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A B S T R A C T   

Hepatocellular carcinoma (HCC) is one of the cancers that has the highest morbidity and mortality rates. In 
clinical practice, there are still many limitations in surveilling, diagnosing, and treating HCC, such as the poor 
detection of early HCC, the frequent post-surgery recurrence, the low local tumor control rate, the therapy 
resistance and side effects. Therefore, improved, or innovative modalities are urgently required for early diag-
nosis as well as refined and effective management. In recent years, nanotechnology research in the field of HCC 
has received great attention, with various aspects of diagnosis and treatment including biomarkers, ultrasound, 
diagnostic imaging, intraoperative imaging, ablation, transarterial chemoembolization, radiotherapy, and sys-
temic therapy. Different from previous reviews that discussed from the perspective of nanoparticles’ structure, 
design and function, this review systematically summarizes the methods and limitations of diagnosing and 
treating HCC in clinical guidelines and practices, as well as nanomedicine applications. Nanomedicine can 
overcome the limitations to improve diagnosis accuracy and therapeutic effect via enhancement of targeting, 
biocompatibility, bioavailability, controlled releasing, and combination of different clinical treatment modal-
ities. Through an in-depth understanding of the logic of nanotechnology to conquer clinical limitations, the main 
research directions of nanotechnology in HCC are sorted out in this review. It is anticipated that nanomedicine 
will play a significant role in the future clinical practices of HCC.   

1. Introduction 

Liver cancer is the sixth most common cancer in the world and the 
third leading cause of cancer death. It was estimated that there were 
905,677 new cases and 830,180 deaths worldwide in 2020 [1], and the 
incidence of liver cancer increased with age [2]. Approximately 80% of 
liver cancer cases are hepatocellular carcinoma (HCC) [1]. Chronic liver 
disease is present in the majority of HCC cases, most of which occur on 
the background of cirrhosis [3]. The surveillance of HCC mainly relies 
on ultrasound and the level of serum markers such as alpha-fetoprotein 
(AFP). When there is an abnormality, it is diagnosed by computed to-
mography (CT) or magnetic resonance imaging (MRI). However, in a 

few cases, pathological diagnosis is required. Treatment includes sur-
gery, ablation, liver transplantation, transarterial chemoembolization, 
and systemic therapy [4,5]. HCC is often asymptomatic at the early 
stage, and less than 20% of patients with liver cirrhosis receive regular 
screening, therefore, most HCC patients are already in the middle and 
advanced stage when diagnosed [4]. The five-year survival rate of HCC 
is only 20% due to factors involving late discovery, rapid progression, 
poor response to treatment in the advanced stage, and easy recurrence 
[6]. Hence, there is an urgent need for an improved or innovative 
diagnostic and therapeutic method. 

Recently, there has been a steady increase in biomedical nanotech-
nology research [7–13]. Consideration has also been given to its 
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application in diagnosing and treating HCC [14–16]. The characteristics 
of nanoparticles provide them with many unique advantages. The 
appropriate size allows them to easily pass through the tumor’s new 
microvessels and accumulate locally, prolonging circulation clearance. 
In terms of targeted diagnosis and treatment, nanoparticles have several 
advantages over other molecular conjugates due to their large specific 
surface area: 1) they can contain multiple targeting ligands, which can 
generate higher affinity through multivalent binding to cell surface re-
ceptors; 2) they can carry a large number of effector molecules and 
protect them from degradation; for example, lipiodol-bridged indoc-
yanine green (ICG) nanoemulsion could protect the fluorochrome ICG 
from degradation for a few days via the shielding effect, while the 
fluorescence intensity of free ICG solution rapidly declined to zero at the 
same conditions [17]; 3) they are sufficient to accommodate multiple 
types of effector molecules; and 4) the release of effector molecules from 
nanoparticles can be tuned to match the mechanism of action [18]. 
These advantages enable nanomaterials to improve the detection 
sensitivity of biomarkers or imaging and facilitate the targeted delivery 
of drugs, thereby improving the efficacy of diagnosis and treatment 
while minimizing the side effects of anticancer drugs. 

Several analyses have been conducted on the application of nano-
technology to HCC. These articles focused on applying specific charac-
teristics of nanomedicine, such as targeting, self-adaptivity, assembling, 
the ability of coordination and sensitization [19–23], or used nano-
materials as an entry point to describe their development in HCC or in 
animal hepatoma models [24–26], or enumerated nanotechnology ad-
vancements in various therapeutic approaches [14,16]. There are no 
review reports on the consensus, limitations, and progression of HCC in 
clinical practice and how nanotechnology can improve clinical limita-
tions and expand clinical applications. This article provides a systematic 
overview of the current status of surveillance, diagnosis, and treatment 
of HCC (Fig. 1). It reviews various nanotechnology-based strategies for 
overcoming the limitations in HCC clinical practice, such as improving 
targeting, optimizing the physicochemical properties of effector mole-
cules, combining multiple therapeutic or auxiliary molecules, and 
others. Through an in-depth understanding of how nanotechnology can 
be used to achieve optimization and improvement and summarizing the 
targeted research directions of nanotechnology in HCC, it is beneficial to 
promote its widespread and promising application in diagnosing and 

treating HCC. 

2. Progress in surveillance and diagnosis of HCC and application 
of nanotechnology 

Regular surveillance for HCC high-risk populations is recommended. 
According to the guidelines, these populations should undergo ultra-
sound with or without serum AFP testing every six months. When liver 
lesions <1 cm are detected, the ultrasound monitoring interval should 
be shortened to 3–6 months; when liver lesions are ≥1 cm or when AFP 
is positive (≥20 ng/mL), it is recommended to perform multi-phase CT 
or dynamic contrast-enhanced MRI for initial diagnosis and determining 
the management according to LI-RADS category [4,5]. 

The advancement of nanotechnology has significantly contributed to 
the development of diagnostic techniques based on molecular markers. 
In HCC, there are numerous molecules that hold potential as biomarkers, 
and the surface functionalization of nanocarriers plays a crucial role in 
targeting these molecules. In biomarker detection, nanoparticles utilize 
antibodies, aptamers, peptides, etc. as probes to convert the signal of 
target molecules into electrical, optical, or other signals, enabling sen-
sitive detection [27–29]. On the other hand, in imaging inspection, 
nanotechnology can enhance the signal-to-noise ratio of imaging by 
utilizing their unique physiochemical properties and molecular target-
ing [30,31]. In recent years, numerous studies have actively improved 
detection strategies through nanotechnology to increase the HCC diag-
nostic rate (Table 1). 

2.1. In vitro diagnosis 

Biomarkers play a crucial role in the in vitro diagnosis of HCC, and 
their applications include clinical diagnosis, progression monitoring, 
and prognosis assessment. AFP is currently the only widely used HCC 
serum marker. It is frequently elevated in HCC patients; nonetheless, 
there are still 30–40% of patients whose AFP will not increase [28]. 
Moreover, pregnancy, benign liver diseases, malignant gastrointestinal 
tumors and other physiological or pathological reasons may lead to 
elevated serum AFP. Therefore, the diagnostic value of AFP alone for 
HCC is limited, and the sensitivity is only 31–69% [48,49]. At present, 
AFP is often used in combination with ultrasound for HCC surveillance. 

Fig. 1. The clinical limitations of diagnosing and treating HCC.  

T. Liu et al.                                                                                                                                                                                                                                       



Materials Today Bio 22 (2023) 100766

3

In recent decades, numerous novel biomarkers have been reported, such 
as AFP isoform AFP-L3, heat shock protein 70 (HSP70), 
des-γ-carboxyprothrombin (DCP), glypican-3 (GPC3) [50,51]. They can 
detect some AFP-negative HCC, nevertheless, few markers have been 
confirmed by large-scale, multicenter studies to have sufficient diag-
nostic value in clinical practice. Thus another strategy to improve 
diagnostic performance and cope with tumor heterogeneity is to 
combine AFP with other biomarkers or clinical indicators [52,53]. 

