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Snmli'nary 
To determine events that transpire during the earliest stages of human T cell development, we 
have studied fetal tissues before (7 wk), during (8.2 wk), and after (9.5 wk to birth) colonization 
of the fetal thymic rudiment with hematopoietic stem cells. Calculation of the approximate volumes 
of the 7- and 8.2-wk thymuses revealed a 35-fold increase in thymic volumes during this time, 
with 7-wk thymus height of 160 gM and volume of 0.008 mm 3, and 8.2-wk thymus height 
of 1044 gM and volume of 0.296 mm 3. Human thymocytes in the 8.2-wk thymus were 
CD4+CD8o~ + and cytoplasmic CD3e+cCD38+CD8fl - and CD3~'-. Only 5% of 8-wk thymo- 
cytes were T cell receptor (TCR)-fl +, <0.1% were TCR-3, +, and none reacted with mono- 
clonal antibodies against TCR-& During the first 16 wk of gestation, we observed developmen- 
tally regulated expression of CD2 and CD8fl (appearing at 9.5 wk), CDla,b, and c molecules 
(CDlb, then CDlc, then CDla), TCR molecules (TCR-fl, then TCR-/$), CD45RA and CD45RO 
isoforms, CD28 (10 wk), CD3~" (12-13 wk), and CD6 (12.75 wk). Whereas CD2 was not ex- 
pressed at the time of initiation of thymic lymphopoiesis, a second CD58 ligand, CD48, was 
expressed at 8.2 wk, suggesting a role for CD48 early in thymic development. Taken together, 
these data define sequential phenotypic and morphologic changes that occur in human thymus 
coincident with thymus colonization by hematopoietic stem cells and provide insight into the 
molecules that are involved in the earliest stages of human T cell development. 

S tudy of the earliest stages of human T cell develop- 
ment provides important information regarding the mol- 

ecules involved in the complex series of events that transpire 
during establishment of the T cell repertoire. Knowledge of 
the sequence of expression of developmentally regulated T 
cell functional molecules can provide insight into mechanisms 
of normal T cell maturation, and can provide information 
necessary to form hypotheses regarding molecular mechanisms 
of thymus growth. We must understand the stages of normal 
T cell development to devise successful strategies for immune 
reconstitution of a variety of acquired and congenital T cell 
immune deficiency syndromes. 

Whereas enormous progress has been made in our under- 
standing of the earliest stages of murine (for review see refer- 
ence 1) and avian (for review see reference 2) thymus devel- 
opment, the sequence of events at the time of colonization 
of the human thymus with hematopoietic stem cells has not 
been studied. We have previously studied human fetal thymuses 
at 7 wk, before lymphoid colonization of the thymus (3), 
and at 9.5 wk of gestation, 1.5 wk after hematopoietic stem 
cell migration to the thymus (3-5). Our prior efforts to study 
lymphoid fetal thymus at earlier than 9.5 wk of gestational 

age were thwarted by lack of availability of thymus tissues 
at the time of colonization of the thymus, the small size of 
the human thymus at 8 wk ('~1 mm • i mm x 0.5 mm), 
and the frequent contamination of first trimester fetal tissue 
with placental tissue containing CD7 +, decidual granular 
lymphocytes of NK lineage (6, 7). Thus, the phenotypic and 
morphologic events that occur at the initiation of lymphopoi- 
esis in the human thymus have not been observed. In this 
study, we have definitively identified the human thymus in 
fetal thorax at 8.2 wk of gestation, defined its three-dimen- 
sional structure, and determined the reactivity of 64 mAbs 
with this tissue, as well as with fetal thymuses at 9.5, 10, 
12.75, 13, and 16 wk of gestational age. Our data document 
the extraordinary thymus growth that occurs at the time of 
stem cell colonization of the thymus and demonstrate de- 
velopmentally regulated expression of a large series of lym- 
phoid and thymic microenvironment molecules. 

Materials and Methods 
Thymic Tissue. Fetal tissues were obtained as discarded mate- 

rial from the Pathology Department, Duke University Medical 
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Center, from either elective first trimester abortions or at the time 
of surgery for ectopic pregnancy as described (3-5). Gestational 
age, determined by crown-rump length, menstrual records when 
available, and fetal part morphology, ranged from 7 to 34 wk of 
gestation (3-5). Fetal tissues 50 (7 wk; reference 3) and 58 (8.2 
wk) were serially sectioned through the thorax and neck area in 
4-#M sections and hematoxylin and eosin (H&E)l-stained sections 
were prepared every 40 #M (50; reference 3) or 80 #M (58). In 
these tissues, the thymus was identified as a keratin-containing struc- 
ture in the neck lateral to the trachea and esophagus (7 wk; refer- 
ence 3) or in the upper mediastinum anterior to the trachea and 
great vessels (8.2 wk; reference 8). 

Computer Reconstruction of 7- and 8.2-wk Fetal Thymuses. Three- 
dimensional reconstruction of thymus 50 (7 wk) and thymus 58 
(8.2 wk) were performed using the PC3D three-dimensional recon- 
struction program, version 5.0 Clandel Scientific, Corte Madera, 
CA). For 8.2-wk fetal thymus 58, thymus perimeters were traced 
from 14 sections. 

Monoclonal and Polyclonal Antibodies. Monoclonal and polyclonal 
antibodies used in this study and their sources are listed in Table 
1. Each antibody was used at saturating concentrations. 

