB1 from Ao-Nang, Krabi province, Thailand, con-
tains a compound known as 2,4-Di-tert-butylphenol, an anti-MRSA MIC of 31.15 µg/mL in
comparison to vancomycin, with a MIC value of 1.56 µg/mL [92]. Diketopiperazines and
chloramphenicol extracted from Streptomyces SUK 25, derived from the Zingiber spectabile
root, seem effective towards MRSA [25]. Moreover, Bhakyashree and Kannabiran [93]
reported the separation of anti-MRSA compounds from Streptomyces sp. VITBKA3 strain
proteins and cell membrane biosynthesis inhibitors. The strains of Streptomyces sp. de-
rived from different environments with potentials in production of anti-MRSA bioactive
compounds from 2014 until 2020 is given in Table 4.

Table 4. List of anti-MRSA activity of bioactive compounds, producers and their chemical classes isolated from Actinobacteria.

Antibiotic Producer Chemical Class Reference

Angumicynones A (1);
Angumicynones B (2);

Angucyclinones analogues
compounds 3–8 Streptomyces sp. MC004

Angucyclic quinones [94]

Watasemycin A (3) Thiazostatins

Pulicatin G (4) and
aerugine (5) Benzyl thiazole and thiazoline

Polyketide [2-hydroxy-5-((6-hydroxy-
4-oxo-4H-pyran-2-yl)

methyl)-2-propylchroman-4-one]

Streptomyces
sundarbansensis

WR1L1S8
N/A [95]

Azalomycin F5a (1) and its four
derivative compounds:

Streptomyces hygroscopicus
var. azalomyceticus Polyhydroxy macrolide [96]

Gargantulide A Streptomyces sp. A42983 Macrolactone [97]

New Ikarugamycins:
Compound 1: Isoikarugamycin;

Compound 2:
28-N-methylikarugamycin;

Compound 3:
30-oxo-28-N-methyl-ikarugamycin;

Compound 4: Ikarugamycin;
Compound 5: MKN-003B;

Compound 6:
1 H-indole-3-carboxaldehyde;

Compound 7: Phenylethanoic acid

Streptomyces zhaozhouensis
CA-185989

Compounds 1- 4: Pentacyclic
tetramic acid macrolactams;
Compound 5: Butenolide;

Compound 6: Indole;
Compound 7:

Acetic acid

[98]

Pyrrole-Like Structure Streptomyces sp. MN41 pyrrole [99]

actinomycins V, X2 and D. Streptomyces antibioticus
NBRC 12838T Actinomycins [100]

Abyssomicin C Actinobacteria polyketide [93]

laidlomycin Streptomyces sp. CS684 affecting the metabolism [89]

Neocitreamicins I and II Nocardia [93]

Etamycin Actinomycetes strains CNS-575 cyclic peptide [101]

Dichloromethane Actinobacteria (I-400A, B1-T61,
M10-77) N/A [93]

2, 4-dichloro-5-sulfamoyl benzoic
acid (DSBA) Streptomyces sp. VITBRK2 N/A [93]

Abbreviation: S. = (Streptomyces), N/A; not applicable.
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7. Production of Enzymes from Actinobacteria

Both marine and terrestrial Actinobacteria in Table 5 produce a wide range of biologi-
cally active enzymes. They can secrete protease, cellulases, lipase, xylanase, pectinase and
amylase. These enzymes are vitally important in textile or paper industries, the food indus-
try and fermentation, besides biotechnological application. Consequently, Actinobacteria
have been discovered to be a good L-asparaginase source. Various Actinobacteria often
those extracted from soils, for example, Nocardia sp Streptomyces albidoflavus, S. griseus and
Streptomyces karnatakensis produce several enzymes [102]. Enzymes like urease, chitinase
and catalase are also generated from Actinobacteria [103]. Surprisingly, keratinase, an
enzyme that destroys the feathers of poultry chickens, has been successfully produced from
Nocradiopsis sp. [104]. Likewise, Actinobacteria separated from goat and chicken gut re-
vealed the existence of numerous enzymes like lipase, phytase, protease and amylase [105].

Table 5. List of enzymes, their producers, uses and application in industry isolated from Actinobacteria.

Enzyme Producer Use Application in Industry References

Protease

Thermoactinomyces sp., Detergents Detergent [106]
Nocardiopsissp.,S Cheese making Food [106]

Pactum, Streptomyces Clarification—low-calorie beer Brewing [107]
Hermoviolaceus, S Sp. Dehairing Leather [107]

Cellulase
S. Thermobifida Removal of stains Detergent [108]

Halotolerans, S. Sp., Ruber

Denim finishing, softening of
cotton Textile [106]

Deinking, modification of
fibres Paper and pulp [108]

Lipase S. griseus

Removal of stains Detergent [109]
Stability of dough and

conditioning Baking [109]

Cheese flavouring Dairy [110]

Xylanase Actinomadura Sp.
Conditioning of dough Baking [110]

Digestibility Animal feed [111]
Bleach boosting Paper and pulp [111]

Pectinase S. lydicus Clarification, mashing Beverage [112]
Scouring Textile [113]

Amylase S. erumpens Deinking, drainage Paper and pulp [114]
Removal of stains Detergent [114]

Abbreviation: S. = (Streptomyces).

8. Mechanism of Bioactive Compounds from Actinobacteria against
Drug-Resistant Pathogens

Once scientists provide new antimicrobial drugs, the microorganism starts to adapt
themselves against these drugs, which become ineffective at some points. This is primar-
ily due to changes that occur inside the microorganism, especially bacteria, due to the
interaction of numerous organisms through their environment and surroundings. These
changes may occur for various reasons: mutations, selective pressure, gene transfer and
phenotypic change [65]. For example, gene mutation occurs when bacteria reproduce,
leading to the development of bacteria with genes that help them resist antibiotics. In
addition, the mutation leads to alter the target and modification of the drug-receptor site in
the target site [66].