GALAD score, which gained FDA ‘Breakthrough Device Designation’, 
combines three tumor markers (AFP, AFP-L3, and DCP) and two de-
mographic risk factors (age and gender). The study found that the per-
formance of the GALAD score in detecting early HCC in patients with 
nonalcoholic steatohepatitis (NASH) was better than that of any tumor 
markers alone [54]. A multicenter study in North America revealed that 
the performance of the GALAD score screening for HCC is better than 
ultrasound [55]. Moreover, there was the first prospective cohort study 

Table 1 
The introduction of diagnostic nanoparticles.  

Nanoinducers Material type Encapsulation/Conjugation Functional mechanism Feature Hepatic cell 
lines 

Reference 

Biomarker 
Nano-gold 

electrode +
PDANPs-Ab2 

Gold nanoparticles 
(AuNPs) + Polydopamine 
nanoparticles 

Ab1 + Ab2 Redox cycling-based charge 
transfer signal amplification 

Improving AFP detection 
sensitivity 

/ Xiang et al. 
[27] 

F-AuNPs +
AgMNPs 

AuNPs Three probe-DNA recognizing 
target miRNAs 

SERS-based detection High sensitivity and 
multiplex biomarkers 
detection 

/ Wu et al. 
[28] 

GPC3apt/RGO- 
Hemin/Au 
NPs/SPE 

Reduced graphene oxide- 
hemin nanocomposites 

GPC3 aptamers GPC3-aptamer conjugation High affinity and specific 
binding to GPC3 

/ Li et al. [29] 

Nanofluidic 
diode 
biosensors 

Nanopores integrated on 
microchip 

CEA, AFP, HER2 antibodies Electric charge of the target 
proteins captured by mAbs 

Ultra-sensitive and 
multiplexed detection 

/ Duan et al. 
[32] 

Exo@Au 
nanozymes 

AuNPs Installing onto the exosomal 
phospholipid membrane 

Nanozyme-assisted 
immunosorbent assay 

Rapid profiling of 
multiple exosomal 
proteins 

HepG2, LO-2, 
MCF-7, HeLa 

Di et al. 
[33] 

Ultrasound 
FA-NDs Perfluoropentane 

nanodroplets 
Folate Phase-transition to 

microbubbles after low- 
intensity focused US 
sonication 

Capable of passing 
through the capillaries 
allowing effective 
extravasation into tumor 

SKOV3 Liu et al. 
[30] 

HA/CPPs-10- 
HCPT-NPs 

Hyaluronic acid, cell- 
penetrating peptide, 10- 
hydroxycamptothecin 

SMMC-7721 Zhao et al. 
[34] 

Gas vesicles Gas vesicles / Sound waves are strongly 
reflected by air-water 
interfaces 

Easy isolation, capable of 
passing through the 
capillaries and 
quantifying phagocytic 
clearance and lysosomal 
degradation 

RAW264.7, 
HEK293T 

Ling et al. 
[35] 

/ Wei et al. 
[36] 

Diagnostic imaging 
UAG USPIO AFP, GPC3 antibodies Tumor targeting via ligand- 

receptor interaction 
Actively targeting tumor 
to improve imaging 
accuracy 

Hepa1-6/ 
GPC3 

Ma et al. 
[31] 

TPP- 
Bi@PDA@CP 

Bismuthine nanosheets Compound polysaccharide 
(hepatoma cell targeting), 
triphenylphosphonium 
(mitochondrial targeting agent) 

Bel-7402 Bai et al. 
[37] 

UMFNPs Ultrasmall MnFe2O4 

nanoparticles 
/ Parameter optimization of 

contrast agents impacting 
imaging capability 

Improving imaging 
capability 

HepG2 Zhang et al. 
[38] 

MnO 
nanoparticles 

MnO nanoparticles / SMMC-7721, 
H22 

Yang et al. 
[39] 

Dual-modal 
imaging 
contrast 
agents 

AuNPs Gd chelator, polyethyleneimine Combination of different 
contrast agents onto 
nanoplatform 

CT/MR or PAI/MRI dual 
mode imaging of tumor 

HepG2, 
HCCLM3 

Li et al. 
[40], Wang 
et al. [41] 

Fe3O4 magnetic 
nanoparticles 

PAI materials such as FeSe2 and 
semiconductor polymers 

HepG2, 
HUH7, SK- 
Hep1 

He et al. 
[42], Deng 
et al. [43] 

Intraoperative imaging 
ICG 

nanoemulsion 
Nano-ICG-lipiodol 
emulsion 

/ ICG molecules disperse in 
lipiodol emulsion 

Clearly delineating tumor 
in surgery and more 
excellent stability 

LO2, Hepa1- 
6, HepG2 

Zhu et al. 
[17], He 
et al. [44] 

BH–NO2@BSA BH–NO2 + BSA / The probe is reduced and 
activated by the 
overexpressed nitroreductase 
in tumor cells 

The activatable probe can 
precisely delineate tumor 

HCC-LM3- 
fLuc 

Zeng et al. 
[45] 

ZGC ZnGa2O4Cr0.004 NIR- 
emitting persistent 
luminescent nanoparticles 
(NPLNPs) 

/ Afterglow lasting for several 
hours after light excitation in 
vitro to obtain high signal-to- 
noise ratio and deep 
penetration in vivo imaging 

Excellent long-lasting 
afterglow properties to 
accurate delineation of 
tumor aiding in real-time 
guided surgery 

HepG2, 
Huh7, LO2 

Ai et al. 
[46] 

F12+-ANP-Gal poly[2-methoxy-5-(2- 
ethylhexyloxy)-1,4- 
phenylenevinylene]-based 
nanoparticles 

β-galactose ligands (tumor 
targeting), EM F12+ (H2S- 
responsive chromophore), 
NIR775 

The probe is activated by 
elevated H2S in tumor to 
control afterglow 
luminescence from MEP-PPV 
and NIR775 

Hepatic-tumor-targeting 
and activatable afterglow 

HepG2 Wu et al. 
[47]  
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demonstrating the clinical applicability of the GALAD score [56]. The 
GALAD score is expected to become the routine surveillance program of 
HCC in the near future. However, it is worth noting that the commonly 
used detection methods for biomarkers include enzyme-linked immu-
noassay, fluorescence immunoassay, chemiluminescence, and mass 
spectrometry. These traditional methods have the disadvantages of 
being labor-intensive, time-consuming, and expensive to be improved. 
In addition, several liquid biopsy markers have also been developed in 
detecting early HCC, such as circulating tumor cells, circulating tumor 
DNA, exosomes, free microRNA (miRNA) and long non-coding RNA 
(lncRNA), and others. They can provide much diagnostic information 
such as carcinogenesis, subtype determination, and tumor burden 
[57–61]. However, these methods have not yet been commercialized 
and must be fully evaluated in the five phases of tumor marker discovery 
and validation. 