Immunofluorescence Assays. Indirect immunofluorescence (IF) 
assays were performed on acetone-fixed 4-#M tissue sections as de- 
scribed (3, 4) by use of FITC-conjugated goat anti-mouse Ig (Kir- 
kegaard and Perry Labs., Inc., Gaithersburg, MD). Indirect IF assays 
on cell suspensions were performed as described (3-5) and analyzed 
on either a FACS | Star Plus (Becton Dickinson & Co., Mountain 
View, CA) or profile flow cytometer (Coulter Corp., Hialeah, FL). 
IF assays were usually performed in duplicate, and select mAb IF 
assays were repeated three times. 

Results 

Computer-assisted Three-dimensional Reconstruction of Fetal 
Thymus 50 Before Thymic Colonization and Fetal Thymus 58 
at the Time of Thymic Colonization. Fetal thymus 50 at 7 
wk of gestation (before lymphoid colonization) was devoid 
of CD45 § cells and consisted of only two spherical thymic 
rudiments, each '~160 x 180 x 200 #M, in the lateral neck 
areas (3). Only four H&E-stained sections were available for 
this tissue; thus, a fully interpretable computerized image could 
not be generated. The calculated total volume (both rudi- 
ments) of nonlymphoid thymus 50 at 7 wk was 0.008 mm 3. 

In contrast, 8.2-wk thymus 58 was filled with CD45 + 
hematopoietic cells, and was 1,044 #M in length, 1,200 #M 
wide, and 480 #M deep. The 8.2-wk right and left thymic 
rudiments were located anterior to the esophagus, trachea, 
and great vessels in the upper thorax (Fig. 1). Computer- 
assisted reconstruction of the 8.2-wk fetal thymus demon- 
strated that the lower lobes of the thymus had fused, whereas 
the right and left upper thymic rudiments remained sepa- 
rate. The right thymic rudiment was a nonlobulated cylinder, 
whereas the left thymic rudiment was just beginning to be- 
come lobulated. Most published images of fetal thymus at 
this stage of development show two elongated cylindrical tubes 

1 Abbreviations used in this paper: c, cytoplasmic; H&E, hematoxylin and 
eosin; ICAM, intercellular adhesion molecule; IF, immunofluorescence; 
s, surface; TdT, terminal deoxynucleotidyl transferase; TE, thymic epithe- 
lial; VLA, very late antigen of activation. 

on each side of the neck, meeting in the middle (9). How- 
ever, analysis of the actual three dimensional structure of the 
8.2-wk thymus demonstrated a globular structure, with the 
right and left lobes beginning to rotate around a central axis 
and intertwine. The calculated volume of 8.2-wk thymus 58 
was 0.296 mm 3. Thus, we estimated that the thymus in- 
creases in volume ~35-fold from 7 wk (nonlymphoid stage) 
to 8.2 wk (after lymphoid colonization). 

Expression of Human T Cell Lineage Molecules During Early 
Thymus Development. The expression of a panel of T cell 
lineage molecules (Table 1) was studied in 8.2-, 9.5-, 10-, 
12.75-, 13-, and 16-wk fetal thymuses (Table 2). Studies in 
thymuses 48 (9.5 wk), 22 (10 wk) and 40 (12.75 wk) have 
been reported previously for some of the molecules studied 
(3-5) and are included in Table 2 for completeness. The new 
and striking findings in this study were (a) lack of expression 
of CD2 at the time of thymic colonization at 8.2 wk; (b) 
lack of expression at 8.2 wk of CD8/3 with expression of 
CD8o~; and (c) sequential expression of CDlb, then CDlc, 
then CDla molecules from 8.2 to 13 wk. Fig. 2 shows lack 
of CD2 and CD8B expression at 8.2 wk, with all 8.2-wk 
thymocytes CD4+CD8ot+CD7+, and CD5 § The finding 
that most thymocytes at this stage were CD4 § CD8 § (double 
positive) was also surprising, since most murine thymocytes 
at the stage analogous to the 8.2-wk human thymus develop- 
ment (11 d) are CD4-CDS-  (10, 11). By 10 wk, all thymo- 
cytes expressed CD8/~, followed by appearance of CDScffj5 + 
and CDSot/~- subsets in the thymic medulla at 12.75 wk 
(Table 2). By 12.75 wk, CDla, -b, and -c expression was similar 
to that seen in postnatal thymus, with the typical CD1 pat- 
tern of all cortex and few medullary cells being CD1 +. 

Expression of CD45 Molecule Isoforms During Early Human 
T Cell Development. It has been suggested that CD45tLA + 
human thymocytes represent the generative thymocyte lin- 
eage destined for positive selection and thymic export, whereas 
CD45RO § thymocytes are destined to undergo negative 
or no selection and die intrathymically (12). We found few 
CD45RA + cells in 8.2- and 9.5-wk thymuses (Fig. 3, B 
and E), whereas in 12.75-wk thymus, a distribution of 
CD45RA § cells similar to postnatal thymus was seen, that 
is, scattered cortical thymocytes were CD45RA § , with 
large clusters of CD45RA + thymocytes in the thymic me- 
dulla (Fig. 3 H). Similarly, by 10-12.75 wk, most thymocytes 
were CD45RO + (Fig. 3 I), raising the possibility of onset 
of thymocyte-negative selection during this period (13, 14). 

