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Abstract

Accurate anatomical localisation of specific white matter tracts and the quantification of their 

tract-specific microstructural damage in conditions such as multiple sclerosis (MS) can contribute 

to a better understanding of symptomatology, disease evolution and intervention effects. Diffusion 

MRI-based tractography is being used increasingly to segment white matter tracts as regions-of-

interest for subsequent quantitative analysis. Since MS lesions can interrupt the tractography 

algorithm’s tract reconstruction, clinical studies frequently resort to atlas-based approaches, 

which are convenient but ignorant to individual variability in tract size and shape. Here, we 

revisit the problem of individual tractography in MS, comparing tractography algorithms using: 

(i) The diffusion tensor framework; (ii) constrained spherical deconvolution (CSD); and (iii) 
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damped Richardson-Lucy (dRL) deconvolution. Firstly, using simulated and in vivo data from 

29 MS patients and 19 healthy controls, we show that the three tracking algorithms respond 

differentially to MS pathology. While the tensor-based approach is unable to deal with crossing 

fibres, CSD produces spurious streamlines, in particular in tissue with high fibre loss and 

low diffusion anisotropy. With dRL, streamlines are increasingly interrupted in pathological 

tissue. Secondly, we demonstrate that despite the effects of lesions on the fibre orientation 

reconstruction algorithms, fibre tracking algorithms are still able to segment tracts that pass 

through areas with a high prevalence of lesions. Combining dRL-based tractography with an 

automated tract segmentation tool on data from 131 MS patients, the corticospinal tracts and 

arcuate fasciculi could be reconstructed in more than 90% of individuals. Comparing tract-specific 

microstructural parameters (fractional anisotropy, radial diffusivity and magnetisation transfer 

ratio) in individually segmented tracts to those from a tract probability map, we show that 

there is no systematic disease-related bias in the individually reconstructed tracts, suggesting 

that lesions and otherwise damaged parts are not systematically omitted during tractography. 

Thirdly, we demonstrate modest anatomical correspondence between the individual and tract 

probability-based approach, with a spatial overlap between 35 and 55%. Correlations between 

tract-averaged microstructural parameters in individually segmented tracts and the probability-map 

approach ranged between r = .53 (p < .001) for radial diffusivity in the right cortico-spinal tract 

and r = .97 (p < .001) for magnetisation transfer ratio in the arcuate fasciculi. Our results show that 

MS white matter lesions impact fibre orientation reconstructions but this does not appear to hinder 

the ability to anatomically reconstruct white matter tracts in MS. Individual tract segmentation in 

MS is feasible on a large scale and could prove a powerful tool for investigating diagnostic and 

prognostic markers.
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1 Introduction

Accurate quantification of white matter damage in multiple sclerosis (MS) is important 

for an improved characterisation of the disease burden (Barkhof et al., 2009). While 

the hallmark of MS pathology is focal inflammatory demyelinating lesions, correlations 

between the number and volume of lesions and disability scores are low (Barkhof, 1999, 

2002) and disability can be better explained by the anatomical location of lesions and of 

diffuse microstructural damage outside of lesions (Charil et al., 2003; Kolind et al., 2012). 

Accurate assignment of damage to specific anatomical white matter tracts is important for 

several reasons (Lin et al., 2005). Firstly, the relationship between functional and structural 

(derived using tractography) brain networks in MS is not yet fully established and is likely 

to offer important insights into disease pathophysiology. Secondly, the ability to measure 

longitudinally microstructural changes within tracts allows the relationship between focal 

demyelination and distant white matter pathology in relevant pathways to be established. 

Finally, tract-based quantitative measures are likely to have utility in early clinical trials, 

for example studying the effect of remyelinating agents on axonal preservation within the 
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visual pathway following optic neuritis, or the study of specific rehabilitation interventions 

on relevant white matter tracts (Bonzano et al., 2014).

Anatomical localisation of white matter tracts in vivo currently relies on diffusion-

weighted MRI and fibre tracking (Catani et al., 2002; Jeurissen and Leemans, 2017). 

The reconstruction of individual tracts is based on combining prior anatomical knowledge 

of the tract location with diffusion MRI-based evidence about fibre orientations in the 

imaging voxels. Early tractography work was performed by producing streamlines that 

follow the principal eigenvector of the diffusion tensor (e.g. Basser et al. (2000); Mori et al. 

(1999)), while more recent work relies on the estimation of the fibre orientation distribution 

function (e.g. Tournier et al. (2004)). Tractography can be combined with an extraction of 

tract-specific microstructural metrics (Jones et al., 2005, 2006) to be used for investigating 

individual differences or longitudinal changes in tract-specific microstructure (e.g. Lin et al. 

(2005); Metzler-Baddeley et al. (2011)). Tractography is also a useful tool for cortical or 

sub-cortical functional parcellation at an individual level (Mars et al., 2011; Tomassini et al., 

2007).

Focal brain pathology, such as demyelinating white matter lesions in MS, can affect 

tractography. MS lesions are characterised by fibre loss and consequent increase in 

extracellular water associated with tissue destruction, which is reflected in the diffusion 

profile (Filippi et al., 2001). During tractography, at each step of streamline reconstruction, 

angle and amplitude criteria are in place to avoid spurious tracking. Early tractography 

studies used fractional anisotropy (FA) as a criterion for streamline termination. As FA 

is significantly decreased in white matter lesions in MS (Filippi et al., 2001), applying 

tractography to data from MS patient has been recognized as being problematic (Ciccarelli 

et al., 2008; Inglese and Bester, 2010). In the absence of a strategy to overcome the problem 

of streamline termination (such as employed by Lagana et al. (2011), Tench et al. (2002) 

and Wang et al. (2018)), the reconstructed tracts may lack anatomical accuracy, e.g. by 

premature termination of tracking (Ozturk et al., 2010). For this reason few studies apply 

tractography in brains affected by MS (other examples are Lin et al. (2005); Reich et al. 

(2007, 2010)).

More recent advances in tractography algorithms do not rely on the estimated fibre 

orientation from the diffusion tensor (which yields one fibre orientation estimate per 

voxel), but employ deconvolution approaches that yield multiple fibre orientations per voxel 

(e.g. Tournier et al. (2004)). This advanced approach could permit the reconstruction of 

streamlines through MS lesions, given that enough fibres are present to generate a peak 

in the estimated fibre orientation distribution (FOD). However, it is possible that due to 

the fibre loss in lesions, the peak amplitudes may fall below the threshold normally used 

for termination of tracking. On the other hand, lowering the FOD amplitude threshold 

could lead to the tract reconstruction following spurious peaks, such as those arising from 

noise, since lesions are characterised by an increased component of water with isotropic 

diffusion, which can compromise orientation estimates (Dell’Acqua et al., 2010). Due to 

the ill-posed nature of the tractography process, reducing false positives streamlines is a 

significant challenge (Jeurissen and Leemans, 2017) and therefore needs to be considered 

when assessing tractography methods in pathological tissue. To our knowledge, tractography 
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results obtained with spherical deconvolution approaches in MS patients have not been 

assessed systematically.

Due to the challenges related to tractography in pathological tissue, an alternative approach 

for obtaining tract-specific measures in MS was suggested (Pagani et al., 2005; Hua et al., 

2008). First, tracts are reconstructed in the native space of brains of healthy volunteers and 

then normalized to a common reference space, where a tract-probability map is created. 

Then, the data from patients are aligned with the same common reference space. To get 

a tract-specific measure of damage, the probabilistic atlas is used to calculate a weighted 

average for the microstructural metric of interest.

While the probability-map based method has the advantage that individual tracts are only 

reconstructed in healthy brains, there are also considerable short-comings. The approach 

relies on inter-subject co-registration of the images by normalising them to a common 

reference space. This normalisation is generally performed based on structural images, e.g. 

T1-weighted images, on which white matter appears homogeneous (Hua et al., 2008; Pagani 

et al., 2005; Reich et al., 2010). The approach therefore implicitly assumes that white matter 

tract anatomy is consistent across individuals and in states of health and disease. However, 

this assumption is unlikely to hold. Tract location and shape vary even between healthy 

individuals (Wassermann et al., 2012), and in MS white matter atrophy is well described (Ge 

et al., 2001) and could affect some tracts more than others (Kezele et al., 2008). Applying 

a probability mask may yield measures of microstructural damage that are likely to include 

information from other tracts in the vicinity and may therefore not be anatomically precise. 