Nanotechnology primarily enhances in vitro diagnosis through 
several aspects (Fig. 2A). First, it innovates techniques to achieve HCC 
detection with high sensitivity, high throughput, rapid response, and 
cost-effectiveness. Different from the traditional detection approaches, 
some nanoparticles have unique electrochemical properties. They can be 
combined with electrochemical technology to implement the detection 
of biomarkers. Xiang et al. constructed the Ab1-AFP-Ab2 sandwich re-
action platform on the nano-gold electrode, using polydopamine nano-
particles as the labeling material of Ab2. The property of polydopamine 
amplifying the mediator’s charge transfer improved the sensor’s sensi-
tivity, and the detection limit of AFP was as low as 0.3 pg/mL [27]. Wu 

et al. utilized the electromagnetic enhancement of gold nanoparticles to 
implement surface-enhanced Raman scattering, amplifying the collected 
signal to achieve ultrasensitive detection of biomarkers [28]. The second 
is to improve the efficacy of target binding. Nanoparticles’ high specific 
surface area and strong adsorption capacity make it possible to combine 
various ligands to increase the affinity to the target or amplify the 
detection signal. For example, aptamers are a type of oligonucleotide 
sequence with a unique three-dimensional conformation with a receptor 
affinity comparable to antibodies. Moreover, they possess excellent 
stability, low immunogenicity, and easy preparation and are frequently 
used as specific target-binding ligands [62]. Li et al. covalently com-
bined reduced graphene oxide-hemin nanoparticles with GPC3 aptam-
ers, immobilizing the complex on the electrode surface, and detected the 
concentration of GPC3 via the change of electrochemical signal. Under 
optimal conditions, the linear detection range of GPC3 was 0.001–10.0 
μg/mL [29]. Third, using nanoarray microchips for detecting multi-
plexed biomarkers can potentially overcome tumor heterogeneity [32, 
33]. Duan et al. integrated nanofluidic diode arrays on microchips and 
achieved highly selective and ultrasensitive multiple markers (AFP, 
CEA, HER2) in buffer and unpretreated serum based on 
antigen-antibody binding and protein charge regulation. The biosensor 
was less difficult to manufacture and had a fast response, with an 
ultra-low detection limit, which was expected to be used in the joint 
detection of multiple markers of HCC in the future [32]. 

Fig. 2. Nanotechnology application in surveillance 
and diagnosis of HCC. (A) Nanotechnology enhances 
in vitro diagnosis via improving detection sensitivity, 
target binding efficiency, and constructing multi-
plexed nanoarray microchips. (B) Nanotechnology 
promotes hypovascular tumor imaging via using 
nanoscale contrast agents effectively extravasating 
from vessels. (C) Nanotechnology improves diag-
nostic imaging via enhancing tumor targeting, 
improving contrast ratio and developing multi-modal 
imaging. (D) Nanotechnology improves intra-
operative imaging via prolonging ICG retention and 
improving the signal-to-noise ratio.   
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2.2. In vivo diagnosis 

2.2.1. Ultrasound 
Ultrasound is extensively used as a routine screening method 

because it is simple, flexible, non-invasive and inexpensive. A meta- 
analysis of 32 studies revealed that the sensitivity of ultrasound to 
detect HCC at any stage in liver cirrhosis patients was 84%; however, for 
early HCC (a single nodule <5 cm or 2–3 nodules <3 cm), the sensitivity 
was only 47% [63]. The development of contrast-enhanced ultraso-
nography (CEUS) additionally provides hemodynamic characteristics on 
the basis of ultrasound and improves the accuracy of HCC screening. 
Randomized controlled trials (RCT) have shown that the HCC nodules 
detected by the Sonazoid CEUS group based on Kupffer cell-specific 
uptake were significantly smaller than the B-mode ultrasound group 
(13.0 ± 4.1 mm vs 16.7 ± 4.1 mm; p = 0.012) [64]. The typical HCC 
CEUS pattern had a high positive predictive value, reaching 98.5% [65]. 
For nodules of 10–20 mm, the specificity (92.9%) of CEUS in diagnosing 
HCC was higher than CT (76.8%) and MRI (83.2%). However, its limi-
tation was considerably lower sensitivity than CT/MRI [66], which may 
be due to the large size of the contrast agent being restricted within the 
vasculature, resulting in missing hypovascular lesions. 

As mentioned above, ultrasound contrast agents are valuable for 
monitoring HCC; however, the currently used microbubbles (MB) have a 
large particle size and cannot effectively extravasate from vessels and 
target tumors, whereas nanoscale contrast agents can solve this problem 
(Fig. 2B). The researchers developed perfluoropentane-coated lipid 
nanoparticles with liquid-gas phase-transition properties. Nanoscale MB 
precursors accumulated in the tumor through passive or active targeting 
were converted into MB by in situ phase-transition and enhancing tumor 
imaging capability [30,34]. Besides, gas vesicles (GVs) of certain marine 
bacteria and archaea have also recently been found to serve as novel 
nanoscale contrast agents, showing great potential in ultrasound imag-
ing [35,36]. Studies have shown that rugby-shaped GVs from Halobac-
teria NRC-1 could generate stable and strong ultrasound contrast signals 
in mouse liver tumors under optimized parameters and perfuse ischemic 
tumor regions where MB failed to image, yielding a 6.84 times stronger 
signal than MB [36]. Ling et al. developed a nanoscale contrast agent 
made entirely of proteins based on GVs. Hepatic macrophages phago-
cytized the contrast agent and underwent lysosomal degradation, 
therefore, its ultrasonic signals could reflect the functions of phagocy-
tosis and lysosomal degradation. Liver dysfunction (such as phagocyte 
deficiency and nonalcoholic fatty liver disease) leads to changes in the 
ultrasound signal, which can be used to monitor HCC in the future [35]. 

2.2.2. Diagnostic imaging 
Suspicious lesions detected by ultrasound require further imaging 

examinations (dynamic contrast-enhanced CT/MRI) to confirm the 
diagnosis and staging of the tumor. The typical imaging pattern of HCC 
shows significantly enhanced lesions compared to the surrounding pa-
renchyma in the arterial phase, while in the portal or delayed phase, it is 
less enhanced than the surrounding. For adult patients with chronic liver 
disease, the sensitivity and specificity of CT in diagnosing HCC were 
77.3 and 91.3% [67], while the sensitivity and specificity of MRI were 
84.4 and 93.8%, respectively [68]. The meta-analysis comparing the 
accuracy of enhanced CT and MRI in detecting HCC revealed that MRI 
has a higher detection sensitivity, particularly for small nodules <2 cm. 
However, there was no significant difference in specificity [69,70]. 
Therefore, MRI is utilized more frequently than CT. In general, MRI has 
high diagnostic accuracy and is suitable for patients who are allergic to 
iodine contrast agents, nevertheless, it is expensive, highly sensitive to 
artifacts, and takes a long time to scan; CT is slightly less accurate, 
nonetheless, it is cost-effective and applicable to patients who cannot 
undergo MRI. However, most contrast agents used in clinical diagnostic 
imaging have issues such as a brief circulation time, lack of tumor tar-
geting, and low sensitivity to small nodules. Therefore, it is necessary to 
develop new contrast agents and imaging technologies to improve the 

current diagnostic dilemma of HCC. 
Nanotechnology can improve the limitations of HCC diagnosis in 

numerous ways, such as modifying molecules to improve the targeting 
of nanoprobes, improving the sensitivity of HCC detection, reducing the 
dose by optimizing contrast agent parameters, and developing multi-
modal imaging nanoprobes (Fig. 2C). First, nanotechnology can enhance 
diagnostic performance by modifying one or more target-docking mol-
ecules (antibodies, aptamers, peptides, and others) to endow various 
contrast agents with active targeting properties [31,40–42]. Ma et al. 
synthesized ultra-small superparamagnetic iron oxide nanoparticles 
(USPIO) with or without AFP/GPC3 antibody conjugation and found 
that AFP and GPC3 antibodies conjugated USPIO had the highest tar-
geting and internalization efficiency to Hepa1-6/GPC3 cells, and mini-
mized MRI T2 relaxation time, having the potential to overcome 
biomarker-related tumor heterogeneity [31]. Bai et al. constructed 
bismuthene-based nanoparticles TPP-Bi@PDA@CP coupled with com-
pound polysaccharide (hepatoma cell targeting agent) and triphenyl-
phosphine (TPP, mitochondrial targeting agent), and its 
contrast-enhancement efficiency was as high as 51.8 HU mL mg− 1, 
which was 3.16-fold that of iopromide, a commonly used clinical 
contrast agent. The average HU value in mouse tumor sites was 2.63-fold 
that of non-targeted particles, which may be used in clinical diagnosis in 
the future [37]. 