Expression of TCR-associated Molecules During Early T Cell 
Development. Data for percentages ofceUs positive for TCR-B, 
TCR-cS, and CD3e in thymuses 48, 22, 5, and 40 have been 
previously reported (3-5). Whereas CD3e and CD3r were 
present in 8.2-wk thymus in most thymocytes (Fig. 4, D and 
E), expression of CD3~" chain was not observed until 10 wk 
(Fig. 4 F and Table 3). By 12.75 wk, most medullary thymo- 
cytes were CD3~ "+ . CD3g" expression gradually increased in 
cortical thymocytes until birth, when CD3~'mAb 2H2 reacted 
with a pattern (cortical thymocytes low positive, medullary 
thymocytes high positive) similar to a reactivity pattern of 
CD3c mAb, Leu 4 (not shown). 
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Table 1. mAbs Used to Study Fetal Tissues 

mAb Specificity Source 

A. McMichael, Institute of Molecular Medicine, John Radcliffe Hospital, 
NA1/34 CDla Oxford, UK 
10DR2 CDla 2nd IWLDA 
NUT CDlb 2nd IWLDA 
4A76 CDlb 2nd IWLDA 
M241 CDlc 2nd IWLDA 
35.1 CD2 J. Hansen, University of Washington, Seattle, WA 
OKTll  CD2 American Type Culture Collection, Rockville, MD 
Leu 4 CD3e R. Evans, University of Rochester, Rochester, NY 
SP34 CD36 C. Terhorst, Harvard University, Boston, MA 
2H2 CD~" P. Anderson, Harvard University, Boston, MA 
Leu 3a CD4 R. Evans, University of Rochester, Rochester, NY 
T101 CD5 2nd IWLDA 
12.1 CD6 P. Martin, University of Washington, Seattle, WA 
3Ale CD7 B. Haynes, Duke University, Durham, NC 
Leu 2a CD8~x R. Evans, University of Rochester, Rochester, NY 
25T8-SH7 CDSfl E. Reinherz, Harvard University, Boston, MA 
TS1/22 CD11a/LFA-1c~ T. Springer, Harvard University, Boston, MA 
MO-1 CD11b/MO-1 R. Todd, University of Michigan, Ann Arbor, MI 
Leu M3 CD14 R. Winchester, Columbia University, NY 
4F7 CD16 P. Anderson, Harvard University, Boston, MA 
TAC CD25 T. Waldmann, National Institutes of Health, Bethesda, MD 
9.3 CD28 P. Martin, University of Washington, Seattle, WA 
KOLT2 CD28 2nd IWLDA 
MY9 CD33 Coulter Corp., Hialeah, FL 
HPCA-1 CD34 Becton Dickinson & Co., Mountain View, CA 
F10-89-4 CD45 J. Fabre, R. Dalchau, University of London, London, UK 
F8-11-13 CD45RA J. Fabre, R. Dalchau, University of London, London, UK 
UCHL-1 CD45RO P. Beverly, University College, Middlesex School of Medicine, London, UK 
6.28 CD48 5th IWLDA 
Mo2PT501 CD48 5th IWLDA 
TS2/7 CD49a/VLA-1 M. Hemler, Harvard University, Boston, MA 
1 2 F 1  CD49b/VLA-2 M. Hemler, Harvard University, Boston, MA 
A3-IIF5 CD49c/VLA-3 5th IWLDA 
B5G10 CD49d/VLA-4 M. Hemler, Harvard University, Boston, MA 
K20 CD29/VLA-B1 A. Bernard, University of Nice, Nice, France 
BQ16 CD49f/VLA-6 5th IWLDA 
RR-1 CD54/ICAM-1 R. Rothlein, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 
TS2/9 CD58/LFA-3 T. Springer, Harvard University, Boston, MA 
H19 CD59 A. Bernard, University of Nice, Nice, France 
5E9 CD71/transferrin receptor B. Haynes, Duke University, Durham, NC 
1 0 F 9  CD99/E2-MIC2 B. Haynes, Duke University, Durham, NC 

flF1 TCR-fl M. Brenner, Harvard University, Boston, MA 

continued 
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Table 1. (continued) 

mAb Specificity Source 

Polyclonal TCR-y 
TlgammaA TCR Vy9 
TCR61 TCR-6 
A13 TCR V61 
BB3 TCR V62 

TCS61 TCR V61-J61 
HAE2a VCAM-1 
ELAM-1 E-selectin 
LAM1.3 L-selectin 
oeVWF VWF 
133 B7-1 
TE-4 TE-4 
TE-3 TE-3 
TE-8 TE-8 
AE-1 Keratin 
12-1/2 HTLV-I p19 and 

46KD keratin 

TE-19 A blood group 
A2B5 GQ gangliosides 
6D5(V2) Vessels 
TE-7 TE-7 
7401 Tissue transglutaminase 

HB15a Dendritic cells 

M. Brenner, Harvard University, Boston, MA 
T. Hercend, Gustave Roussy Institute, Villejiuf, France 
M. Brenner, Harvard University, Boston, MA 
L. Moretta, University of Genoa, Genoa, Italy 
L. Moretta, University of Genoa, Genoa, Italy 
T Cell Sciences Inc., Cambridge, MA 
T. Tedder, Duke University, Durham, NC 
T. Tedder, Duke University, Durham, NC 
T. Tedder, Duke University, Durham, NC 
C. Greenberg, Duke University, Durham, NC 

L. Nadler, Harvard University, Boston, MA 
B. Haynes, Duke University, Durham, NC 
B. Haynes, Duke University, Durham, NC 
B. Haynes, Duke University, Durham, NC 
H. Sun, New York University, New York 

M. Robert-Guroff, National Institutes of Health, Bethesda, MD 
B. Haynes, Duke University, Durham, NC 
G. Eisenbarth, University of Colorado, Denver, CO 
B. Haynes, Duke University, Durham, NC 
B. Haynes, Duke University, Durham, NC 
C. Greenberg, Duke University, Durham, NC 
T. Tedder, Duke University, Durham, NC 

IWLDA, International Workshop on Leukocyte Differentiation Antigen. 

Figure 1. H&E-stained sections of fetal tissue 58. A shows single right and double left thymus lobes (arrowheads), trachea (7), esophagus (E), and 
left lung (L). x 50. B shows left thymus lobe. Small arrowhead on upper thymus left lobe in A shows same point at small arrowhead of magnified 
left thymus lobe in/~ x800. 



