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Integrative genomics approach 
identifies molecular features 
associated with early-stage ovarian 
carcinoma histotypes
Hanna Engqvist1 ✉, Toshima Z. Parris1, Jana Biermann1, Elisabeth Werner Rönnerman1,2, 
Peter Larsson1, Karin Sundfeldt3, Anikó Kovács2, Per Karlsson1,4 & Khalil Helou1,4

Ovarian cancer comprises multiple subtypes (clear-cell (CCC), endometrioid (EC), high-grade serous 
(HGSC), low-grade serous (LGSC), and mucinous carcinomas (MC)) with differing molecular and clinical 
behavior. However, robust histotype-specific biomarkers for clinical use have yet to be identified. Here, 
we utilized a multi-omics approach to identify novel histotype-specific genetic markers associated 
with ovarian carcinoma histotypes (CCC, EC, HGSC, and MC) using DNA methylation, DNA copy 
number alteration and RNA sequencing data for 96 primary invasive early-stage (stage I and II) ovarian 
carcinomas. More specifically, the DNA methylation analysis revealed hypermethylation for CCC in 
comparison with the other histotypes. Moreover, copy number imbalances and novel chromothripsis-
like rearrangements (n = 64) were identified in ovarian carcinoma, with the highest number of 
chromothripsis-like patterns in HGSC. For the 1000 most variable transcripts, underexpression was 
most prominent for all histotypes in comparison with normal ovarian samples. Overall, the integrative 
approach identified 46 putative oncogenes (overexpressed, hypomethylated and DNA gain) and three 
putative tumor suppressor genes (underexpressed, hypermethylated and DNA loss) when comparing 
the different histotypes. In conclusion, the current study provides novel insights into molecular 
features associated with early-stage ovarian carcinoma that may improve patient stratification and 
subclassification of the histotypes.

In recent years, it has been shown that ovarian carcinoma comprises five main histotypes, namely clear-cell 
(CCC), endometrioid (EC), high-grade serous (HGSC), low-grade serous (LGSC) and mucinous carcinomas 
(MC). Multiple studies have demonstrated that the histotypes differ in terms of e.g. origin, risk factors, prognosis, 
and molecular and clinical behavior1–3. Furthermore, the ovarian carcinoma histotypes exhibit mutation-specific 
profiles, e.g. HGSC is characterized by recurrent TP53 mutations, whereas EC and CCC often comprise mutations 
in the ARID1A and PIK3CA genes4,5. Comprehensive characterization of epigenetic and copy number alterations 
(CNAs) in the different histotypes are however less documented6–8. Today, a wide range of multi-omics data, e.g. 
genome-, transcriptome- and epigenome-wide analyses, are available that permit the characterization of molecu-
lar events underlying the development and progression of cancer. Different molecular mechanisms may influence 
gene expression during cancer initiation and progression, thereby contributing to altered expression of genes 
important in tumorigenesis. More specifically, gene expression is affected by e.g. germline and somatic factors, 
CNAs and epigenetic events, such as DNA methylation changes9,10. Therefore, integrated multi-omics analyses 
may potentially allow the identification of more robust biomarkers for individualized clinical decision-making11. 
However, few integrative molecular studies have to date been performed for the different ovarian carcinoma his-
totypes that could give greater insight into molecular events characterizing these disease-states.

The Cancer Genome Atlas (TCGA) ovarian carcinoma cohort has provided comprehensive genetic (exome 
sequencing, mRNA, microRNA), epigenetic (promoter methylation) and DNA CNA data, but is currently limited 
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to only HGSC patients4. A recent report evaluated DNA methylation patterns and CNA data for the different 
histotypes7. However, the CNA data (180 K-feature array comparative genomic hybridization (aCGH)) was only 
provided for a subgroup of the samples (47/162 samples) profiled for modulations in DNA methylation patterns. 
Although the DNA methylation data was also compared with NanoString gene expression data (n = 518 genes), 
the analysis was limited to HGSC patients (61/162 samples). Hence, truly integrated omics-wide analyses contain-
ing the same ovarian carcinoma cohort have yet to be performed.