Second, parameter optimization of specific nanoscale contrast agents 
can improve the MRI contrast ratio, enabling sensitive liver tumor 
detection at low doses [38,39]. Yang et al. prepared manganese oxide 
(MnO) nanoparticles of varying sizes and shapes and investigated the 
factors affecting T1-MRI in terms of geometric volume, surface area, 
crystal plane, and r2/r1 ratio. They found that the surface area and oc-
cupancy rate of manganese ions positively affected the sensitivity of 
T1-MRI, whereas the volume and r2/r1 ratio had negative effects. MnO 
octahedrons exhibited exceptional enhancement in liver T1 imaging and 
could detect liver tumors at approximately 1/10 of the clinical dose 
[39]. 

In addition, multi-modal imaging has attracted much attention in 
recent years. It combines various imaging technologies to acquire more 
detailed images and biological characteristics of tissues, improving in-
spection and diagnosis efficiency. Nanotechnology can provide a great 
platform for achieving multi-modal imaging. CT and MRI are the two 
most common imaging procedures. The former is good at high spatial 
and density resolution imaging of hard tissues, while the latter provides 
high-resolution imaging of soft tissues. Therefore, the combination of CT 
and MRI can provide complementary diagnostic information. For 
instance, polyethylenimine-based gold nanoparticles have good X-ray 
attenuation properties, T1 relaxivity and stability after chelating gado-
linium ions, allowing for CT/MRI dual-modal imaging [40,41]. Photo-
acoustic imaging (PAI) is an emerging hybrid imaging technology with 
high temporal and spatial resolution real-time imaging capabilities and 
high optical sensitivity that can deliver diagnostic information at the 
micron level. Dual-modal PAI/MRI imaging using nanoparticles incor-
porating PAI materials such as FeSe2 and semiconductor polymers with 
MRI contrast agent Fe3O4 could detect HCC of <1 cm [42,43]. 

2.2.3. Intraoperative imaging 
Surgical resection has the potential to cure patients with early-stage 

HCC. It has been reported that the five-year survival rate of patients 
undergoing surgical resection was 47–67% [71–73]. For early-stage 
HCC <3 cm, the postoperative five-year survival rate was as high as 
75% [74]. Previous studies have shown an insignificant difference be-
tween surgical resection and radiofrequency ablation (RFA) for treating 
early-stage HCC [72,74]. However, a meta-analysis of six RCTs showed 
that for HCC eligible for the Milan criteria (single lesion ≤5 cm or ≤ 3 
lesions ≤3 cm each), surgical resection was associated with a higher 
five-year recurrence-free survival rate [75]; even for early recurrence of 
HCC, the long-term curative effect of surgical resection was also better 
than RFA [76]. Therefore, surgery remains the first-line treatment for 
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resectable HCC. However, the five-year recurrence rate of surgical 
resection of HCC is more than 70% [49,77]. The lesions missed during 
surgery are one of the main sources of recurrence [78]. To remove as 
much cancerous tissue as possible during surgery and reduce the prob-
ability of recurrence, intraoperative ICG near-infrared (NIR) fluores-
cence imaging is used to achieve more accurate visualization of HCC 
margins and to detect some tiny invisible lesions [79]. 

Conventional ICG probes have a brief local residence time, are sus-
ceptible to photobleaching and degradation, and lack tumor specificity. 
Therefore, more effective probes are urgently required to acquire stable, 
tumor-specific fluorescent signals with prolonged intratumoral reten-
tion. In addressing these shortcomings, nanotechnology primarily con-
tributes in two ways (Fig. 2D). First, constructing nanoscale ICG-lipiodol 
emulsion, which is preferentially absorbed by tumor tissue, and its high 
viscosity makes it resistant to blood flow clearance. ICG molecules 
dispersed in lipiodol emulsion are stable. According to studies, nano- 
ICG-lipiodol emulsion exhibited superior imaging properties and 
greater resistance to photobleaching and degradation than ordinary ICG 
solution [17,44]. Second, constructing activatable nanoprobes. Inert 
probes can emit imaging signals at any time. In contrast, the modified 
activatable nanoprobes can distinguish tumor cells from normal cells 
based on biological differences, emitting signals only after contacting 
the target. Activatable nanoprobes can minimize non-specific back-
grounds and enhance the detection precision of tumor margins. Zeng 
et al. developed an activatable nanocomposite BH–NO2@BSA, which 
specifically responded to the overexpressed nitroreductase in tumor 
cells and generated strong NIR-I/II fluorescence and photoacoustic sig-
nals. 3D multispectral photoacoustic tomography (MSOT) images could 
be used for preoperative localization of liver tumors, and NIR-I/II 
fluorescence images provided intraoperative navigation [45]. Howev-
er, traditional fluorescence imaging requires in situ light excitation. The 
inevitable light absorption, scattering, and autofluorescence of biolog-
ical tissues will limit the penetration depth and result in a low 
signal-to-noise ratio. Afterglow nanoprobes can overcome this limita-
tion because the probes slowly emit photons after being excited by light, 
and the afterglow can last for hours [46]. Wu et al. took advantage of the 
elevation of H2S in cancer and used the electrochromic material F12+ as 
the H2S-responsive chromophore to construct HCC-targeted afterglow 
nanoparticles. The signal-to-noise ratio of nanoprobe imaging was 
substantially higher than NIR fluorescence, and it had greater pene-
trating power, effectively delineating HCC lesions in clinical specimens 
[47]. 

2.3. All kinds of surveillant and diagnostic methods 

For different diagnostic methods, nanotechnology employs various 
optimization strategies, which primarily focuses on two aspects. 

The first is to utilize the diverse physiochemical properties of 
nanoparticles, such as electrochemical, magnetic, and optical charac-
teristics, to enhance or innovate biodetection materials and platforms. 
This enables the achievement of rapid, real-time, highly sensitive, and 
specific detection. In addition to the electrical nanomaterials, there are 
many nanoparticles utilized in the detecting techniques. Matrix-assisted 
laser desorption/ionization time of flight mass spectrometry (MALDI- 
TOF MS) is a method for determining the mass of biomacromolecules 
like peptides, proteins, and nucleic acids. It offers advantages such as 
high throughput and rapid detection. The selection of an appropriate 
matrix plays a crucial role in obtaining accurate results. Wang et al. 
employed magnetic SiO2 nanoparticles as a matrix and connected 
aptamers and molecularly imprinted polymers (MIPs) through Au–S 
bonds as substitutes for antibodies. By using this nanoplatform, the 
signal-to-noise ratio of mass spectrometry in detecting AFP in body 
fluids was significantly improved compared to direct detection [80]. To 
detect very early tumor lesions that lack of abundant vasculature, Lei 
et al. employed positive (tumor vessels) and reverse (tumor paren-
chyma) contrast-balanced imaging strategy. They developed a gemstone 

spectral CT/PAI dual-modal imaging nanoprobe PEG-Ta2O5@CuS. The 
CuS outer layer possessed strong PAI capacity at the NIR-II window, 
enabling sensitive visualization of micron-scale blood vessels in tiny 
HCC lesions. The nanoprobe could detect 2–4 mm HCC in orthotopic 
tumor model [81]。 

The second is to increase molecular targeting to improve detection 
accuracy. In the detection of biomarkers, liquid crystal (LC) sensors can 
transduce and amplify chemical and biological changes into visible light 
signals. At present, most LC sensors can only detect a single tumor 
marker, while Qi et al. employed the strategy of LC sensors assisted with 
target-induced dissociation (TID) of an aptamer to detect multiple tumor 
markers. In TID, nanomagnetic beads functionalized with aptamer 1 
were bound to target proteins, followed by incubation with aptamer 2 
and signal DNA duplexes. The combination of the target protein and 
aptamer 2 released the signal DNA, which was recognized by the LC 
sensor and formed light signals. The reliability of the detection system 
was confirmed in the experiments, and it was not affected by hemolysis 
[82]. 