Table 2. Expression of Thymocyte Lineage Molecules During Early Thymus Development 

Fetal  Molecule  analyzed 
t h y m u s  
no.  Age  C D 3 4  C D 7  C D l a  C D l b  C D l c  C D 2  C D 4  CD8~t  C D 8 ~  C D 5  C D 6  C D 2 8  

wk 
58 8.2  C , V +  + - *  +* + / -  - + + - + - - 

48 9.5 C , V +  + + / -  + / -  + / -  + + + + / -  N D  N D  - 

22 10.0 C , V  + + + / - + / - + / - + + + + N D  _ s + / _ 

40 12.75 C , V +  + + / -  + / -  + / -  + + + / -  + / -  + + + 

56 13.0 C , V  + + + / - + / - + / - + + + / - + / - + + + 

57 16.0 C , V +  + + / -  + / -  + / -  + + + / -  + / -  + + + 

* mAb nonreactive or rare cell + (2-4/slide); + / - ,  subset of cells reactive. 
# All cells reactive in the appropriate thymus zone (e.g., for CD1, all cortical thymocytes reactive; for CDS, all thymocytes reactive; for CD6, all 
medullary thymocytes reactive, etc.). For C D l b  at 8.2-wk and CDSot and CD83  at 10 wk, all thymocytes were + .  For CD83 at 12.75, 13, and 
16 wk, + / - signifies cortex+ and a subset of medullary thymocytes+; at 9.5 wk, + / -  for CDSB signifies that only a subset of total thymocytes 
were reactive. 
S Wi th  mAb T12, thymocytes at 10 wk were very dim + .  
C,V+, capsule and thymic vessels + .  Beginning at 9.5 wk, rare CD34+ mononuclear cells also were seen scattered in thymus, but  from 8.2 to 
16 wk, most thymocytes were C D 3 4 - .  ND, not done. 

TCR-3 expression was acquired in increasing percentages 
of thymocytes during the first trimester, with only rare 
(*5%) 8.2-wk thymocytes being TCR-3 + (Fig. 4 A). Only 
very rare TCR-3, ceils were found to be present at 8.2 wk 
by use of a polyclonal anti-TCR-3, antibody or the anti-V3,9 
mAb, T13~A (not shown). No thymocytes at 8.2 wk expressed 

TCR-~ as determined by mAbs TCR-61 (anti-TCR-6), BB3 
(anti-V~2) (Fig. 4 B) or A13 (anti-V~l). Thus, in the human 
fetal thymus, TCR-3 expression was first observed coinci- 
dent with the appearance of rare TCR-q, + cells. 

As previously reported (4), TCR-6 expression peaked (11% 
of T cells) at 9.5 wk, the time of first appearance of TCR-5 
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Figure 2. Analysis ofthymocyte 
phenotype at the time of initial 
colonization of the human thymus. 
Reactivity of human 8.2-wk thymo- 
cytes are shown in A with CD7 
mAb 3Ale, in B with CD4 mAb 
Leu 3a, and in C with C D 8 a  mAb 
Leu 2a. However, no thymocytes 
were reactive with the CD8fl mab 
25T8-5H7 (D). All thymocytes 
were CD5 § with mAb T101 (E). 
Surprisingly, no thymocytes reacted 
with either CD2 mAb 35.1 (F) or 
O K T l l  (not shown). There was 
also asynchronous expression of 
CDla, CDlb, and CDlc  molecules. 
CDla  mAb NA1/34 only reacted 
with rare scattered macrophage-like 
cells (G), whereas CDlb  mAb 
NUT2  reacted with all 8.2-wk 
thymocytes (H). CDlc  mAb M241 
only reacted with ".,1% of 8.2-wk 
thymocytes (I). Dotted line shows 
borders of thymus, x400. 



Figure 3. Ontogeny of expression of CD45 isoforms 
during the earliest stages of human thymus development. 
(A-C) 8.2-wk fetal thymus 58; (D-F) 9.5-wk fetal thymus 
48; (G-I) 12.75-wk fetal thymus 40. (A, D, and G) Re- 
activity of the pan-CD45 mAb F-10-89-4; (B, E, and H) 
reactivity of the CD45RA mAb F-8-11-13; and (C, F,, and 
I) reactivity of the CD45RO mAb UCHL-1. x400. 

(Table 3). In this study with anti-V/~l and ova2 mAbs, we 
found that the ratio of V/i2/V/~I T cells varied over time 
of gestation (Fig. 5). There were two general peaks of V#2 
predominance over V/il TCR-8 + cells, initially at 9.5 wk 
and later beginning at 16 wk and continuing through the 
last trimester. Even though the ratio of V#2/V81 remained 
high until birth, the precentage of total TCR-/~ + thymocytes 
remained low during the second and third trimesters. 

Expression of Adhesion Molecules During Early Human T Cell 
Development. In contrast to lack of reactivity of CD2 mAbs 
with the 8.2-wk thymus, LFA-3 (CD58) mAb TS2/9 reacted 
with 8.2-wk thymic epithelium, raising the question of the 
presence of a second intrathymic CD58 ligand at 8.2 wk (Fig. 
6 B). Recently, the CD48 molecule in mouse and humans 
has been shown to bind to CD58, although the significance 
of CD58-CD48 interactions in humans has been questioned 
(15). Using two CD48 mAbs (6.28 and MO2FTS01), we 
found that thymocytes from 8.2 wk through birth were 
CD48 + (Fig. 6 B). Two additional putative CD2 ligands, 
CD59 (H19/DAF) (16) and CD99 (E2/MIC2) (17), were 

found to be present in 8.2-wk thymus (Fig. 6, C and D). 
Intercellular adhesion molecule 1 (ICAM-1) (CD54)-LFA-1 
(CD11a/CD18) interactions are also important in thymic ep- 
ithelial (TE)-thymocyte interactions (18, 19). At 8.2 wk (Fig. 
7, E and F), and throughout gestation (18, 20), thymocytes 
were CD11a +, and TE cells were ICAM-1 +. 