Here, we performed a comprehensive genome- and transcriptome-wide analysis integrating DNA methyl-
ation, CNA and RNA sequencing (RNA-seq) data for 96 primary invasive early-stage (stage I and II) ovarian 
carcinoma samples characterized as CCC, EC, HGSC and MC. Omics-wide integrated analyses have not previ-
ously been performed for cohorts containing samples from early-stage patients. Based on the assumption that the 
genetic profiles of early-stage tumors are generally less complex compared to the later stages, we chose to only 
include early-stage ovarian carcinoma to enable the classification of early events in ovarian carcinoma tumorigen-
esis. This may permit the identification of specific genomic alterations related to ovarian carcinoma. Large-scale 
identification of molecular features in ovarian carcinomas may provide important insight into key molecular 
characteristics differing between the histotypes, enabling improved histotype classification and may in the future 
contribute to improved treatment strategies for specific histotypes. Here, we provide an extensive overview of the 
genome, methylome, and transcriptome for early-stage ovarian carcinomas, thereby identifying putative genetic 
markers for ovarian carcinoma, such as oncogenes and tumor suppressor genes.

Results
Differential DNA methylation analysis revealed hypermethylation in CCC.  A comprehensive 
DNA methylation analysis was performed using 91 early-stage ovarian carcinoma samples of various histotypes 
(CCC, EC, HGSC, MC). After batch correction of biological and technical parameters, histotype and survival 
were shown to still have significant effects on DNA methylation (Supplementary Fig. 1). In general, DNA meth-
ylation (beta values > 0.8) was prevalent in ovarian carcinoma (Fig. 1a). On one hand, unmethylated CpG sites 
were more prevalent in specific genomic regions including promoter, enhancer and exon, as well as in regions 
denoted as CpG island and shore. On the other hand, highly methylated CpG sites were more frequently found 
in the gene body, 3′ untranslated regions (3′ UTR) and intergenic regions (IGR), as well as in CpG shelves and 
open sea (Fig. 1b). Limma was then used to identify unique and overlapping differentially methylated probes 
between histotype groups, revealing 10,130 unique probes for CCC, 1,264 for EC, 7,588 for HGSC and 282 for 
MC (Benjamini-Hochberg adjusted P value<0.05; Fig. 1c, Supplementary Table 1). Less than half of the EPIC 
probes (n = 300,406) were not differentially methylated.

Histotype-specific methylation patterns were demonstrated for the 1,000 most variable probes across the 
cohort, with the highest mean distribution of methylated probes found in the CCC patient group, followed by 
MC and EC patients, while HGSCs showed the lowest mean distribution of methylated probes (Fig. 1d). It is also 
evident that HGSCs contained a higher number of unmethylated probes in comparison with CCC, EC and MC. 
Hierarchical clustering of the 1,000 most variable probes stratified the cohort into two main clusters (clusters 1 
and 2), wherein cluster 1 only included HGSC tumor samples (Fig. 1e). Clusters 1 and 2 were further stratified 
into two sub-clusters each (clusters 1.1, 1.2 and 2.1, 2.2). Both CCC and MC clustered in sub-cluster 2.1 except 
one MC sample in sub-cluster 2.2, whereas EC was found in both sub-clusters (clusters 2.1 and 2.2). The DNA 
methylation probes also clustered into two main clusters (top and bottom CpG clusters). For the top CpG cluster, 
the HGSC samples generally demonstrated unmethylated CpG sites, while CCC and MC demonstrated highly 
methylated CpG sites. Differential methylation analysis using the differentially methylated probe (DMP) function 
in ChAMP revealed 13,003 DMPs (10051 hyper-, 2,952 hypomethylated DMPs) between CCC and MC, 6,732 
DMPs (1,282 hyper-, 5,450 hypomethylated DMPs) between EC and CCC, 2,248 DMPs (1,660 hyper-, 588 hypo-
methylated DMPs) between EC and MC, 23,313 DMPs (4,596 hyper-, 18,717 hypomethylated DMPs) between 
HGSC and CCC, 10,626 DMPs (3,414 hyper-, 7,212 hypomethylated DMPs) between HGSC and EC compar-
ison, and 26,515 DMPs (12,352 hyper-, 14,163 hypomethylated DMPs) between HGSC and MC comparison. 
Interestingly, CCC was generally hypermethylated for all genomic regions and regions surrounding CpG islands 
in all histotype comparisons (Fig. 2). EC was more hypermethylated in comparison with MC and HGSC, whereas 
HGSC and MC were predominantly hypomethylated in all histotype comparisons.