3. Progress in treatment of HCC and application of 
nanotechnology 

The therapeutic regimen of HCC is determined by the tumor stage. 
There are numerous staging systems for liver cancer, including Barce-
lona Clinic Liver Cancer (BCLC), Tumour, Node, Metastasis (TNM), 
China Liver Cancer Staging (CNLC), Japan Integrated Staging (JIS), and 
Hong Kong Liver Cancer (HKLC), among others. The 2018 version of 
BCLC is currently the most popular staging system for HCC. Based on 
tumour status, liver reserve function (Child-Pugh score), and physical 
function status score (ECOG PS), it divides HCC into five stages; surgical 
resection or RFA for BCLC stage 0; surgical resection, liver trans-
plantation, or ablation according to tumor and liver function conditions 
for BCLC stage A. BCLC stage B and above should receive transarterial 
chemoembolization (TACE) or systemic therapy. Supportive treatment 
is suggested for BCLC stage D [4,5]. Despite various treatment methods, 
the survival rate of HCC patients is still unsatisfactory due to the limi-
tations of low long-term local tumor control rate, drug resistance, a high 
recurrence rate, and numerous adverse effects. 

With the rapid development of nanomedicine, researchers have used 
nanotechnology to effectively improve various treatment methods based 
on clinical needs (Table 2). In these studies, researchers have con-
structed various highly targeted nanocarriers, loading different effector 
molecules such as photothermal agents, chemotherapeutic drugs and 
radioactive particles, and utilized biomimetic materials to increase the 
bioavailability and stability of drugs. Moreover, they combined diverse 
regimens containing ablation, TACE, radiotherapy and systemic therapy 
to improve the treatment effect and to minimize the systemic side 
effects. 

3.1. Ablation 

Although surgery is the first choice for treating early-stage HCC, 
some patients cannot tolerate surgery because most of them have 
different degrees of liver cirrhosis, and ablation has the advantages of 
less impact on liver function, less trauma, and a definite curative effect. 
In some early-stage HCC patients, ablation and surgical resection im-
pacts are similar [74], so ablation is also recommended for HCC patients 
with lesions ≤3 cm. Ablation therapy includes RFA, microwave ablation 
(MWA), cryoablation (CRA), percutaneous ethanol injection (PEI), and 
irreversible electroporation (IRE), among which RFA and MWA are the 
most commonly used. Retrospective studies and RCTs have shown that 
for HCC patients with small number and size tumor lesions, the efficacy 
and safety of RFA and MWA are comparable [102,103]. PEI and CRA are 
less used, and their advantage is causing less damage to surrounding 
tissues. They are suitable for cancer lesions adjacent to the hilum of the 
liver and gallbladder, and the risk of vascular complications is extremely 
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low while ensuring the success rate of ablation [104]. However, insuf-
ficient ablation leads to HCC recurrence and may promote its metastasis. 
Sublethal heat stress may promote tumor cell metastasis by upregulating 
the expression of the epidermal growth factor receptor [105]. Studies 
have found that ablation therapy could activate or enhance innate 

immunity and liver cancer-related adaptive immune response [106, 
107]; however, the response was weak. Synergistic immunotherapy 
could enhance the immune response and improve the effect of anti-HCC 
[108,109], which will solve the above problem. 

The therapeutic efficiency can be improved by combining ablation 

Table 2 
The introduction of therapeutic nanoparticles.  

Nanoinducers Nanoparticle 
material 

Encapsulation/Conjugation Functional mechanism Feature Hepatic cell 
lines 

Reference 

Ablation 
PCN-ACF- 

CpG@HA 
Metal (H2TCPP)- 
organic (zirconium 
ions) framework- 
based nanoparticles 

ACF (hypoxia inducible 
factor signaling inhibitor), 
CpG (immunologic 
adjuvant), HA (tumor 
targeting) 

Ablation activates liver- 
cancer-related adaptive 
immune response which 
enhanced by CpG and hypoxia 
is blocked by ACF 

Enhancing immune responses to 
eliminate residue cancer cells and 
inhibiting hypoxia-induced survival 
and metastasis 

H22 Cai et al. [83] 

Transarterial therapy 
CaO2 NPs CaO2 nanoparticles / CaO2 NPs react with water to 

generate abundant O2, OH−

and Ca2+

Improving tumor microenvironment 
by relieving hypoxia, neutralizing 
acid, and down-regulating the 
expression of hypoxia-related 
markers, enhancing the anti-tumor 
effect of TACE 

HepG2 Wang et al. 
[84] 

ATONP/NDEB Arsenite 
nanoparticles 

/ Arsenite nanoparticles are 
activated by plasma Pi to 
sustained release arsenic 
trioxide 

Resulting in more thorough tumor 
necrosis in TACE 

VX2 Fu et al. [85], 
Zhao et al. 
[86] 

Pickering 
emulsion 

Poly(lactide-co- 
glycolide) (PLGA) 
nanoparticles 

/ The addition of PLGA NPs into 
the formulation endows the 
emulsions with 
biodegradability 

No significant toxicity on tumor cells HepG2, 
HUVEC 

Deschamps 
et al. [87] 

Radiotherapy 
GNP Iron oxide-gold core- 

shell nanoparticles 
AKG (mitochondrial 
targeting), 4-HPR 
(chemotherapeutic drug) 

Radiosensitization realized by 
the accumulation of a large 
amount of ROS in cancer cells 

Increasing treatment efficacy PLC/PRF/5 Sood et al. 
[88] 

tGd- 
GNMssiRNA 

Gd-hybridized gold 
nanomolecules 

VEGF-siRNA, cyclic 
asparagine-glycine-arginine 
peptide (tumor targeting) 

Radiosensitization realized by 
increasing local radiation dose 
deposition and inhibition of 
tumor revascularization 

HepG2, 
H22, 
HUVEC 

Li et al. [89] 

Systemic therapy 
NP(ArtePt) Polymer 

nanoparticles 
ArtePt (cisplatin +
artesunate dual-threat 
hybrid prodrug) 

Polymer fragments deplete 
GSH via Iodo-Clikc reaction to 
enhance the efficacy of 
cisplatin 

Relieving drug resistance to improve 
antitumor effect of cisplatin in HCC 

7404 Jin et al. [90] 

Gal-SLPs Galactose-decorated 
lipopolyplexes 

Sorafenib, USP22 shRNA USP22 shRNA suppresses the 
expression of multidrug 
resistance-associated protein 1 

Showing increased sorafenib 
accumulation and enhanced 
sensitivity to sorafenib 

Huh-7, 
BEL-7402 

Xu et al. [91] 

usLNPs Lipid nanoparticles Sorafenib, MK-siRNA MK-siRNA increases the 
sensitivity to sorafenib and 
ultra-small nanoparticles are 
easier to penetrate the stroma 
barrier in tumor 

Increasing the chemosensitivity of 
tumor cells and allowing more drugs 
to be delivered into tumor 

HepG2 Younis et al. 
[92] 

All kinds of therapies 
Nd2Fe14B/ 

Fe3O4-PLGA 
Fe3O4+DSPE- 
PEG2000-Mal +
DPPC + cholesterol 
nanoparticles 

SNF peptide/EpCAM 
antibody, γ-IFN 

Improving therapeutic 
targeting by modifying tumor 
target ligands 

Hierarchical targeting significantly 
enhances antitumor effect 

Huh7, 97H, 
97L, SK- 
Hep-1, LO2, 
Hepa1-6 

Shi et al. [93] 

NP-sfb PEG-b-PLA Sorafenib Improving solubility and 
bioavailability of sorafenib/ 
pterostilbene 

Showing significantly improved 
therapeutic efficacy compared with 
same dose free-sfb 

Hepa1-6, 
H22, 
HepG2 

Chen et al. 
[94] 