CD49 (very late antigen of activation [VLA] CD49/CD29) 
molecules are a family of integrins that mediate cell binding 
to a variety of extracellular matrix and cell surface molecules 
(21). In the 8.2-wk thymus, VLA-1 mAbs reacted with thymic 
vessels, VLA-2 mAb reacted throughout with thymic stromal 
cells (fibroblasts and TE cells), VLA-3 mAb A3-IIF5 reacted 
with TE cells and thymocytes in a surface and antinuclear 
antibody pattern, VLA-4 reacted with 8.2-wk thymocytes 
(although thymic vessels did not express V-CAM, a ligand 
for VLA-4, until 13 wk), and VLA-6 mAb BQ16 reacted 
with thymic stroma throughout the 8.2-wk thymus (Fig. 
7). VLA-/31 (CD29) mAb K20 reacted with all thymus com- 
ponents throughout ontogeny (Fig. 7 D). 

Because it is often difficult to distinguish between thymic 
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Figure 4. TCR-related molecule expression in 8.2-wk 
human thymus. (A) cTCR-B expression with mAb 
BF1. (B) No reactivity with TCR-~ mAb BB3, which 
is specific for V~52. The pan-TCR-~ mAb TCR.-~I was 
also nonreactive (not shown). (C) Rare V'y9 + cells 
in thymus with mAb TI~A. (/9) All thymocytes were 
CD3e +. The dark area in the center of the thymus 
is tissue artifact. (E) Most thymocytes were also weakly 
CD36 + . (F) A rare 8.2-wk cell (arrowhead) that was 
CD3~ "+ with mAb 2H2 with most thymocytes at 8.2 
wk CD3~'-. x400. 

Tab le  3. Expression of TCR-associated Molecules During Early Human T Cell Development 

Fetal Molecule analyzed 
thymus 
no. Age CD3e C D 3 ~ 5  CD3~" TCR-J3 TCR- 'y  TCR-V'y9 TCR-~  TCR-V~51 TCR-V~52 V62/V~1 

wk 
58 8.2 100 100 0 5 0* 0* 0 0 0 0 

48 9.5 96 100 0 32 ND N D  11.0 0.4 9.0 18 

22 10.0 100 100 0* 47 ND 0.1 4.0 0.4 6.0 15 

40 12.75 100 100 c + / - ,m + 69 ND N D  1.0 1.0 8.0 8 

56 13.0 100 100 c + / - ,m + 60 ND 1.0 0.6 0.5 1.0 2 

5 15.0 99 100 N D  83 N D  N D  1.0 0.7 1.5 2 

57 16.0 100 100 c + / - ,m + 80 ND 1.0 1.3 0.1 1.4 5 

* Rare cells + ; c + / - ,  subset of cortical thymocytes + ; m +,  most medullary thymocytes +. 
Data for CD3e, TCR-B, and TCR-~ are from reference 8. ND, not done. 
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Figure 5. TCR4f cell development in human fetal thymus. The figure 
shows the percentage of TCR-~+ cells in fetal thymuses (solid circles) (data 
are from reference 8 and this study) and an analysis of the ratio of the 
number of V52 + (mAb BB3) to V51+ (mAb A13) cells (open circles). 
Analysis shows an initial peak in the percentage of TCR-~ cells at 9.5 
wk of gestation (8) with most of the TCR-5 cells V/~2 + . By week 12, 
the percentage of TCR-/~ cells decreased to 1-2% of total thymocytes, with 
V~2 + cells predominating throughout fetal thymus development. 

1452 Early Human T Cell Development 

Figure 6. Expression of CD58, CD48, CD99 
and 59 antigens in 8.2-wk fetal thymus. The figure 
shows analysis of 8.2-wk fetal thymus in indirect 
IF assay with mAbs against CD58 (TS2/9, A), 
CD48 (6.28, B) CD99 (10F9, C), and CD59 (H19, 
D). Whereas CD2 was not expressed by thymo- 
cytes in 8.2-wk thymus (Fig. 3 F), a second ligand 
for CD58, CD48, was expressed (A). x400. 



Figure 7. Expression of adhesion molecules in 8.2-wk fetal thymus. (A) CD49a (VLA-1) mAb reactivity with vessels within the thymus (right arrow- 
head) and with scattered thymic microenvironment cells (left arrowhead). VI, A-2 mAb 12F1 reacted with thymic stromal elements throughout the 8.2-wk 
thymus (B), whereas VLA-4 mAb B5G10 reacted with most thymocytes (C). (D) Reactivity of CD29 (VLA-f31) (mAb I(20) with both thymic stromal 
and thymocyte thymus components. (E and F) Reactivity of CD54 mAb (RR.1) and CDlla/CD18 LFA-1 (TS1/22) with 8.2-wk thymus. CD54 
expression was on central epithelium only (E), LFA-1 mAb TS1/22 reacted with mononuclear cells throughout the thymus (F). (G) Faint scattered 
cell reactivity with L-selectin mAb, LAM1.3; (H) lack of reactivity of 8.2-wk thymic vessels with VCAM-1 mAb HAE2a. x400. 

stromal and thymocyte reactivity in tissue section IF assays, 
the reactivity of VLA-1, -2, -3, -4, -6, VLA-/31, CD59, CD99, 
and CD48 mAbs with postnatal thymocytes and cultured 
TE cells was assayed by use of flow cytometry on single-cell 
suspensions. VLA-2, VLA-3, and VLA-6 mAbs reacted with 
TE cells, and VLA-4 mAbs reacted only with thymocytes 
(21). VLA-1 mAb TS2/7 reacted weakly with TE cells grown 
in culture, while in tissue sections, only thymic vessels were 
VLA-1 + (this study and Patel, D. D., and B. F. Haynes, un- 
published observations). VLA-B1 mAb K20 reacted with both 
TE cells and thymocytes. In cell suspensions, CD48 was 
thymocyte specific, while CD59 and CD99 mAbs reacted 
with both TE cells and thymocytes (not shown). 