This imprecision could be the explanation for the low correlations between individual 

tractography and probability-based measures that have previously been reported for some 

tracts (Reich et al., 2010). Another explanation could be that the individual tractography 

omits damaged parts of the tract, leading to not-representative and biased estimates.

In this work, we evaluate methods for performing individual tractography in multiple 

sclerosis patients with focal white matter lesions. Using simulations as well as in vivo 

data sets from patients, we compared the effect of MS pathology on the performance of 

three tractography algorithms: (i) DTI based tracking; (ii) Constrained spherical harmonic 

deconvolution (CSD)-based tracking and (iii) damped Richardson-Lucy-based tracking. 

Then, we reconstruct cortico-spinal tracts (CST) and arcuate fasciculi (Arc) in a large 

number of patients to evaluate the practical implications of tracking through white matter 

regions with a high prevalence of lesions.

2 Methods

2.1 Data acquisition

2.1.1 Simulated data—We simulated diffusion data for a virtual pulse sequence 

comparable to our in vivo sequence (Section 2.1.3), with a conservative SNR estimate of 

20:1 for non-diffusion weighted images (see Supplementary Section 1), using Camino’s 

datasynth (Hall and Alexander, 2009). The virtual pulse sequence was a twice-refocussed 

spin echo (TRSE) sequence with TE = 94.5 m s, b-value = 1200 s/mm2, δ1: 11.2 m s, onset 

δ1: 15.2 m s, δ2: 17.8 m s, onset δ2: 31.7 m s, δ3: 17.8 m s, onset δ4: 75.3 m s, gradient 
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amplitude: 40 mT), sampling 40 uniformly distributed gradient directions (Camino 40), and 

6 non-diffusion weighted images at the beginning.

We simulated data for a number of tissue substrates, all characterised by impermeable 

parallel cylinders with a shape parameter of 2 and scale parameter of 5 x 10−7, which 

corresponds to a mean radius of 1 μm and standard deviation of 0.7 μm. The parameters used 

in the simulation were: 500,000 walkers (numbers of spins simulated), uniformly distributed 

across the substrate, cylinder permeability 0, tmax = 5000.

To assess the effect of fibre loss and increased extracellular volume fraction, as seen in 

lesion pathology, we simulated substrates that differed in their intracellular volume fractions, 

by varying the number of cylinders placed in the substrate. We simulated various substrates 

(cubes of the length 50 x 10−5 m), that only differed in their cylinder density (0–40,000 

cylinders placed in substrate), yielding intracellular volume fractions of about 0–80%. For 

each substrate type, we simulated 20 different substrates (by choosing different seed values), 

and for each substrate we simulated 100 voxels that only differed in their noise.

We simulated substrates with a single fibre population as well as substrates with two fibre 

populations crossing at 90°. To simulate crossing fibres, we ran the exact same simulation, 

but rotating the acquisition scheme around the x-axis by 90°.

2.1.2 Participants—In total, data from 135 right-handed MS patients, who took part in 

a large-scale imaging project (Lipp et al., 2017, 2019), contributed to this study. The project 

was approved by the NHS South-West Ethics and the Cardiff and Vale University Health 

Board R&D committees. All participants provided written informed consent.

Diffusion data were available for 131 patients. A subset (29 patients) of the large cohort 

had been age- and gender-matched to 19 healthy controls, who underwent the same 

scanning protocol. For all analyses, for which pathological tissue was compared to healthy 

control tissue, data from the two matched groups (N = 29 patients and N = 19 controls) 

were considered. This was done to eliminate the risk of aging-related changes to WM 

microstructure acting as a confound. For analyses regarding the in vivo tract segmentation, 

data from all 131 patients were considered to ensure a representative lesion probability 

distribution across the brain. We indicate the sample size used for each analysis in the 

respective tables and figures. Data from the healthy controls were used for creating the tract 

probability maps as well as a shape model that was used for automatic tract segmentation 

for the larger cohort of patients, as described below. The clinical and demographic 

characteristics of the whole patient cohort, matched patient subset and controls are presented 

in Table 1.

2.1.3 MRI acquisition—In vivo MRI data were acquired on a 3T General Electric 

HDx MRI system with an eight channel receive-only head RF coil (GE Medical Systems, 

Milwaukee, WI). We acquired the following sequences: a T2/proton-density weighted 

and a fluid-attenuated inversion recovery (FLAIR) sequence for lesion identification and 

segmentation, a T1-weighted sequence for identification of T1-hypointense MS lesions 

and for registration, and a twice-refocussed diffusion-weighted sequence (40 uniformly 
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distributed directions (Camino 40), b = 1200 s/mm2), and a 3D MT sequence. Latter 

was used to calculate an additional microstructural parameter independent of the diffusion-

weighted images. The acquisition parameters of all scan sequences are reported in 

Supplementary Table 1.

2.2 Data analysis

2.2.1 Algorithms for resolving fibre orientation—We compared three algorithms 

for recovering fibre orientational information. Firstly, as done in previous MS work (Hua 

et al., 2008; Reich et al., 2010), fibre orientation was estimated using the first eigenvector 

of the diffusion tensor. The diffusion tensor was derived by robust non-linear least squares 

fitting (Chang et al., 2005), using ExploreDTI v.4.8.3.

Additionally, we employed two fibre orientation distribution (FOD) deconvolution 

algorithms, which have been developed to overcome some of the limitations related to 

tensor-based tracking: a constrained spherical deconvolution (CSD, Tournier et al. (2007)), 

and a modified damped Richardson-Lucy algorithm (dRL, Dell’Acqua et al. (2010)). 

Deconvolution methods work by characterising a response function for a single fibre 

orientation. This response function is then deconvolved from the observed signal. The reason 

for considering both CSD and dRL is that previous work (Parker et al., 2013b) showed that 

while CSD performs better than dRL when resolving crossing fibres in voxels with low FA, 

it also more frequently produces spurious peaks and is more sensitive to mis-calibrations of 

the FOD.

The constrained spherical convolution (CSD; Tournier et al. (2007)) was implemented using 

in-house scripts. The single fibre response function was calculated from voxels with an FA 

> 0.8, as done in previous work (Tournier et al., 2004). For the simulated data, the CSD 

response function was estimated from voxels with FA > 0.8 in the single fibre population 

data set. Spherical harmonics were resolved up to the 6th order. During the tractography 

process, we employed an FOD amplitude threshold of > 0.1 that has been previously 

optimised (Jeurissen et al., 2013).

The modified damped Richardson-Lucy algorithm (dRL) was implemented with a fibre 

response shape parameter of α = 1.5x10−3mm2/s according to Dell’Acqua et al. (2010), 

using in-house scripts. Note that we fitted harmonics up to the 8th order to the discrete dRL 

estimates, to increase computational efficiency, while allowing to track along all potential 

directions rather than only along the discretely estimated directions. The FOD amplitude 

threshold was set to > 0.05 (Parker et al., 2013b).

2.2.2 Analysis of simulated data—For each simulated voxel, we applied the three 

algorithms. From the resulting estimated fibre orientation profiles, we tested whether peaks 

could be correctly identified: a) along the true underlying direction(s) along which the 

cylinders had been placed; and b) along false directions (the direction(s) orthogonal to the 

long axis of the simulated cylinders). For each substrate type and algorithm, the proportion 

of simulated voxels in which the reconstructed peak orientation closest to the simulated 

orientation subtended an angle of less than 45° and reached the specified amplitude 

threshold (dRL: > 0.05, CSD: > 0.1, tensor: FA > 0.2) was determined. Additionally, 
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the orientation dispersion of the detected peaks as a measure of algorithm precision was 

calculated using Basser et al. (2000)’s coherence measure to an average dyadic tensor which 

was calculated across all identified peaks (Jones, 2003). The dispersion measure can take 

values between 0 (all peaks point in exactly the same direction) and 1 (the detected peaks are 

uniformly distributed on the unit sphere).