PSN Eudragit e100 Pterostilbene, polyvinyl 
alcohol (stabilizer) 

Having a better cytocidal effect than 
raw pterostilbene 

HepG2 Tzeng et al. 
[95] 

FCPN Pluronic F-127 Folic acid-functionalized 
SMMC-7721 cell 
membrance, paclitaxel 

Improving the 
biocompatibility and targeting 
by coating biomimetic 
materials  

SMMC- 
7721 

Shen et al. 
[96] 

(SFN + TPL) 
@CPLCNPs 

Glyceryl 
monooleate + P507 

Huh-7 cell-platelet hybrid 
membrane, sorafenib, 
triptolide 

Long circulation function and 
homologous targeting 

Huh-7 Li et al. [97] 

TBP@DOX Liposome P-selectin (tumor targeting), 
doxorubicin, BML 
(microwave-sensitizer) 

Combining the efficacy of 
chemotherapy and ablation  

HepG2, 
H22 

Xu et al. [98] 

UiO-66/ 
Bi2S3@DOX 

UiO-66/Bi2S3 MOF 
nanoparticle 

Doxorubicin Combining the efficacy of 
TACE and ablation  

N1S1 Liu et al. [99] 

BMPMs SPION Inhexol, Carrageenan Combining TACE and MRI Imageable TACE HUVECs Liu et al. 
[100] 

IR820-PEG- 
MNPs 

PEGylated melanin 
nanoparticle 

IR820 Combining PA/MA imaging 
and ablation 

Diagnosis of micro HCC and imaging 
guided ablation 

HepG2, 
Huh7 

Chen et al. 
[101]  
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therapy with various immune adjuvants through nanotechnology 
(Fig. 3A) [83,110–112]. Synthetic oligodeoxynucleotide with unme-
thylated cytosine-phosphate-guanine (CpG) is an immune adjuvant that 
triggers innate and adaptive immunity by stimulating dendritic cells 
(DC), nevertheless, it requires multiple injections or high doses to 
stimulate DC maturation. Therefore, Cai et al. designed a metal-organic 
framework (MOF) nanoparticle formed by photosensitizers and loaded 
them with CpG and acriflavine (ACF), a hypoxia signaling inhibitor, as 
an in situ tumor vaccine. The results showed that the nanoparticle 
promoted local DC maturation, cytokine upregulation, and T-cell infil-
tration enhancing tumor inhibition [83]. 

3.2. Transarterial therapy 

Transarterial therapy is commonly used for HCC patients who cannot 
accept curative therapies. Its principle is to deliver a high concentration 
of chemotherapy drugs to tumor cells and/or to block tumor-feeding 
arteries. This treatment can minimize the systemic toxicity of chemo-
therapy. According to different arterial intubation chemotherapy and 
embolization procedures, it can be divided into TACE, hepatic arterial 
infusion chemotherapy (HAIC), transarterial embolization (TAE) and 
transarterial radioembolization (TARE) [113–115]. As the standard 
treatment for mid-term HCC, TACE consists of conventional TACE 
(cTACE) and drug-eluting beads TACE (DEB-TACE). The former infuses 
part of the chemotherapy drugs first and then mixes the other part with 
lipiodol emulsion for embolization; the latter has the advantage of sus-
tained and stable drug release through drug-eluting beads. Although the 
randomized trial failed to prove that DEB-TACE is more effective than 
cTACE, in subgroup analysis, more advanced patients (Child-Pugh B, 
ECOG 1, bilobal disease, recurrent disease) had a significantly increased 
objective response rate to DEB-TACE, and the severe liver toxicity of 
DEB-TACE was less compared with cTACE [116]. Although TACE is the 
most widely used transarterial therapy in clinical practice, problems still 

affect the antitumor efficacy, such as aggravating tumor hypoxia, 
incomplete embolization, and poor degradation of embolic agents. 
Therefore, nanotechnology is applied to address these problems 
(Fig. 3B). 

TACE will aggravate tumor hypoxia during embolization, which is 
associated with chemotherapy resistance and recurrence, and can also 
lead to the invasive phenotype of the tumor, increasing angiogenesis and 
metastatic activity [117]. Some studies have combined TACE with 
hypoxia-related protein inhibitors to enhance therapeutic efficacy 
[118], and nanotechnology can integrate the two. Wang et al. synthe-
sized CaO2 nanoparticles (CaO2 NPs) as a synergist for TACE. CaO2 NPs 
reacted with water to generate abundant O2, OH− and Ca2+, thereby 
improving the tumor microenvironment by relieving hypoxia, neutral-
izing acid, and down-regulating hypoxia-related markers’ expression, 
which significantly enhanced the antitumor effect of TACE [84]. 

Furthermore, TACE is difficult to completely embolize, which may 
lead to tumor recurrence. DEB-TACE can release drugs stably compared 
with cTACE; hence researchers exert nanotechnology to optimize DEB- 
TACE to increase drug loading and enhance sustained release, killing 
residual cancer cells [85,86]. Zhao et al. synthesizeddextran-coated 
arsenic trioxide (ATO) nanoparticles as a nanosized drug-eluting bead 
(NDEB), which was activated by endogenous inorganic phosphate (Pi) to 
release ATO, while the hydrated dextran layer protected ATO from 
contacting with the serum to delay the reaction between NDEB and Pi. 
The therapeutic effect of NDEB-TACE was verified in animal experi-
ments. It was found that compared with cTACE, NDEB-TACE led to the 
continuous embolization of tumor-feeding vessels and the sustained 
release of ATO, resulting in more thorough tumor necrosis [86]. 

In addition, with the widespread use of TACE, the biodegradability of 
embolic agents is required. Using biodegradable nanomaterials can meet 
the long retention of embolic agents while making them degrade slowly 
[87,100,119,120]. Currently, lipiodol emulsion mixed with doxorubicin 
(DOX) is mainly used clinically for TACE. Adding solid particles to the 

Fig. 3. Nanotechnology application in ablation, 
transarterial therapy, radiotherapy, and systemic 
therapy. (A) Nanotechnology enhances post-ablation 
immune response via combining ablation with im-
mune adjuvants. (B) Nanotechnology improves 
transarterial therapy via alleviating hypoxia, causing 
thorough necrosis, and using biodegradable embolic 
agents. (C) Nanoscale radiosensitizers increase radi-
ation sensitivity. (D) Nanoparticles carrying auxiliary 
molecules ameliorate drug resistance.   
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formula can obtain a stable emulsion (i.e. Pickering emulsion). How-
ever, organic or inorganic particles are non-degradable and may cause 
chronic tissue inflammation. Deschamps et al. successfully prepared 
stable lipiodol emulsion with biodegradable poly(lactide-co-glycolide 
acid) (PLGA) nanoparticles and proposed a new strategy for stabilizing 
lipiodol emulsion [87]. Liu et al. designed a biodegradable chemo-
embolic agent composed of carrageenan, iohexol, and super-
paramagnetic iron oxide nanoparticle (SPION). The porous structure 
allowed a large amount of loading and controlled DOX release while 
facilitating the infiltration of various enzymes into its interior. It could 
be degraded by 20–35% within two months, meeting long embolization 
duration and biodegradability [100]. 

3.3. Radiotherapy (RT) 

RT for HCC includes stereotactic body radiotherapy (SBRT), proton 
beam radiotherapy (PBT), and others. Limited studies have found that 
SBRT was as effective as RFA regarding local tumor control [121,122]. 
For patients at high risk of portal vein invasion, the local recurrence rate 
in the SBRT group was lower than RFA [121]. Besides, prospective 
studies have found that the one-year tumor control rate of SBRT was 
over 90% [123,124], suggesting that SBRT may be an effective option 
for liver transplantation bridging therapy. PBT is a novel technique that 
is theoretically more accurate and efficient. A recent phase III ran-
domized trial found that the efficacy of PBT on postoperative recurrence 
or residual small HCC lesions was not inferior to that of RFA, proving 
that this is a promising technique for treating small HCC [125]. How-
ever, the drug resistance caused by hypoxia of the tumor is a major 
problem hindering the effect of RT. Therefore, radiosensitizers have 
emerged. Commonly used clinical radiosensitizers include radiosensi-
tive compounds such as glycidiazole sodium, sanazole, and oxygen. 