Moreover, selective pressure means that bacteria carrying resistance genes hold up
and multiply so that new resistance bacteria become the predominant type. The selective
pressure leads to a lack of entry and decreased cell permeability. In addition, it leads to
greater exit and active efflux pump [67]. Bacteria unnecessarily replicate to transmit their
antibiotic resistance gene. Instead, it is passed across various types of bacteria resistance
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determinants through horizontal gene transfer making the bacterium resistant [68]. Besides
this, phenotypic change suggests that the bacteria can change some of their properties
to become more resistant to common antibiotics using the enzymatic inactivation of the
antibiotics or by synthesising resistant metabolic pathways [69]. Other mechanisms, by
modulation of methicillin-resistance of penicillin-binding protein (PBP2a) synthesis, were
regulated by two genes known as MecI and MecR1 proteins. When existing, the signalling
or regulatory proteins of the plasmid-mediated staphylococcal β-lactamase gene bla-Z
system are working.

Furthermore, homogeneous tolerance is based on mutations at a different locus of ge-
netics. Furthermore, other external and internal causes affect the development of methicillin
resistance [115]. The mechanism of anti-bacterial resistance is demonstrated in Figure 6.

Figure 6. Mechanism of anti-bacterial resistance to avoid killing by antimicrobial molecules. N.B.: BioRender was used to
draw these scientific figures.

9. Conclusions and Future Prospects

There is a global demand for new chemotherapeutic agents and antibiotics that are
extremely active and have low toxicity and environmental effects. The drug resistance in
viruses, fungal and bacteria, as well as the emergence of life-threatening microorganisms,
have become higher than before. This is due to the wrong usage of dose and time of
medication administration, increasing the requirement of new and active compounds that
assist and relieve all the aspects of the human condition. Actinobacteria have been isolated
from different ecosystems, including several medicinal plants from the terrestrial and
rhizosphere environment, hot springs as thermophilic Actinobacteria, deep-sea sediments,
marine sponges and alkalines line soil. Several previous published works reported that
Actinobacteria are understudied phylogenetic groups with high biosynthetic potential.
This type of bacteria was found to have the greatest number of biosynthetic gene clusters in
its genomes. There are more opportunities to investigate new resources and other biological
characteristics of previously inaccessible natural products extracted from Actinobacteria
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as interest grows in bioactive molecules from drug formulation with minimal side effects.
This group represents the new resource of bioactive compounds due to its ability to grow
in multisectoral environments.

This review focused on the emphasis and the connection between finding new re-
sources and novel strategies to search for potential bioactive compounds isolated from
phylum Actinobacteria. In addition, this review highlighted some limitations in today’s
research regarding a new source for bioactive compounds isolated from Actinobacteria.
For example, most previous publications concentrated only on the endophytic Actinobacte-
ria, excluding other environments such as thermophilic, alkaliphilic and haloalkaliphilic
Actinobacteria. Note that many other biodiversities and multidisciplinary environments
represent important and new resources of potentially bioactive compounds. As a result,
it appears that certain new techniques and methodologies for a thorough investigation
of bioactive natural compounds are required. This includes, for example, the discovery
of novel structure–activity relationships in nature, which has become increasingly impor-
tant for the synthesis inspiration of natural bioactive product compounds. This results in
increased diversity with less complexity and a good knowledge of isolation processes.

To address the challenges of biodiversity and promote future sustainable use of nat-
ural resources, a multidisciplinary perspective is required to find, describe and convey
nature’s richness. This is necessary for identifying novel bioactive chemicals from Acti-
nobacteria. Moreover, this review summarised the new bioactive compounds isolated from
Actinobacteria and their applications in industrial, agricultural and environmental pro-
tection, pharmaceutical bioactive compounds and pharmaceutically related biomolecules.
This includes superordinate metabolites that act as inhibitory or killing agents against
pathogens that affect humans and animals, including resistant bacteria, fungi, viruses and
several protozoa. They can also produce an anti-cancer and several enzymes for active
degradation and meeting industrial demands worldwide. Therefore, continuous selective
isolation and screening studies on the characterisation and identification of novel potential
bioactive compounds from Actinobacteria are required. This is to create commercially
viable, long-term and cost-effective production methods. Their metabolic flexibility and
abundance also provide a novel, strong pathway for the bioremediation of organic wastes
and contaminants.

Supplementary Materials: Table S1: Historically isolation of bioactive compounds from Actinobacte-
ria. Table S2: List of antifungal, growth promoting, antitumor and antiparasitic bioactive compounds,
chemical classification and their application which isolated from Actinobacteria. Table S3: Terrestrial
and rhizosphere Actinobacteria isolation and screening for their antimicrobial activity. Figure S1: The
spread of reviewed and cited papers based on the scattered keywords of the antimicrobial isolated
from 2010-2020 from phylum Actinobacteria. Figure S2: Percentage of diversity of keywords from the
Scopus database for Actinobacteria, Streptomyces, natural products, primary, secondary metabolites,
habitat effects of environments, pharmaceutical industry using VOSviewer software tool to analyse
and visualise scientific literature. Figure S3: Spread of reviewed and cited papers based on the
dispersed keywords of anti-inflective agents’ occurrence. Data was extracted using VOSviewer
software to analyse and visualise scientific literature. Figure S4: Spread of reviewed and cited papers
based on the scattered keywords of the countries for the publication and citation. Data was extracted
using VOSviewer software.
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