2.2.3 In vivo lesion mapping and segmentation—Damage was quantified in three 

tissue-states, which were expected to vary in their underlying microstructural damage: 

normal appearing white matter, T2-weighted white matter hyperintense lesional tissue 

without T1-weighted hypointensity, and T1-weighted white matter hypointense lesional 

tissue with corresponding T2-weighted hyper-intensity, as reported elsewhere (Lipp et al., 

2019). Briefly, normal appearing white matter was defined as FSL FAST (Zhang et al., 

2001) segmented (80% thresholded) white matter at least 5 mm away from lesions. We 

classified lesional voxels as T1-weighted white matter hypointense if their signal intensity 

lay at least 1.5 interquartile ranges below the lower quartile of the distribution in normal 

appearing white matter. All other lesional voxels were classified as T2-weighted white 

matter hyperintense lesional tissue without T1-weighted hypointensity. Further, we restricted 

all three tissue classes to lesion-susceptible white matter (white matter with > 5% lesion 

probability, as defined by a lesion probability map derived from our data, also see Lipp et al. 

(2019)).

2.2.4 MT processing—The MTR was calculated voxel by voxel with the equation MTR 

= [(S0-SMT)/S0]x100, whereby S0 represents the signal without the off-resonance pulse 

and SMT represents the signal with the off-resonance pulse. The MTR images in native 

space were skull-stripped using FSL BET and non-linearly registered to the respective 

skull-stripped T1-weighted images using Elastix (Klein et al., 2010).

2.2.5 Diffusion preprocessing—The DTI data were preprocessed in ExploreDTI (v 

4.8.3; Leemans et al. (2009)). Data were corrected for head motion, distortions induced 

by eddy currents and EPI-induced geometrical distortions by registering each diffusion 

image to the corresponding T1-weighted anatomical image (Irfanoglu et al., 2012) using 

Elastix (Klein et al., 2010), with appropriate reorientation of the diffusion encoding 

vectors (Leemans and Jones, 2009). The anatomical image was first skull stripped and 

down-sampled to 1.5 mm in order to reduce computation times during further processing of 

the diffusion data. RESTORE (Chang et al., 2005) was used to account for outliers.

2.2.6 Tractography algorithm—For the subsample of 29 patients and the healthy 

control group, whole brain tractography was performed in native space with all three 

algorithms, using an adaptation of CSD-based streamline tractography (Jeurissen et al., 

2011; Tournier et al., 2004, 2007, 2008). Seed points were evenly distributed across vertices 

of a 2 mm isotropic grid and propagated in 1 mm steps with streamline length constraints 

of 20–500 mm. The diffusion tensor/fODF peaks were resolved at each new location and 

only the FOD peak direction that is closest to the previous stepping direction was extracted 

(Newton optimization on the sphere (Jeurissen et al., 2011)). In the case of CSD/dRL-based 

tracking, tracking was terminated if the fODF threshold fell below the defined threshold or 
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the direction of streamline changed through an angle greater than 45° between successive 

steps. In the case of tensor-based tracking, instead of an FOD amplitude threshold, an FA 

threshold of 0.2 was used. The same procedure was then repeated by tracking in the opposite 

direction from the initial seed-points.

2.2.7 Individual tract segmentation—For the purpose of this paper, the CST and 

arcuate fasciculi were segmented. The CST originates from motor and premotor cortices and 

runs to midbrain and medulla, passing the corona radiata and internal capsule (Al Masri, 

2011), whose periventricular spaces are common spots for lesions (Kincses et al., 2010). The 

arcuate fasciculi connect the perisylvian cortex of the frontal, parietal, and temporal lobes 

(Catani and Thiebaut de Schotten, 2008).

Three-dimensional tractograms for specific white matter tracts were extracted from the 

whole-brain tractograms by applying multiple way-point of interest gates (Catani et al., 

2002), drawn on colour-coded fibre orientation maps (Pajevic and Pierpaoli, 1999). We 

applied tract reconstruction protocols to the tractograms obtained with dRL from the 

matched 29 patients and 19 healthy controls. All tract segmentations for a given tract were 

performed by the same operator (CST: EP, Arcuate fasciculus: SG).

To segment the CSTs, AND gates were placed in the primary motor cortex (identified on 

the T1-weighted image) and in the brain stem (identified as the blue colour of the pons in 

the anterior part of the brain stem in the axial slice of a first eigenvector-colored FA image 

(Pajevic and Pierpaoli, 1999)). This protocol is comparable to Mole et al. (2016). Left and 

right CST were segmented separately.

Left and right arcuate fasciculi were segmented separately. To do so, each time first a 

coronal slice of a first eigenvector-colored FA image was identified, in which the posterior 

commissure was visible. Then a SEED gate was drawn in the arcuate fasciculus, identified 

as a green triangle lateral to the corpus callosum. Additionally, an AND gate was drawn 

where the arcuate fasciculus bends, identified as the blue/purple appearing ipsilateral to 

the SEED gate on an axial slice at the height of the posterior commissure. Example tract 

delineations for an individual brain are shown in Supplementary Fig. 1.

To assess inter-operator spatial agreement, another operator (SP) dissected all tracts in the 

data from the first five healthy controls, and spatial overlap Dice coefficient scores were 

calculated (see also Dice (1945); Zijdenbos et al. (1994) as follows: First the tracts were 

exported to binary NIfTI files, then the number of voxels for each operator’s tract and 

the number of voxels overlapping in both operators’ tracts were counted using the AFNI 

function 3DOverlap (Cox, 1996). Finally, Dice coefficients (in percent) were calculated 

using the equation:

100 × 2 × # overlapping voxels
# voxels in tract 1 + # voxels in tract 2

In the healthy control data, the approach of Parker et al. (2013a) was used to construct 

a shape model for each tract in each hemisphere from the manually segmented tracts. 

The resulting models were then used to automatically extract the tracts of interest for 
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all patients and controls (To do this, dRL-based whole brain tractograms were computed 

for all patients). All automatically segmented tracts were visually inspected and spurious 

streamlines were removed if necessary. To validate the automated protocol, for each of the 

29 patients and 19 controls with both manually dissected and automatically dissected tracts, 

we calculated the spatial agreement between the two tract masks.

2.2.8 Tract probability maps—For both patients and controls tract probability maps 

were computed, which indicate each voxel’s likelihood of being part of an individual’s 

tract. Each tract was first converted to a binary voxel-wise mask, indicating which voxels 

a tract intersected. To exclude voxels with only minimal streamlines, the 25% of voxels 

with lowest number of streamlines were ignored during this process. The exported tracts 

of each participant were registered to MNI space. This was done by first registering each 

participant’s structural high-resolution T1-weighted image to MNI space, using ANTs SyN 

(Avants et al., 2008) and then applying the warp to the tract NIfTI file (which had already 

been registered to the high resolution structural scan as part of the pre-processing pipeline). 

From the binary tract masks in MNI space, we computed probability maps for each tract and 

hemisphere. The probability maps for controls were then used to employ the probability-

map based approach for obtaining tract-specific microstructural measures.

2.2.9 Extraction of microstructural damage within tracts—For individual tracts, 

we computed the microstructural parameters (FA, RD, MTR) at each point along the 

individual streamlines (Jones et al., 2005) by trilinear interpolation of the surrounding 

voxels. We then computed probability-weighted averages (Reich et al., 2010) of the tracts, 

after normalising the parameter maps to MNI space (which was done by applying the 

warp obtained for the T1-weighted image to the parameter maps). The two approaches are 

comparable in that voxels with higher tract probability will contribute more strongly to the 

computed average.

2.2.10 Comparison between individual tracts and probability map-based 
approach—Firstly, we investigated the anatomical correspondence between the two 

approaches. We calculated weighted Dice coefficients between individual tract masks (in 

MNI space) and tract probability maps as done in Hua et al. (2008).

Secondly, we checked whether individually dissected tracts are biased, by omitting damaged 

parts of the tract. This was done by comparing tract-averaged microstructure of individually 

dissected tracts to averaged microstructure from the group probability maps. If there was a 

bias towards the healthy part, the individual measures should indicate less damage than the 

probability-based measures.

Additionally, we implemented Bland-Altman analysis (Altman and Bland, 1983), similar to 

Kuchling et al. (2018).

2.2.11 Statistical analysis—All statistical analyses were performed in Matlab R2015a. 

The following functions were used: ttest2 for calculation of unpaired t-tests, ranksum for 

calculation of Kruskall-Wallis tests, crosstab for calculation of Chi-square tests, corrcoef 
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for calculation of Pearson correlation co-efficients. Calculation of Dice scores was also 

performed in Matlab, using the equation provided above.