From 9.5 wk through birth, VLA-2 mAb 12F1 reacted 
primarily with subcapsular cortical thymic epithelium, and 
VLA-4 mAb B5G10 remained thymocyte specific (21). VLA-1 
mAb TS2/7 reacted with vessels and scattered stromal cells, 
and VLAq31 K20 mAb reacted with all thymus cell types. 
VLA-3 mAb A3-IIF5 reacted with thymic fibroblasts, vessels, 
and epithelium. VLA-6 mAb BQ16 reacted with TE cells, 
fibrous capsule, and vessels in fetal and postnatal thymuses 
(not shown). 

Analysis of Thymic Microenvironment Components of 8.2-wk 
Fetal Thymus 58. We have previously reported the analysis 

of thymic microenvironment components of thymuses of 9.5 
wk of gestation and older with many of the reagents listed 
in Table 1 (3, 22-26). The key issues with the 8.2-wk fetal 
thymus were (a) Could separate endodermal (TE-3 +) (early 
cortical) and ectodermal (TE-4 +, p19 +) (early medullary) 
zones of TE cells be visualized? (b) Were vessels present within 
the parenchyma of the right and left 8.2-wk thymus? (c) Were 
macrophages and dendritic ceUspresent in the thymus at 8.2 
wk? and (d) Was there any evidence of myelopoiesis in the 
8.2-wk thymus? 

First, all 8.2-wk thymic epithelium was TE-3 +, whereas 
only the central TE zone was TE-4 +, directly demon- 
strating that TE-4 medullary epithelium was located in an 
inner core of the thymus cylinder, and demonstrating that 
the TE-3 antigen, though preferentially expressed in cortical 
TE in postnatal thymus (23), was equally expressed at 8.2 
wk in both cortical and medullary TE cells (Fig. 8, C and 
D). Thus, these data suggested that before thymus lobula- 
tion, there was a TE-4- outer cortical (endodermal) epithe- 
lial zone surrounding a TE-4 + inner medullary (ectodermal) 
epithelial core. 

There were no vessels revealed by morphology or antivessel 
mAb reactivity in the nonlobulated right thymus, but in the 
lobulated left thymus, there were vessels approaching (Fig. 
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Figure 8. Analysis of human thymic microenviron- 
ment components of human 8.2-wk fetal thymus. In 
all panels, the dotted line shows the outer border of 
the thymus. (A) Keratin-positive epithelium in the 
right thymus with anti-keratin mAb AE1. (B) The 
fight thymus expressed the endocrine epithelial gan- 
glioside antigen A2B5. (C) Reactivity of all thymic 
epithelium with mAb TE-3, whereas (D) only cen- 
tral TE cells of the fight thymus were TE4+. (E) An 
extrathymic bifurcating vessel (mAb V2) (arrowheads) 
just approaching the left thymus capsule (dotted line) 
with the thymus below the dotted line. The arrow 
points out autofluorescent artifact. (F) Scattered Von 
Willebrand factor-positive endothelial cells within the 
left thymus, x400. 

8 E) and within (Fig. 8 F) the thymus. In addition, thymus 
58 epithelium was keratin+p19 - (mAb that binds a develop- 
mentally regulated keratin [22, 24, Palker, T. J., and B. F. 
Haynes, unpublished observations]), TE-8+TE19 + (medul- 
lary TE only; 25), B7- and A2B5 + (a marker of medullary 
TE; 26). Connective tissue around 8.2-wk TE cells was 
TE-7 + and tissue transglutaminase + . 

Papiernik et al. (27) have suggested that hematopoietic stem 
cells, upon entering the thymus, are driven to differentiate 
into thymic macrophages and dendritic cells as well as T cells. 
Kurtzberg et al. showed CD7+CD3-CD4-CD8 - thymo- 
cyte differentiation into myeloid as well as lymphoid lineages 
in vitro (28). In 8.2-wk thymus 58, no immature myeloid 
cells were detected with CD33 mAb MY9 (not shown). 
CD14 + and CDllb + macrophages were present in 8.2-wk 
thymus, as were CD16 + cells with a similar morphology 
(not shown). No HB15a + dendritic cells were found in 8.2- 
wk thymus. Whereas intrathymic lymphocytes were 
CD34-, scattered large cells with long cytoplasmic processes 
were CD34 +, and similar cells were seen around the spinal 
cord, aorta, fetal liver, and esophagus (not shown). CD34 + 
cells around the esophagus were CD4 - CD8 - CD7- CD44 + 

MO-1+HB15a-CD33-. Thus, cells of monocyte/macro- 
phage lineage were present within human thymus coincident 
with colonization of the thymus by stem cells, and CD34 + 
CD44+MO-1 + cells were scattered around the esophagus, 
aorta, and spinal cord. However, no evidence of active in- 
trathymic myelopoiesis was seen. 

Discussion 

In this study, we have used a large panel of anti-human 
mAbs to define phenotypic and morphologic events that tran- 
spire during the earliest stages of human thymus develop- 
ment, and have outlined the developmentally regulated ex- 
pression of a number of functional T cell molecules. 