In recent years, researchers found that gold nanoparticles have 
radiation-sensitizing capabilities, which can increase local radiation 
dose deposition (Fig. 3C). Sood et al. prepared targeted iron oxide-gold 
core-shell nanoparticle (GNP), and the local tumor ROS levels were 
significantly increased in the GNP group after radiation exposure [88]. 
In addition, after radiation exposure, angiogenesis pathways were 
activated in the tumor and tumor cells became more radioresistant, 
leading to tumor cell repopulation [126]. Therefore inhibiting angio-
genesis pathways is an effective strategy to enhance the radiotherapy 
response of HCC. Li et al. used targeted gadolinium-hybridized gold 
nano molecules (tGd-GNMs) as radiosensitizers to increase local radia-
tion dose deposition; meanwhile, effective VEGF siRNA nanocarriers to 
down-regulate the expression of VEGF, inhibiting tumor revasculariza-
tion. The tumor inhibition rate increased from 12% of RT alone to 23% 
[89]. 

3.4. Systemic therapy 

HCC is insensitive to commonly used chemotherapeutic drugs. For 
HCC patients with liver cirrhosis, the damage of metabolic pathways 
increases the systemic toxicity of traditional chemotherapeutic drugs; 
therefore, chemotherapy is not used for the conventional systemic 
treatment of HCC. Current systemic therapy for advanced HCC consists 
primarily of targeted therapy [4]. Both sorafenib and lenvatinib are oral 
multikinase inhibitors that inhibit tumor cell proliferation and angio-
genesis. They have been approved as the first-line treatment of advanced 
HCC after phase III RCTs have confirmed their efficacy [127–129]. 
Because inhibition of vascular endothelial growth factor (VEGF) 
signaling has immunomodulatory effects, such as DC maturation, T-cell 
function, and reversal of immunosuppression, it may result in syner-
gistic antitumor effects when combined with immune checkpoint in-
hibitors. The recent phase III IMbrave150 trial found that the 
combination of atezolizumab (anti-PD-L1 antibody) and bevacizumab 
(anti-VEGF antibody) in patients with advanced HCC who had unre-
ceived prior systemic therapy resulted in a prolonged median survival 

time and progression-free survival time than the sorafenib group [130, 
131], which has been approved as the first-line systemic therapy for 
advanced HCC. Second-line systemic therapies includes regorafenib, 
cabozantinib and ramucirumab [132–134]. However, drug resistance is 
one of the most troublesome problems in treating advanced HCC. The 
mechanism of drug resistance is complicated, involving epigenetics, 
molecular transport, and tumor microenvironment, and there is still a 
lack of satisfactory solutions [135]. 

For the problem of drug resistance, studies have found that some 
molecules are insufficient to kill HCC, nonetheless can increase the 
sensitivity of HCC to existing drugs; therefore, nanotechnology can 
improve drug resistance by carrying different auxiliary molecules 
(Fig. 3D). Platinum drugs, represented by cisplatin, are the most 
extensively used chemotherapeutic drugs in clinical practice. However, 
HCC is insensitive to it, coupled with strong side effects, which greatly 
limits the application of platinum drugs in HCC. To overcome the ac-
quired drug resistance, Jin et al. designed an iodine-containing polymer 
nanoparticle loaded with cisplatin to deplete glutathione, which medi-
ates platinum resistance in cancer cells, via an iodine-click reaction and 
effectively improved the chemotherapeutic effect of cisplatin [90]. This 
type of research is expected to bring back attention to traditional 
chemotherapeutic drugs in treating HCC. Additionally, the first-line 
drug sorafenib, which has been used for many years, is also facing the 
issue of drug resistance. Studies have found that certain small nucleic 
acid molecules, such as MK-siRNA, could increase the sensitivity of HCC 
to sorafenib [136,137]. Xu et al. used nanoparticles to co-deliver sor-
afenib and USP22 shRNA, which suppresses the expression of multidrug 
resistance-associated protein 1, demonstrating an increase in sorafenib 
accumulation and enhanced sensitivity of HCC [91]. However, the 
tumor microenvironment rich in stroma sometimes hinders the delivery 
of drugs, so Younis et al. employed microfluidic technology to generate 
ultra-small lipid nanoparticles of approximately 60 nm, targeted deliv-
ering SOF and MK-siRNA, and found that about 70% of 
sorafenib-resistant HCC growth was inhibited [92]. 

3.5. All kinds of therapies 

According to the preceding, the advantages of nanotechnology are 
reflected in the methodological improvement of ablation, TACE, RT, and 
systemic therapy in a targeted and efficient manner. Moreover, nano-
technology can generally optimize the therapies of HCC through several 
aspects (Fig. 4). 

First, improving the therapeutic targeting. The non-specific uptake of 
drugs can lead to many side effects [127,128], while improving thera-
peutic targeting by modifying various tumor target ligands on nano-
particles can enhance efficacy and decrease side effects, such as 
targeting common HCC biomarkers [138,139], coupling with folic acid 
to target the highly expressed folic acid receptor in solid tumors [140, 
141], targeting the highly expressed P-selectin in HCC and tumor 
vascular endothelium to simultaneously target the primary tumor and 
metastases [98]. Hierarchical targeting is a novel strategy to further 
improve the accuracy of HCC diagnosis and treatment [37,93]. Shi et al. 
proposed that tissues (primary targets), cells (secondary targets) and 
receptors (tertiary targets) should be accurately graded and targeted, 
and they designed a tertiary targeting nanosystem. The nanosystem was 
mediated by biomagnetism, and the primary targeting ability to target 
tissues was improved by a magnetic field in the body. For the secondary 
targets, the study selected liver cancer stem cells (LCSCs) involved in 
tumorigenesis, progression, metastasis, recurrence, and drug resistance. 
Low-intensity focused ultrasound triggers the explosion of nanoparticles 
around LCSCs, causing physical damage to them. The subsequent release 
of γ-interferon attained tertiary targeting, which upregulated the major 
histocompatibility complex (MHC) expression and promoted tumor cell 
apoptosis after binding to membrane receptors. This nanosystem 
significantly enhanced the antitumor effect compared with non-tertiary 
targeting nanoparticles [93]. 
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Second, improving the physicochemical properties of therapeutic 
drugs. Some drugs, such as sorafenib, have a tumoricidal effect; how-
ever, their clinical application is limited due to poor water solubility, 
fast metabolism, and low oral bioavailability. The nano-delivery system 
can improve the water solubility and bioavailability of drugs [94,95, 
142]. Chen et al. used clinically safe poly(ethylene glycol)-b-poly(lactic 
acid) as a nanocarrier to deliver sorafenib (NP-sfb), and the inhibition of 
NP-sfb on tumor growth was significantly stronger than that of free SFB 
at the same dose, indicating that nanoparticles successfully increased 
the bioavailability of SFB [94]. The natural chemotherapeutic drug 
pterostilbene (PTS) is cytotoxic against various tumors, including liver 
cancer. However, it is insoluble in water, and the solvents commonly 
used are organic substances with systemic toxicity. The nanoplatform is 
an ideal substitute. Tzeng et al. increased the solubility of PTS to 604.38 
μg/mL by reducing the PTS nanoparticles (PSN) size, adjusting the PTS 
and excipients ratio, and inducing PSN to undergo amorphous transition 
[95]. 