3 Results

3.1 Comparison of the fibre orientation reconstruction algorithms

3.3.1 Simulation results—Single fibre population. All three algorithms could 

successfully reconstruct the peak of the simulated fibre orientation in almost 100% of 

substrates with an intracellular volume fraction of at least 20%, which corresponded to an 

FA value of around 0.5. The dispersion of successfully reconstructed true peaks consistently 

lay below 0.15 (Fig. 1). In substrates with intracellular volume fraction below 10%, all 

algorithms failed to resolve the peak orientation reliably. Here, CSD-based peak detection 

resulted in a significant number of false positive peaks (up to 25%). On the other hand, 

the tensor-based approach produced a maximum of 2% false positives. dRL produced less 

than 0.01% false positives, with the exception of substrates with a single fibre population 

and the highest simulated fibre content (80% intracellular volume fraction). Inspection of 

the discrete FOD suggests that this is a truncation artifact of the harmonics that occurred 

due to the lack of orientation dispersion in the closely packed simulated cylinders. This is 

something that would only occur in the simulation scenario, as the substrates were simulated 

with perfectly parallel cylinders, which is a simplification of the axonal arrangement in vivo, 

where orientation dispersion occurs even in the most systematically packed regions (Mollink 

et al., 2017).

Crossing fibres. In simulated substrates with two fibre populations crossing at 90°, by 

definition, the tensor-based approach only ever reconstructed one of the two peaks. For 

both dRL and CSD, a minimum total intracellular volume fraction of 40% was needed to 

consistently detect both true peaks (Fig. 1), corresponding to a minimum of 20% per fibre 

population, which is consistent with what we found in the single fibre population scenario. 

In substrates with low fibre content, CSD again produced false positives in up to 25% of 

the voxels, while the false positive rate in the tensor or dRL implementation was negligible. 

In substrates with intracellular volume fraction above 10%, the dispersion for the truly 

detected peaks again lay below 0.15, with the exception of the tensor-based approach in the 

crossing fibre condition, where the tensor could not reliably represent either of the true fibre 

orientations.

3.1.2 In vivo results—For each algorithm investigated, we explored its performance 

within various tissue types: healthy control tissue, normal appearing white matter, white 

matter lesions that only appear T2-hyperintense, and white matter lesions that also appear 

T1-hypointense. An example of reconstructed tensor and FOD in an area of severe white 

matter lesion is shown in Fig. 2.

On average, the FA and FOD amplitude of continued streamlines in T1-hypointense lesional 

tissue were slightly lower when comparing to streamlines in lesional tissue without T1-

weighted hypointensity. However, overall there were no strong and systematic differences 

between tissue types (Table 2). On the other hand, with an increasing level of pathology, an 

increasing number of premature streamline terminations was observed due to the amplitude 
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threshold not being met. This was only the case for the tensor-based approach and dRL 

(Table 2). In contrast, using CSD, with an increase in pathology, more streamlines were 

terminated due to the angle criterion. This indicates that while CSD is equally likely to find 

peaks passing the amplitude threshold in pathological tissue, these peaks are most likely to 

be spurious.

Counterintuitively, all algorithms produced more streamlines in lesions than in normal 

appearing white matter, with no significant differences between the two lesional tissue types. 

This result could be due to an increase of spurious streamlines within lesions, but also due to 

the preferential localisation of lesions in fibre-rich areas. To check whether the latter might 

be an explanation for our results, we registered the voxelwise ‘number-of-streamline’ maps 

from healthy controls to MNI space, and performed voxel-wise correlations between the 

average number of streamlines and the lesion probability observed in the patients. (This was 

done for voxels with at least 5% lesion probability, which is the criterion we used to restrict 

the normal appearing white matter ROI). There were small, but significant correlations, 

indicating that areas with higher lesion probability in patients also have higher streamline 

probability in controls (dRL: r = .10, p < .0001, CSD: r = .26, p < .0001, tensor: r = .18, p < 

.0001).

3.1.3 Considerations of other parameters—As the performance of CSD has been 

reported to be particularly good at higher b-values (Tournier et al., 2007), we repeated the 

simulation analyses with b = 2000 s/mm2 by increasing the simulated gradient strength, 

while keeping all other parameters the same. This led to an even higher false positive rate for 

CSD (Supplementary Fig. 2).

The FOD amplitude threshold that was employed for CSD was based on previous work 

(Jeurissen et al., 2013). Increasing the amplitude threshold from 0.1 to 0.3 eliminated the 

spurious peaks in the simulated data at b = 1200 s/mm2, but did not affect the comparisons 

in vivo (Supplementary Table 2).

3.2 Individual tract segmentation in MS

3.2.1 Evaluation of the tract segmentation methods—Average Dice coefficients 

of around 80% in healthy controls demonstrate high spatial overlap between manually 

segmented tracts from two independent operators, indicating robust tract reconstruction 

protocols (Supplementary Fig. 3). To validate the segmentations obtained from the automatic 

segmentation tool, we also quantified the spatial overlap between automatically segmented 

tracts and the available manually segmented tracts. The overlap was slightly lower than 

for the inter-rater analysis, but still showed an average Dice coefficient of > 60%, in 

both patients and healthy controls (Supplementary Fig. 4). Correlations of tract-specific 

microstructural metrics extracted from manually vs automatically segmented tracts were 

high, ranging from r = .85 (p < .001) to r = .98 (p < .001) (Supplementary Table 3 and 

Supplementary Fig. 5).

3.2.2 Cortico-spinal tracts—Overlaying the tract probability map in patients with the 

lesion probability map (Fig. 3 top) confirms that despite the high lesion probability in that 

region, the individually segmented tracts run through these areas. In all controls and more 
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than 90% of the patients (123/131 for the left and 130/131 for the right), both CSTs could be 

reconstructed.

3.2.3 Arcuate fasciculi—As evident from overlapping tract and lesion probability maps 

(Fig. 3 bottom), the medial part of the arcuate fasciculus runs is a common location for 

lesions. In all controls and patients both arcuate fasciculi could be reconstructed, with the 

exception of the left arcuate fasciculus in 1 patient and the right arcuate fasciculus in 9 

patients.

3.3 Characteristics of patients without successful reconstruction

There was no overlap between patients for whom one or both CSTs could not 

be reconstructed and patients for whom one or both arcuate fasciculi could not be 

reconstructed. This suggests that failure to reconstruct was not purely a result of poor data 

quality. To test whether the patients for whom tract reconstruction failed were characterised 

by deviant clinical parameters, we compared them to the rest of the patients and did not find 

any differences between groups (Supplementary Table 5).

3.4 Testing for bias in the individually reconstructed tracts

We extracted average microstructural parameters from individually segmented tracts and 

from the tract-probability maps that were computed in healthy control data. Average FA and 

MTR were systematically higher, and average RD was systematically lower in individually 

reconstructed tracts than with the probability map-based tracts (Table 3), also illustrated by 

the estimated bias in the Bland-Altman analysis (Supplementary Table 4)). However, the 

extent to which measures from individual and probability-based tracts differed was similar 

in patients and controls, as shown by the non-significant interaction terms Table 3. The non-

significance of the individual statistical tests was further supported by the fact that for which 

group the average bias was stronger in (as indicated by the sign of the t-statistics in the 

respective comparison) was inconsistent between measures and tracts (see Supplementary 

Fig. 6 for boxplots of the bias distributions of the two groups). This indicates that while 

individually reconstructed tracts systematically differ from the tract probability map, this is 

the case for both patients and controls, and therefore cannot be attributed to the presence of 

MS lesions. Statistical comparison between the tract-averaged metrics in patients vs controls 

(Supplementary Table 6) suggest lower FA and higher RD in the tracts of patients than in the 

tracts of healthy controls, with no statistically significant differences in MTR. The statistics 

slightly differed depending on whether the probability-based or individual approach is used 

for the comparison.

3.5 Anatomical correspondence between individually segmented and probability-based 
tracts

We quantified the anatomical overlap between the individually dissected tracts and the 

group probability map with a probability weighted overlap score (see Hua et al. (2008)). 