Auerbach (29) has proposed that TE cell-fibroblast inter- 
actions occur during thymus development that provide po- 
tent stimulatory signals to TE cell growth. Nonlymphoid 
thymuses in human SCID are dysplastic due to lack of coloni- 
zation of the thymus by stem cells (30). Early work with 
bone marrow reconstitution in human SCID suggested an 
inductive effect of hematopoietic stem cells on thymic epi- 
thelial proliferation (31). Recent work with transgenic mice 
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has directly shown the dependence of murine medullary TE 
cell growth on the presence of thymocytes in the thymus 
(for review see reference 32). Thus, the striking 35-fold in- 
crease in volume of the 8.2-wk (colonized) thymus compared 
with the 7-wk nonlymphoid thymus was expected. What 
was unexpected was the globular shape and the intertwined 
upper poles of the 8.2-wk right and left thymus lobes. 

We have previously shown that one adhesion ligand pair 
involved in TE cell ligation of thymocytes is CD2 on thymo- 
cytes and CD58 (LFA-3) on TE cells (33, 34). Although 
CD2-LFA-3 interactions have been postulated to be impor- 
tant in triggering TCR- early T cells (35), CD2-homolo- 
gous recombinant mice show no defect in T cell develop- 
ment (36), and treatment of mice with anti-CD2 mAbs early 
in life does not interfere with thymopoiesis (37). Nonethe- 
less, we and others (3-5) have generally regarded CD2 among 
the earliest T cell molecules expressed on developing T cells 
in the thymus. Thus, it was surprising that CD2 expression 
was not detected in 8.2-wk thymus with two CD2 mAbs 
(35.1 and OKTll) (Fig. 2 F) that reacted well with thymuses 
from other gestational ages. Importantly, CD2- surface 
(s)CD3e + fetal thymocytes have been identified in 20-24-wk 
thymuses, demonstrating that during human fetal thymus 
development, it is not obligatory for CD2 to be expressed 
surface sCD3/TCR expression (38). Our study shows that 
after stem cell colonization of the human thymus, CD3, CD8, 
CD3e, CD3~, CD48, and TCR-fl expression all precede CD2 
expression. Arulanandam et al. (15) demonstrated that human 
CD48 is a weak ligand for CD58, and suggested that CD48- 
CD58 interactions in man are vestigial events left over from 
the primary role CD48 plays as a CD58 ligand in other spe- 
cies such as mice. The demonstration that CD2 was not ex- 
pressed in human thymus at the initiation of thymopoiesis 
provides evidence that, if CD58 ligation is important at this 
stage of thymus development, CD48-CD58 interactions may 
be involved in thymocyte-thymic stromal interactions. 

The sequential acquisition of CDSo~ (8.2 wk) followed by 
CDSfl (9.5-10 wk) is consistent with the work of Galy et 
al. (39), who described an early T cell maturation pathway 
in sCD3- postnatal thymocytes of CD8- to CDSc~ + to 
CDSodfl + thymocytes. CD8o~ associates with p56-1ck and 
is critical for CD8 + thymic-positive selection on MHC class 
I molecules (40), CDSfl expression augments TCR-MHC 
class I interactions above the effects of CD8ot (41), but the 
role of CDSfl in thymocyte-positive selection is not known. 
If CD8fl is required for CD8 + T cell selection, then the ac- 
quisition of CD8fl expression at 9.5-10 wk implies that MHC 
class I-mediated selection does not occur until this time. Simi- 
larly, CD28 expression first occured at 10 wk, and CD28 
has been postulated to be required for thymocyte-positive se- 
lection (42), though not for thymocyte-negative selection (43). 

The gradual acquisition of medullary thymocyte CD45RA 
expression at 10-12.75 wk also implies the gradual onset of 
positive selection. CD45P, A + thymocytes have been sug- 
gested to be those destined to survive intrathymic selection 
events (12). Recently, studies in transgenic mice demonstrated 
that CD45RA expression is induced on thymocytes that have 

undergone positive selection (44). Conversely, expression of 
CD45RO by thymocytes increases the efficacy of TCR-medi- 
ated thymocyte apoptosis and MHC-restricted negative se- 
lection (14, 45). Thus, CD45P, O expression at 9.5-10 wk 
suggests that thymocyte negative selection could begin at the 
same time as positive selection or just before. TCR-mediated 
signaling not only requires CD45 tyrosine phosphatase ex- 
pression but also requires expression of CD3~" (46). Acquisi- 
tion of CD3~" between 10 and 12.75 wk also implies that 
thymocyte selection does not begin to occur until this time. 

The sequence of expression of TCR-fl, TCR-y, and then 
TCR-6 is similar to that seen in mice, with two important 
differences. First, in the mouse there is a wave of TCR-'y/8 
cell development before TCR-ot/fl cell development (for 
reviews see references 1, 47). In human thymus, TCR-/~ cells 
peak in percentage at 9.5 wk of fetal development (4). How- 
ever, in humans, appearance of TCR-8 cells in thymus coin- 
cides with increasing TCR-fl and sTCR-ol/fl expression (3-5, 
48). Thus, in humans there is near-coincident appearance of 
TCR-6 and -cz/fl thymocytes. Our observations of TCR 
V82 + cell predominance over TCR V/~I + cells throughout 
fetal thymic development are compatible with the observa- 
tions of others (49-51), who found that TCR V/~2 + expres- 
sion in T cell clones from 11-22-wk fetal thymuses predomi- 
nated over TCR V81. Parker et al. (52) proposed that TCR 
V62 + cells develop in the thymus during fetal gestation, 
seed the periphery, and clonally expand upon contact with 
antigen. 