Third, increasing the biocompatibility and stability of the effector 
molecule. Coating/binding nanoparticles with endogenous substances 
in the body can improve their biocompatibility and stability, prolong 
circulation time, reduce the leakage of effector molecules, and facilitate 
drug absorption. This kind of nanoparticle is called a biomimetic 
nanoplatform. Currently used biomimetic materials include cell mem-
branes, biomacromolecules, and others [138,143]. Ma et al. coated the 
target-recognizing CAR-T cell membrane on photothermal agent-loaded 
mesoporous silica nanoparticles. The results showed that the nano-
particles exhibited excellent biocompatibility in vivo and in vitro [138]. 
Studies by Shen et al. showed that liver cancer cell 
membrane-encapsulated paclitaxel nanocrystals (CPN) had longer 
plasma half-life and higher bioavailability than paclitaxel nanocrystals 
(PN) [96]. Li et al. found that the phagocytosis of nanoparticles by 
macrophages was reduced by approximately 10-fold after liver cancer 
cell-platelet hybrid membrane coating [97]. 

Fourth, providing a platform for combination therapy. Combining 
two or more therapies with nanoparticles can enhance the antitumor 
effect and reduce the probability of recurrence. Previous studies 
demonstrated that hyperthermia could enhance chemotherapy which in 
turn can improve ablation efficiency, and the two have synergistic 
antitumor effects, so many studies have combined the two through 
nanoplatforms [144–146]. Xu et al. encapsulated DOX and microwave 
sensitizers in targeted liposome nanoparticles. Under the acidic envi-
ronment and microwave stimulation, the nanoplatform released more 
DOX and produced ablation effect. The therapeutic effect on liver cancer 
was more than 1.5-fold that of nanoparticles without microwave sensi-
tizer, equivalent to 10-fold the dose of free DOX. There were no common 
side effects of DOX [98]. In addition, since a small part of HCC’s blood 

supply does not originate from the hepatic artery, the clearance of 
cancer cells by TACE is always incomplete. Combining TACE with 
ablation therapy can improve the efficiency of TACE. The multifunc-
tional nanoparticles UiO-66/Bi2O3@DOX prepared by Liu et al. can 
achieve low pH triggered DOX release and photothermal ablation, 
showing stronger tumor inhibitory effect [99]. 

Fifth, realizing the integration of diagnosis and treatment on nano-
platforms. On the one hand, it can reduce time cost and improve diag-
nosis and treatment efficiency [93,101,139,141]. Chen et al. coupled 
PEGylated melanin nanoparticles (PEG-MNPs) with the NIR dye IR820 
to construct a highly biocompatible multifunctional nanoplatform 
IR820-PEG-MNPs with PAI, MRI and photothermal ablation capabilities. 
Combining the two imaging techniques demonstrated a high sensitivity, 
high resolution, and deep tissue penetration. After the injection of 
IR820-PEG-MNPs, the PA/MR signal of the tumor area increased by 
4.13-fold and 1.60-fold compared with before injection, capable of 
detecting tiny orthotopic tumors as small as 1.8 mm; compared with 
PEG-MNPs, the photothermal conversion efficiency of IR820-PEG-MNPs 
increased from 18.7 to 40.2% [101]. On the other hand, integrating 
diagnosis and treatment can realize the monitoring and evaluation of 
treatment effects and can play the role of precise guidance [100,120]. 
Liu et al. prepared a DOX-loaded multifunctional porous microsphere, 
which encapsulated iohexol and SPION at the same time. During TACE, 
doctors can evaluate the embolism position and scope by digital sub-
traction angiography (DSA), while SPION can remain for several hours 
to several days after TACE, therefore, it is convenient to evaluate the 
degradation degree of BMPM by MRI for follow-up treatment [100]. 

In short, nanotechnology can enhance efficacy and reduce side ef-
fects by improving the targeting of effector molecules, optimizing the 
properties of effector molecules, and synergizing various therapies. By 
integrating diagnosis and treatment, it can also improve efficiency as 
well as achieve real-time assessment. 

4. The safety of nanotechnology in HCC 

Although the multifunctionality of nanomaterials can overcome 
some limitations of diagnostic and therapeutic methods, the potential 
toxicity can’t be ignored. The small particle size, special morphology, 
high specific surface area, complex compositions and surface functions 
of nanomaterials make them inevitably distribute and accumulate in the 
normal tissues, eventually leading to body toxicity [147]. The 
nanomaterials-induced toxicity mechanisms include inflammation, 
oxidative stress, apoptosis, necrosis, and genetic toxicity, etc [148–150]. 

The types of materials generally used in nanomedicine include car-
bon nanotubes, metal nanoparticles, lipid-based nanoparticles, and 
polymer-based nanoparticles, etc. Nanoparticles can enter the 

Fig. 4. General application of nanotechnology in treating HCC. (A) Surface modification of nanoparticles improve therapeutic targeting. (B) High loading capacity of 
nanoparticles improve the water solubility and bioavailability of drugs. (C) Biomimetic coating improves the biocompatibility and stability of nanoparticles. (D) 
Combination of diagnosis and treatment modalities improves therapeutic efficacy. 
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circulation and then migrate to different organs via skin exposure, 
airway inhalation, gastrointestinal ingestion, and intravenous injection 
[151]. As a primary metabolic active organ, liver always becomes the 
place where nanoparticles in systemic circulation accumulate. It was 
estimated that 30–99% of nanoparticles in the circulation can accumu-
late in the liver [152]. Various nanomaterials can lead to elevated liver 
enzymes, hepatic steatosis, and liver fibrosis [149,153]. According to 
Zhang et al. exposure of parental mice to multi-walled carbon nanotubes 
damaged the liver function of offspring mice, resulting in the accumu-
lation of lipid droplets in hepatocytes [154]; Albrahim et al. found that 
silver nanoparticle poisoning in rat models (80 mg/kg) damaged the 
liver by interfering with oxidative homeostasis, causing elevated liver 
enzymes and reduced albumin [155]; while multiple injections of silica 
nanoparticles (20 mg/kg) induced oxidative damage and apoptosis in 
mouse hepatocytes, and then activated the TGF-β1/Smad3 pathway to 
promote liver fibrosis [156]. Although researchers have paid more 
attention to the nanosafety issues, the current investigation on this 
aspect are not enough, especially the impacts and mechanisms of 
long-term accumulation of nanoparticles on the body are not clear. 
Nanotechnology is a double-edged sword, so translational research 
needs to be carried out prudently before the assessment norms for the 
risk of nanomaterials application have been formed. 

5. Conclusions and prospects 

In recent years, nanotechnology has significantly improved the ef-
ficacy of diagnosis and treatment and has become a research hotspot. As 
described in this article, nanotechnology’s high modifiability and 
loading capacity can improve detection sensitivity, therapeutic target-
ing, and the properties of effector molecules and the tumor microenvi-
ronment to improve the efficacy of diagnosis and treatment. The 
multifunctional nanoplatform can also facilitate the combination of 
diagnosis and therapies, further enhancing the efficiency of medicine. 

However, there are still some limitations in the research of nano-
technology in HCC: 1) the research evaluation standards are non- 
uniform, and it is challenging to make comparisons among various an-
alyses. In the future, it will be necessary to develop research evaluation 
standards for nanotechnology in HCC; 2) several studies blindly com-
bined diagnosis and treatment methods, although they didn’t achieve 
synergism. The combination of therapies should be supported by 
research on mechanisms in future; 3) certain therapies, such as TARE, 
have deficiencies; however, there are no improvement strategies and 
applications of nanotechnology in these fields. Applying bio-
nanotechnology in clinical practice will take a long time; however, its 
prospects are very broad. In addition to the current therapies, nano-
technology can further be applied to the emerging regimens such as 
surgical nanorobots, immunotherapy, gene therapy, cell therapy and 
regenerative medicine, etc. Furthermore, it is also expected to play a role 
in individualized treatment and real-time monitoring of therapy. It can 
be predicted that nanomedicine will occupy an important position in the 
future diagnosis and treatment of HCC. 
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