In both patients and controls, spatial overlap varied between tracts, with median scores 

of around 55% for the CST and of around 35% for the arcuate fasciculus (Fig. 4). The 

individual variability suggested that for some patients only 10% of voxels were shared 

between individual tract mask and probability mask, while for others it was 75%.
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3.6 Correspondence in tract-specific microstructure of individual and probability-based 
approach

We also assessed the agreement between tract-based estimates of microstructural damage 

between the individual and the probability-map approach. Correlations were very high for 

the arcuate fasciculus, ranging from r = .88 (p < .001) to r = .97 (p < .001), and lower for 

CST, ranging from r = .53 (p < .001) to r = .95 (p < .001). Results were similar for patients 

and controls (Fig. 5).

To complement the previous analysis, we also performed Bland-Altman analysis (Altman 

and Bland, 1983; Kuchling et al., 2018) for both tracts and all metrics, collapsing across 

hemispheres. The plots (Supplementary Fig. 7) and values (Supplementary Table 4) again 

illustrate the systematic difference between approaches and shows that the difference 

between the two method lies in the range of 0.05 and 0.13 for FA, between −0.18 x 10−3m2 / 

s and 0.02 x 10−3m2 / s for RD and between 0.01 and 0.04 for MTR. Low to medium 

correlations show that the difference between methods depends on the magnitude to some 

extent.

4 Discussion

In this work we revisited the challenges of tracking through pathological tissue. We 

showed that the presence of MS lesions affects fibre orientation reconstruction algorithms 

differentially: during tensor- and dRL-based tracking, streamlines are more likely to stop, 

while CSD is more likely to produce spurious streamlines. Even though the CST and arcuate 

fasciculi run through regions that are frequently affected by MS lesions, we were able to 

successfully perform individual tract segmentation in a large patient cohort. The segmented 

tracts did not show a systematic bias in the estimation of microstructural integrity, when 

compared to a frequently employed approach based on tract probability maps. While tract-

averaged microstructural measures showed medium to high correlations between the two 

approaches, the anatomical correspondence was limited, highlighting the potential benefits 

of individual tract reconstruction.

4.1 MS pathology affects fibre orientation reconstruction algorithms differentially

To compare fibre orientation reconstruction algorithms under controlled conditions, we 

simulated tissue substrates that varied in the number of fibres they contained, providing a 

simplified model of damage in MS. Lesions are characterised by a variety of pathological 

processes, with fibre loss likely being the change that is the most significant for 

tractography. Fibre loss could lower the amplitude of the FOD peaks, which are followed 

during streamlining. At the same time, the associated increase in extracellular water is 

likely to impact on the diffusion profile, which could further complicate the identification 

of peaks. Indeed, in our simulated substrates with intracellular volume fractions below 10%, 

none of the algorithms could reliably identify the true underlying fibre orientations. With 

intracellular volume fractions above 10%, all three algorithms were consistently successful, 

with the exception of the tensor-based approach under crossing fibre conditions due to its 

inherent constraint that it can only ever reconstruct one peak. The main difference between 

CSD and dRL, in both the single and crossing fibre scenarios, was the false positive 
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rate. With the specified FOD amplitude thresholds, only CSD, but not dRL, produced a 

substantial amount of spurious peaks in substrates with lower fibre content and low FA. This 

could be a result of a mismatch between responses in high-FA calibration tissue and the 

target responses (Parker et al., 2013b).

The findings from the simulations were largely supported by in vivo data from MS lesions. 

DRL seemed to be more conservative than CSD, with an increase in streamline termination 

in lesions due to low FOD amplitudes. Premature termination was most pronounced in 

T1-hypointense lesions, presumably due to the particularly high fibre loss found in this 

lesion type (Sahraian et al., 2010). dRL has previously been shown to perform worse in 

tissue with crossing fibres and low FA (Parker et al., 2013b), which could be the reason for 

the increased streamline terminations in lesions. Even though CSD may be able to resolve 

fibres better under these conditions (Parker et al., 2013b), our results suggest that it may also 

be more sensitive to the increased isotropic diffusion in lesions than dRL, producing false 

positive peaks and consequently spurious streamlines. Even though CSD’s performance at 

resolving crossing fibres has been reported to be better for data obtained at high b-values 

(Jeurissen et al., 2013), in our case, increasing the b-value during the simulation led to 

an even higher false positive rate in CSD. It is possible that the FOD threshold for 

peak detection, which we based on previous studies (Jeurissen et al., 2013; Parker et al., 

2013b) is not universally optimal for all types of data, SNRs, diffusion-weightings etc. In 

our case, increasing the FOD threshold from 0.1 to 0.3 reduced the false positives rate 

during the simulations, but did not change the behaviour of the algorithm in vivo. It is 

likely that optimal tractography parameters for simulated data are not the same optimal 

parameters for in vivo data, as simulations are often simplified, e.g. in our case the fibres 

in the simulated substrates lacked orientation dispersion. Systematic and thorough parameter 

tuning in pathological in vivo data could potentially help to optimise the use of CSD in MS 

lesions, but was out of scope of this study.

Choosing the algorithm for tract segmentation in vivo, we considered the following: Firstly, 

dRL seems to be the more conservative algorithm, which leads to streamline termination in 

lesions with high fibre loss, potentially producing tract reconstructions that at least partially 

omit lesions. CSD produces more streamlines in lesions, but a considerable number of 

them may be spurious, which also hinders the correct reconstruction of tracts that pass 

through lesions. The second consideration was theoretical. In contrast to dRL, CSD requires 

the response function used for the deconvolution to be calibrated from voxels with single 

underlying fibre populations, which are generally identified through their high FA. In MS, 

high FA voxels are likely voxels with preserved white matter integrity. However, the single 

fibre response function is then applied to the lesional tissue, which could lead to problems 

with FOD reconstruction and tracking in lesional tissue. Estimating a separate ‘pathological’ 

single fibre response function from the average response in lesioned voxels is unlikely 

a sensible alternative, as lesional tissue is highly heterogeneous. In comparison to CSD, 

dRL is more robust to miscalibrations of the single fibre response function (Parker et al., 

2013b). For this reason, for the purpose of this paper, we performed the in vivo whole-brain 

tractography in MS using dRL.
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4.2 Fibre tracking in MS allows to reconstruct tracts that go through areas with high 
lesion probability

Even though the CSTs and arcuate fasciculi pass through white matter regions that are 

frequently affected by lesions, we successfully segmented these tracts in individual brains 

from a large cohort of MS patients. A previously introduced automated tract extraction 

algorithm made this a feasible endeavour (Parker et al., 2013). Unlike the automated 

approach using tract probability maps (Reich et al., 2010), this method learns the shape and 

approximate location of a tract from training data and uses the resulting model to identify 

and segment tracts from whole-brain tracto-grams, obtained with the same tractography 

pipeline as in the training data. We found that the automated approach produces tracts that 

are realistic with regard to their shapes and anatomical location and that show high spatial 

overlap with manually segmented tracts. In all our spatial agreement analyses, for some 

individuals the spatial overlap between tracts obtained through different methods was low. 

This suggests that even when standard manual segmentation protocols are robust in most 

cases, the process is not completely objective and there is still room for error when drawing 

anatomically-defined waypoints. The advantage of the automatic segmentation tool we used 

here is its robustness to day-to-day variability of the rater’s performance and its feasibility 

for individual tract segmentations in large cohorts. It should be noted that the automatic tract 

segmentation is still affected by some subjectivity, as it would still capture systematic biases 

in the rater’s segmentations that were used to create the shape models.

An obvious reason to exert caution about individual tract segmentation in MS, even 

when done in an automated manner, is that, if lesions or otherwise damaged parts of 

the tract are left out by the tracking algorithm, then there would be a systematic bias 

in tract-averaged micro-structural parameters towards values from healthier tissue. We 

found that individually segmented tracts show higher FA, lower RD and higher MTR than 

when employing probability-based tract masks, therefore, more intact microstructure in 

individually segmented tracts. This is not a surprising result, as the tractography algorithm 

will preferentially produce streamlines in voxels with high white matter and fibre density. 