Second, in the 8.2-wk human thymus, TCR-fl synthesis 
begins simultaneously with T cell precursor colonization of 
the thymus, whereas in the mouse, TCR-fl synthesis begins 
around day 15, 5 d after mouse thymus colonization by stem 
cells (53). It has recently been demonstrated in mice that 
TCR-fl can be expressed on the developing thymocyte sur- 
face either as a dimer or associated with a novel protein, gp33, 
as well as expressed in an ot/fl heterodimer (for review see 
reference 54). Due to the small size of the 8.2-wk thymus 
(<1 mm3), we were limited to phenotypic analysis of the 
thymus in situ via IF assays on tissue sections, thus negating 
our ability to definitively distinguish surface from cyto- 
plasmic(c) mAb reactivity. In the mouse, all thymocytes are 
sCD4- sCD8- from the time of colonization of the murine 
thymic rudiment on day 10-11 until day 16-17 (10, 11). Levelt 
et al. (53) demonstrated that cytoplasmic expression of mu- 
rine TCR-fl begins on day 15, with 3,5% of thymocytes 
cTCR-fl + before expression of CD4 or CD8. Thus, the 8.2- 
wk human thymus is similar to murine day 15 thymus in 
that 8.2-wk thymus TCR-3 expression (5%) is likely cyto- 
plasmic, but differs from mouse thymus in that most human 
thymocytes just after thymus colonization express CD4 and 
CD8, whereas day 15 mouse thymocytes are CD4-CD8- 
(10, 11, 53). 

Our previous work has shown that by 16 wk of gestation, 
CD4,CD8,CD3e and TCR-fl were expressed in fetal thymus 
in patterns similar to postnatal thymus, and gave rise to the 
prediction that the T cell repertoire is established in humans 
by the end of the first trimester (22). Recent molecular anal- 

1455 Haynes and Heinly 



yses of the human thymus TCR Vj8 repertoire at 15-17 wk 
of gestation have shown no difference from the newborn 
thymus VB repertoire (55-57). 

Terminal deoxynucleotidyl transferase (TdT) is a DNA poly- 
merase that functions in the absence of a template to act as 
a somatic mutagen by the insertion of extra random nucleo- 
tides (N regions) at the D-J  joining region during TCR-~/ 
rearrangements, contributing to TCR-/3 diversity. TdT ex- 
pression was not found by immunohistology in human thymo- 
cytes until 20 wk of gestation (48). However, George and 
Schroeder (57) found TCR N region additions as early as 
8 wk of gestation with PCR identification of TdT transcripts, 
and demonstrated progressive increases in N additions in 
TCR-3, CDR3, VD, and VDJ transcripts during fetal de- 
velopment. Whether the 8-wk tissue in this latter study was 
as early as tissue 58 in our study (i.e., was a nonlobulated 
thymic rudiment) is unknown since morphologic data were 
not reported (57). Nonetheless, all data point to initiation 
of diversification of the TCR repertoire very early on in hu- 
man T cell ontogeny. 

Investigators have isolated CD4-CD8-sCD3E- cells from 
human fetal liver and postnatal thymus and shown that they 
give rise to CD3~ + CD3b + NK cells, suggesting a dose lin- 
eage relationship between T and NK calls (58, 59). We did 
not observe a stage of human thymic development wherein 
a majority of thymocytes expressed NK markers such as CD16 
or CD56, although scattered CD16 + cells were present in 
thymus at 8.2 wk. 

The expression of VLA 1-6 in thymus development be- 
ginning at 15 wk has been previously reported (21). New 
in our study is the demonstration of reactivity of VLA-1, 
-2, -3, -4, -6, and B1 mAbs on 8.2-wk thymus. Sanchez et 
al. (60) have demonstrated VLA-4 expression on T cell pro- 
genitors in human fetal liver, and TE cells may bind certain 
thymocyte subsets via VLA-4 (Le, P. T., personal communi- 

cation). A number of integrin molecules have been postu- 
lated to be involved in stem cell migration to the human thymic 
rudiment, but this question is difficult to directly address ex- 
perimentally. 

Our study identified the organization of TE-4 + central 
medullary thymic epithelium surrounded by TE-4- cortical 
epithelium in the 8.2-wk thymus. The gradual appearance 
of CD45RA § cells in central thymic areas, and the expres- 
sion of CD6 and CD28 in thymocytes in central TE areas, 
also suggested that the primordial thymic medulla is the central 
core of the 8.2-wk thymic rudiment that has begun to orga- 
nize immediately subsequent to thymus colonization. In a 
separate study, we have found that MHC class I and II allo- 
typic determinants are also expressed brightly in the central 
8.2-wk thymus area-a pattern typical of medullary TE cell 
MHC expression (Haynes, B. F., unpublished observations). 

Finally, it was of interest to observe CD34 + cells around 
the aorta, spinal cord, and esophagus at 8.2 wk. Recently, 
two groups have suggested that mesoderm around the dorsal 
aorta, gonads, and mesonephros (AGM) areas of mice, and 
not yolk sac, provide the source of stem cells before fetal liver 
development (61). Whereas no functional data are possible 
from our study, one explanation for the presence of CD34 + 
cells in the dorsal thorax of 8.2-wk fetal tissue is that this 
area may be analogous to the AGM mesoderm in mice (61). 

Thus, our study has defined phenotypic and morphologic 
changes that occur in and around the human thymus at the 
time of colonization of the thymus by hematopoietic stem 
cells. This study raises a number of important questions re- 
garding human thymus function, including the nature of the 
role of CD48-CD58 interactions in early T cell development, 
the significance of developmentally regulated thymocyte CDlb, 
-c, -a expression, the regulatory mechanisms involved in 
CD83, CD28, and CD6 expression, and the functional roles 
integrins play in early intrathymic maturation. 
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