In contrast, the probability-map approach considers all voxels in the probability map, 

independent on the underlying white matter in an individual patient. However, importantly, 

the reported systematic difference between individual and probability-map based tracts we 

found was comparable between patients and controls. This finding suggests that there is no 

additional disease-related bias in the individual tract segmentations. While the simulation 

and tissue comparison results suggest that the fibre orientation reconstruction algorithms 

could further be optimised for tracking through lesions, our tract segmentation results 

suggest that dRL may be a promising method for tractography in MS.

4.2.1 The anatomical correspondence of individual and probability-based approach is 
modest

Previous studies have suggested using a probability-based approach of investigating 

microstructure in specific white matter tracts in MS. Here, we showed that the spatial 

overlap between tract probability maps obtained from healthy controls, and individually 

segmented tracts of individuals is modest, with averages ranging from 35% for the right 

arcuate fasciculus to 60% for the right CST, with similar results for patients and controls. 
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The stronger agreement for the CST suggests that there may be more individual variability 

in tract shape and localisation in the arcuate fasciculus. In both cases, the variability in 

individual tracts is likely to be partially also a result of the normalisation of individual brains 

to MNI space, which does not necessarily align tracts within the homogeneously appearing 

white matter.

Other methodological factors are likely to play a role as well. Even though the anatomical 

correspondence between individual and probability-based approach was lower than the 

correspondence between manual and automatic segmentations and the correspondence 

between manual segmentations of different operators, latter methodological differences 

also affected the tract anatomy. Without ground truth data available, it is difficult to 

conclude which methods give the most accurate tract segmentations (Schilling et al., 2019). 

Evaluating the accuracy of tractography in MS brains for which the ground truth is known is 

unlikely to ever be possible. Here, we show that tractography methods developed for healthy 

tissue can be used to anatomically segment tracts without introducing patient-specific biases. 

The biases that may be inherent to the tractography method itself will still be there and will 

also affect the tract probability maps that are used in atlas-based approaches.

4.2.2 The correlation of tract-specific microstructure in individually segmented vs 
probability-based tracts is high

Despite the difference in spatial location and systematic difference in average 

microstructural parameters, the correlation of the microstructural information between the 

individual and probability-map based approaches was high, particularly for the arcuate 

fasciculus. This indicates a large overlap in the individual variability that is captured 

by the two approaches, not necessarily, that the measurements are interchangeable in all 

applications (Altman and Bland, 1983). Correlations between microstructural parameters 

from individually segmented tracts vs atlas-based estimations have previously been reported 

to be tract-dependent (Reich et al., 2010). Some of our correlations were also lower, e.g. 

only 25% between the two approaches were shared in RD measures of the right CST. 

Low correlations for tensor-based measures, such as RD, could be influenced by their 

sensitivity to the macroscopic tract shape and individual differences in tract morphometry 

(De Santis et al., 2014). This hypothesis is corroborated by the result that the correlation 

between individual and probability-based approach in the CST was highest for MTR, a 

microstructural metric that does not show this sensitivity to tract morphometry.

Individual tract segmentation may not bring large benefits compared to the probability-based 

approach, when average microstructural parameters of a tract as a whole are of interest. This 

can be the case for studies looking at global effects within specific tracts (e.g. Bonzano et 

al. (2014)). Here, averaging microstructural measures should be less noisy and provide more 

statistical power and spatial accuracy than voxel-based approaches. However, the advantage 

of individual tract segmentation is that it does not limit the analysis to tract-specific average 

measures. Other features of the tract can also be studied, such as tract shape, tract-specific 

atrophy (Wang et al., 2018) or the spatial variation along a tract (Jones et al., 2005; Yeatman 

et al., 2012). Very precise anatomical assignment of lesions to specific white matter specific 

tracts could also open doors for clinical questions, for example on how the appearance or 
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disappearance of lesions in specific tracts is associated with the presence or resolution of 

specific symptoms or with potential secondary damage, such as pathology in the cortical 

regions that are directly connected by a tract.

4.2.3 Anatomical generalisability

In this work, we focussed on the CST and arcuate fasciculus, because they are comparatively 

easy to reconstruct and pass areas of high lesion probability, which challenges the tracking 

predominantly through challenging the FOD estimation. This allowed us to focus on the 

potential problem of MS lesions for the reconstruction of these tracts. To what extent the 

results generalise to other tracts is likely to depend on the nature of the tract, as other 

tracts come with other challenges. An example is the optic radiation, which is also a tract 

often affected by MS (Kuchling et al., 2018), and hard to reconstruct due to the Meyer’s 

loop (Chamberland et al., 2018). Here, recent developments in tractography also aim to 

improve the tracking process itself rather than the FOD estimation, may come in hand, 

such as anatomically constrained tractography (Horbruegger et al., 2019) and microstructure 

informed tractography (Schurr et al., 2018). To what extent these methods are beneficial in 

MS is also starting to be explored (Horbruegger et al., 2019; Kuchling et al., 2018; Schurr et 

al., 2018).

While the strength of tractography lies in its robustness to individual differences in tract 

size and shape, successful delineation depends on the employed tractography algorithm 

and parameters, and the anatomically accurate placement of waypoint of interest gates. 

Therefore, a widely used alternative for studying group differences or brain-behaviour 

correlations is the off-the-shelf whole-brain analyses tool tract-based-spatial-statistics 

(TBSS; Smith et al. (2006)). Despite its name, TBSS does not reconstruct individual 

tracts, but instead aligns participants’ FA maps and produces a skeleton, characterised by 

high average FA values. Voxel-wise group statistics are calculated within the skeleton and 

interpreted consulting WM atlases. TBSS has been shown to be sensitive to picking up 

damage in specific tracts in MS (Kuchling et al., 2018), however, the anatomical accuracy of 

TBSS results can be limited even in healthy individuals (Bach et al., 2014). To what extent 

the anatomical accuracy of TBSS may be limited by the effect of MS lesions on the skeleton 

projection remains to be investigated.

4.2.4 Limitations and future directions

Under the conditions of this study, CSD produced more spurious peaks than the other 

algorithms. However, this is not to say that the algorithm does not have benefits which 

could aid tractography in MS patients. For example, CSD has previously been shown to 

outperform dRL when resolving crossing fibres under low FA conditions (Parker et al., 

2013b). We only assessed the performance of the algorithms in the context of tractography, 

where not all FOD peaks are reconstructed and considered simultaneously. Instead, at each 

point along the streamlining process, the closest detected peak to the current streamline 

direction is followed, assuming that the tangent to the streamline minimally subtends the 

best estimate of fibre orientation. To mimic the tractography process in our simulation, 

the 45° angle threshold employed during streamlining was also employed when assessing 

the proportion of successfully detected peaks. This is a comparatively lenient threshold 
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for assessing peak detection accuracy, with an additional measure of dispersion confirming 

orientational agreement between the detected peaks. While under these specific conditions, 

CSD produced a large number of false positives, at this point we are not in a position to 

comment of the suitability of CSD for other types of analyses, such as fixel-based analysis 

(Raffelt et al., 2015).

We employed standard tractography protocols that have been optimised in healthy tissue, 

and that are compatible with clinically feasible diffusion MRI acquisitions. It is likely that 

optimising tractography for MS could benefit from fine-tuning of some of the parameters for 

pathological tissue, and also from data with higher angular resolution and multiple diffusion 

weightings. For example, the sensitivity of CSD to the increase in isotropic diffusion in 

lesions may be partly counteracted using multi-shell - CSD, which considers several tissue 

compartments (Jeurissen et al., 2014). Transitioning to multi-shell acquisitions could allow 

the benefits of such advanced deconvolution methods to be explored.

Simulations produced a simplified version of pathology, and other factors such as 

permeability, could also be considered to make the scenario more realistic (e.g. Nedjati-

Gilani et al. (2017)). Ideally, also fibre orientation dispersion is introduced, which is 

currently not possible with the Camino software package used in the current study.

The probability-based approach depends on inter-subject co-registration of the images by 

normalising them to a common reference space. To do this, we chose T1-weighted based 

co-registration, as this is most successful for aligning pathological brains (Avants et al., 

2008), and to make our results comparable to previous studies (Reich et al., 2010). However, 

in future studies, this normalisation step could be further improved, e.g. in the form of 

multi-modal registration by white matter parametric maps, such as FA maps.

Last but not least, while comparable to similar recent methodological studies (e.g. 

Horbruegger et al. (2019); Kuchling et al. (2018)), the sample size of our healthy control 

group small compared to the patient group, posing some limitation with regard to statistical 

power in some of the analyses.

4.2.5 Conclusions

Accurate anatomical assignment of damage to specific white matter tracts is important for 

clinical research. In MS research, tractography-based anatomical segmentation in individual 

patients is rarely performed, with probability-based approaches often being the method 

of choice to avoid potential effects of MS lesions on tractography algorithms. We show 

that MS pathology indeed affects the fibre orientation reconstruction that is done during 

tractography, with different algorithms being affected differently - lesions led to an increase 

in streamline interruptions with dRL, and an increased number of spurious streamlines 

with CSD. Nevertheless, fibre tracking through MS lesions is possible, and can even be 

used to reconstruct tracts that go through areas with high lesion probability. The resulting 

tracts do not seem to systematically omit lesional tissue. A problem with tractography in 

general is that the anatomical localisation of the tract does depend on the specific method 

used to segment individual tracts. The anatomical overlap between individual tracts and 

tract probability methods is quite low, however, this may not be an issue if the aim of the 
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research is to obtain tract-averaged microstructural parameters. For studying tract shapes, 

tract-specific atrophy and along-tract profiles, individually segmenting tracts is necessary. 

We showed that this is feasible, even in large scale clinical studies. Further improvements of 

the algorithms to maximize anatomical accuracy could lead to powerful tools to investigate 

diagnostic and prognostic markers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Comparison of the three fibre orientation reconstruction algorithms in simulated data.
Simulated substrates varied in their intracellular volume fraction (ICFV). The parallel 

cylinders in each substrate were aligned with the z-axis (single fibre population), or with 

the z- as well as the y-axis (crossing fibre populations). A: For each approach (tensor-based, 

dRL and CSD), we calculated the percentage of all voxels within each substrate type for 

which the ‘true’ underlying fibre configuration peak(s) could be detected. As a control, 

we also calculated this percentage for ‘false’ peaks (orthogonal to the true peak(s)). In 

each case, the left-most plot shows the FA for each substrate type. B: Dispersion across 
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all detected peaks of a substrate type was calculated. Dispersion was high across wrongly 

detected peaks, while for substrates with higher intracellular volume fraction, the true 

detected peaks by dRL and CSD consistently showed dispersion of < .15.
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Fig. 2. Example for fibre orientation reconstruction in a patient with severe white matter 
damage.
Left: an axial slice of the T1-weighted scan of an MS patient is shown, highlighting an area 

around the posterior corona radiata that is affected by T1-hypointense lesional pathology. 

Right: Voxel-wise tensor (top) and FODs (middle: CSD; bottom: dRL) are shown in this 

area, which includes normal appearing white matter, a T1-hypointense white matter lesion 

and CSF in the lateral ventricle. The increased isotropic diffusion that is found in the most 

hypointense voxels of the lesion is reflected by tensor and FOD shapes that are comparable 
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to the shapes found in CSF. The less hypointense voxels of the lesion show FOD shapes 

comparable to normal appearing white matter, but decreased in peak amplitude.
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Fig. 3. Tract probability.
Tract probability maps for patients (red-yellow) are overlaid with lesion probability maps 

(blue-lightblue). Data from 123 to 130 patients contributed to the map for the left and right 

CST, respectively, and data from 130 to 122 patients contributed to the map for the left and 

right Arc, respectively. The lesion probability map is the same as reported in Lipp et al. 

(2019). Both maps are thresholded between 5 and 50%. Maps for the CST (top) and Arc 

(bottom) show that areas of high lesion probability overlap with the tracts. This suggests 

that the investigated tracts go through areas with increased likelihood of lesions, potentially 

affecting the tracking. R indicates the right hemisphere. Acronyms: CST: cortico-spinal 

tract, Arc: arcuate fasciculus.
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Fig. 4. Anatomical overlap.
An overlap score between the tract probability map and the individual tract mask (registered 

to MNI space) were calculated. Each time, boxplots for patients (red) and controls (blue) are 

presented for each tract. Mean ± SD of the weighted Dice coefficients (converted to %) are 

45±14 (MS) and 55±13 (HC) for the left CST, 57±8 (MS) and 60±6 (HC) for the right CST, 

45±8 (MS) and 36±8 (HC) for the left Arc, and 32±9 (MS) and 35±8 (HC) for the right Arc. 

Data from 123 to 130 patients and 19 controls contributed to the plot for the left and right 

CST, respectively, and data from 130 to 122 patients and 19 controls contributed to the map 

for the left and right Arc, respectively. Acronyms: l: left, r: right, CST: cortico-spinal tract, 

Arc: arcuate fasciculus.
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Fig. 5. Correlations between tract-specific microstructure from individually segmented and 
probability-based tracts.
For each microstructural metric (top row: FA, middle row: RD and bottom row: MTR) 

and tract (CST: left column, ARC: right column), the correlation between individual 

approach and probability-based approach is shown. Data were collapsed across hemispheres 

for plotting. Pearson correlation coefficients are provided for each group and hemisphere 

separately. MS data points are plotted in red, HC data points in blue. Data from 123 to 

130 patients and 19 controls contributed to the plot for the left and right CST, respectively, 

and data from 130 to 122 patients and 19 controls contributed to the plot for the left and 

right Arc, respectively. **p < .0001. Acronyms: CST: cortico-spinal tract, Arc: arcuate 

fasciculus.
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Table 1
Demographic and clinical characteristics of the cohorts investigated.

Characteristics are provided for all multiple sclerosis patients (MS), as well as the subgroup of patients 

(Subgroup MS) matched to and healthy controls (HC). Unless otherwise indicated, descriptive statistics 

provided are means and standard deviations (SD). For statistical comparison between the two cohorts (All 

MS vs HC) and the sex- and age-matched groups (Subgroup MS vs HC), Chi-square tests were computed 

for categorical variables, Kruskall-Wallis tests for skewed variables (9 hole peg test and timed 25 foot 

walk), and unpaired t-tests for the rest. P values for group differences are provided. Acronyms: RR = 

Relapsing-remitting, P = progressive MS (includes primary and secondary progressive patients), EDSS = 

Extended Disability Status Scale, MSIS-29 = Multiple Sclerosis Impact Scale 29 items, 9-HPT: 9 hole peg 

test, T25-FW: timed 25 foot walk, PASAT = Paced Auditory Serial Addition Test (3 and 2 s version), DMT 

= disease-modifying treatment, BDI = Beck Depression Inventory, MFIS = Modified Fatigue Impact Scale. 

Normalized brain and grey matter volume was calculated using SIENAX (Smith et al., 2002).

Variable All MS Subgroup MS HC All MS vs HC 
(p)

Subgroup MS vs 
HC (p)

N 131 29 19

Age (years) 44.5 ± 9.4 39.2 ± 11.3 40.5 ± 11.0 .0929 .6954

Sex (F/M) 85/46 17/12 12/7 .8830 .7533

Education (years) 15.6 ± 3.9 15.9 ± 3.9 20.0 ± 4.8 < .0001 .0021

Disease duration (years) 12.4 ± 7.5 7.6 ± 4.3 – –

Disease course (RR/P) 105/26 29/0 – – –

EDSS score (median/iqr) 4.0 ± 1.5 4.0 ± 2.0 – –

MSIS-29 scale 65.6 ± 29.5 48.3 ± 16.9 – –

9-HPT (right) in sec. (across 2 trials) 
median/iqr 25.4 ± 11.7 21.9 ± 3.6 18.7 ± 2.2 < .0001 .0012

T25-FW in sec. (across 2 trials) median/iqr 8.5 ± 9.8 5.3 ± 1.4 4.3 ± 0.9 .0669 .0071

PASAT 3s 39.9 ± 14.0 44.5 ± 12.2 51.0 ± 6.4 .0009 .0379

PASAT 2s 27.5 ± 11.6 31.1 ± 8.6 33.9 ± 7.1 .0195 .2424

DMT (Yes/No) 43/88 13/16 – – –

Depression (BDI) 12.5 ± 10.4 8.2 ± 8.6 4.6 ± 5.1 .0016 .1123

Fatigue (MFIS) 39.6 ± 20.7 27.7 ± 19.3 21.1 ± 13.3 .0003 .2093

Normalized GM volume (cm3) 594.4 ± 63.2 613.1 ± 47.9 645.8 ± 39.9 .0010 .0176

Normalized whole brain volume (cm3) 1173.5 ± 115.9 1196.4 ± 109.5 1230.0 ± 87.0 .0432 .2665

T2-hyperintense lesion volume (cm3) 4.2 ± 4.6 2.8 ± 2.4 – – –
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Table 2
Comparison of the three fibre orientation reconstruction algorithms in vivo.

For each algorithm (tensor, dRL, CSD) and each tissue type (Ctrl, NAWM, T2L, T1l), we calculated voxel-

wise averages of the following parameters: the number of streamlines found in a voxel, the average FA/FOD 

amplitude across all streamlines found in a voxel, the number of streamline terminations due to the amplitude 

threshold in a voxel, and the number of streamline terminations due to the angle threshold in a voxel. The 

mean ± SD of these measures across healthy controls (Ctrl; N = 19) and patients (NAWM, T2L, T1L; N = 

29 of the MS subgroup) are reported. The values across different tissues types were statistically compared 

(unpaired t-test between Ctrl vs NAWM tissue; paired t-tests for T2L vs NAWM, and T1L vs T2L) and t and p 
statistics are provided for each comparison. Acronyms: Ctrl: Control tissue, NAWM: normal appearing white 

matter, T2L: T2-weighted white matter hyperintense lesional tissue without T1-weighted hypointensity, T1L: 

T1-weighted white matter hypointense lesional tissue with corresponding T2-weighted hyperintensity.

Ctrl NAWM T2L T1L NAWM vs Ctrl T2L vs NAWM T1L vs T2L

Average number of streamlines per voxel

Tensor 32.31 ± 3.35 30.66 ± 4.23 33.48 ± 6.72 30.77 ± 9.52 t = −1.43, p = .16 t = 2.64, p = .01 t = −1.55, p = .13

dRL 38.14 ± 5.91 39.40 ± 5.09 42.68 ± 8.61 40.41 ± 11.25 t = 0.79, p = .44 t = 2.6, p = .02 t = −1.3, p = .20

CSD 63.37 ± 10.22 66.12 ± 8.77 70.70 ± 13.18 70.69 ± 18.86 t = 0.99, p = .33 t = 2.4, p = .02 t = −0.01, p = .996

Average peak amplitude (FOD amplitude/FA) of all streamlines per voxel

Tensor 0.71 ± 0.03 0.68 ± 0.03 0.67 ± 0.04 0.64 ± 0.06 t = −3.1, p = .003 t = −1.1, p = .29 t = −2.4, p = .03

dRL 0.22 ± 0.02 0.21 ± 0.02 0.21 ± 0.02 0.20 ± 0.03 t = −1.1, p = .29 t = −0.2, p = .99 t = −2.7, p = .01

CSD 0.42 ± 0.04 0.43 ± 0.05 0.43 ± 0.06 0.42 ± 0.06 t = 0.78, p = .44 t = 0.64, p = .53 t = −2.2, p = .04

Average number of streamline terminations due to amplitude threshold

Tensor 0.32 ± 0.01 0.24 ± 0.04 0.51 ± 0.26 0.97 ± 0.47 t = −8.7, p < .0001 t = 5.8, p < .0001 t = 8.5, p < .0001

dRL 0.23 ± 0.01 0.25 ± 0.02 0.36 ± 0.11 0.70 ± 0.33 t = 5.9, p < .0001 t = 5.2, p < .0001 t = 6.9, p < .0001

CSD 0.97 ± 0.03 0.87 ± 0.09 0.81 ± 0.19 0.80 ± 0.28 t = −4.7, p < .0001 t = −1.7, p = .10 t = −0.38, p = .71

Average number of streamline terminations per voxel due to angle threshold

Tensor 0.10 ± 0.01 0.13 ± 0.02 0.16 ± 0.07 0.08 ± 0.07 t = 6.4, p < .0001 t = 2.0, p = .05 t = −6.4, p < .0001

dRL 0.58 ± 0.02 0.71 ± 0.08 0.74 ± 0.20 0.53 ± 0.23 t = 7.2, p < .0001 t = 0.86, p = .39 t = −5.3, p < .0001

CSD 1.37 ± 0.09 1.41 ± 0.12 1.76 ± 0.59 2.04 ± 0.76 t = 1.1, p = .26 t = 3.2, p < .01 t = 2.9, p = .0074
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Table 3
Systematic differences between individually segmented and probability-based tracts.

For each patient and control group and for each tract, Mean ± SD microstructural metrics (FA, RD and 

MTR) were extracted from the probability-based (Prob.), as well as for the individually dissected tract mask. 

To check for systematic differences between individual and probability-based approaches, a paired t-test 

was calculated for each tract - t and p statistics are reported. To test whether a systematic difference is 

likely the result of a bias towards the healthy part of the tract in the individual dissections, the difference 

measure was compared between patients and controls. t and p values are reported for this interaction. Boxplots 

for the difference measures are shown in Supplementary Fig. 6. Data from 123 to 130 patients and 19 

controls contributed to the analysis for the left and right CST, and data from 130 to 122 patients and 19 

controls contributed to the analysis for the left and right Arc, respectively. Acronyms: l: left, r: right, CST: 

cortico-spinal tract, Arc: arcuate fasciculus, FA = fractional anisotropy, RD = radial diffusivity (in 10−3 m2/s), 

MTR = magnetisation transfer ratio.

  MS HC  

FA

Tract Prob Individual Prob vs Individual Prob Individual Prob vs Individual Interaction

CST1 0.42 ± 0.02 0.51 ± 0.04 t = -33.01, p < 0.0001 0.42 ± 0.02 0.50 ± 0.02 t = -20.13, p < .0001 t = -0.02, p = .98

CSTr 0.42 ± 0.02 0.51 ± 0.03 t = -55.76, p < .0001 0.42 ± 0.01 0.51 ± 0.01 t = -22.16, p < .0001 t = 0.6l, p = .54

ARC1 0.31 ± 0.02 0.41 ± 0.03 t = -75.80, p < .0001 0.32 ± 0.02 0.42 ± 0.02 t = -35.42, p < .0001 t = -0.97, p = .33

ARCr 0.32 ± 0.02 0.40 ± 0.03 t = -52.59, p < .0001 0.34 ± 0.01 0.41 ± 0.02 t = -18.80, p < .0001 t = -1.72, p = .09

RD (in 10-3 m2/s)

Tract Prob Individual Prob vs Individual Prob Individual Prob vs Individual Interaction

CST1 0.65 ± 0.05 0.58 ± 0.06 t = 15.48, p < .0001 0.64 ± 0.04 0.56 ± 0.03 t = 7.79, p < .0001 t = -0.43, p = .67

CSTr 0.66 ± 0.05 0.58 ± 0.04 t = 18.62, p < .0001 0.65 ± 0.04 0.55 ± 0.02 t = 9.15, p< .0001 t = -1.48, p = .14

ARC1 0.71 ± 0.05 0.61 ± 0.06 t = 46.14, p < .0001 0.66 ± 0.02 0.57 ± 0.03 t = 24.70, p< .0001 t = 0.74, p = .46

ARCr 0.68 ± 0.05 0.61 ± 0.06 t = 34.93, p < .0001 0.64 ± 0.02 0.57 ± 0.03 t= 17.13, p < .0001 t = 0.75, p = .46

MTR

Tract Prob Individual Prob vs Individual Prob Individual Prob vs Individual Interaction

CST1 0.40 ± 0.01 0.42 ± 0.02 t = -25.61, p < .0001 0.40 ± 0.01 0.42 ± 0.01 t = -12.08, p < .0001 y = 0.92, p = .34

CSTr 0.39 ± 0.01 0.42 ± 0.01 t = -38.68, p < .0001 0.40 ± 0.02 0.42 ± 0.01 t = -16.15, p < .0001 t= 1.91, p = .06

ARC1 0.39 ± 0.02 0.42 ± 0.02 t = -54.32, p < .0001 0.40 ± 0.02 0.42 ± 0.02 t = -35.46, p < .0001 t= 1.02, p = .31

ARCr 0.39 ± 0.02 0.41 ± 0.02 t = -33.96, p < .0001 0.40 ± 0.02 0.42 ± 0.02 t = -19.15, p<.0001 t = l.72, p = .09
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