DNA copy number alteration analysis revealed complex copy number imbalances and 
chromothripsis-like rearrangements.  Genome-wide profiling of DNA copy number alterations was 
performed using DNA methylation data for the 91 patient samples with the conumee package in R and the Rank 
segmentation algorithm in Nexus Copy Number Discovery. In total, 6,651 probes spanned 61 significant CNAs 
(copy number gains (51/61) and losses (10/61)) in at least 35% of the patient samples (Fig. 3a). Hierarchical 
clustering of the 6,651 probes stratified the samples into two main clusters (clusters 1 and 2). However, clustering 
of CNAs was not a good determinate of histotypes classification, as the histotypes were distributed across both 
clusters. No clear pattern of gains (green) and losses (red) could be seen for specific histotypes.

Among the 61 recurrent CNAs, the average CNA region length was 0.56 ± 0.068 Mb (range=0.7kb-2.25 Mb), 
while the average number of CNAs per ovarian cancer patient (n = 91) was 98.7 ± 1.44. MC tumors harbored 
the highest number of CNAs per patient (101.6 ± 4.04, range: 83–120) followed by HGSC (100.0 ± 1.82, range: 
69–121), CCC (97.9 ± 4.95, range: 59–124) and EC (94 ± 2.67, range: 80–123) (Fig. 3b). A statistically signifi-
cant difference in the number of CNAs per patient was however only found between EC and HGSC (Wilcoxon 
P value<0.05). Recurrent loss of genomic content was observed on chromosomal subregions 4q35.2, 5q14.1, 
6p22.3, 8p21.3, 10p12.31, 11p15.5, 12p11.23, 12q24.21, 13q21.33, 19q13.32, while recurrent gain was identified 
on all autosomal chromosomes except for 9, 11 and 19 (Fig. 3c, Supplementary Table 2). In comparison with 
the other histotypes, CNAs identified in MC generally spanned all autosomal chromosomes rather than focal 
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genomic regions. The recurrent losses on chromosome 4q, 5q and 8p were most prominent in HGSCs, whereas 
little to no recurrent losses were found for the remaining histotypes. Only recurrent losses on 6p were present in 
all histotypes. Recurrent gains on chromosomes 19 and 20 were predominantly found in HGSCs, while all other 
regions of recurrent gains were present in all histotypes. Differential CNAs were identified between histotypes 

Figure 1.  DNA methylation pattern in ovarian carcinoma. DNA methylation density plot (a) showing the beta 
value distribution of individual probes (n = 679,259) after batch correction colored by the ovarian carcinoma 
histotypes (clear-cell (CCC), endometrioid (EC), high-grade serous (HGSC) and mucinous (MC) ovarian 
carcinomas). Overall, more highly methylated probes were identified in the cohort. The x-axis denotes beta 
intensity values and the y-axis density. Column chart (b) showing an overview of the relative distribution of 
methylation patterns across genomic regions. Unmethylated CpG sites were more common in the promoter, 
enhancer, exon, CpG island and shore, while highly methylated CpG sites were prevalent in the gene body, 3′ 
UTR, IGR, shelve and open sea. Venn diagram (c) showing unique and overlapping differentially methylated 
probes (DMPs) between histotypes (P value<0.05). The highest number of unique DMPs was identified in 
CCCs, whereas 300,406 DMPS were not differentially methylated in any histotype comparison. RDI (Raw data, 
Descriptive, Inference statistics) plot (d) showing the difference in methylation patterns between histotypes 
for the 1,000 most variable probes. Black open circles distributed horizontally represent raw data probes and 
the surrounding colored beans depict smoothed densities. A large proportion of probes were methylated in 
CCC (mean depicted by the black vertical center bar), whereas probes were predominantly unmethylated in 
HGSCs. Significant differences in DNA methylation patterns were found for all histotypes (Wilcoxon test). CCC 
vs MC comparison had a P value<0.01 and the remaining comparisons had P values<0.0001. Heatmap (e) of 
DNA methylation beta values for the 1,000 most variable probes across the cohort. Red color represents highly 
methylated probes and blue color unmethylated probes. Ward’s method was used for the hierarchical clustering 
of histotypes (colored bar at the top of the heatmap) and Canberra distance measure was used to calculate the 
dissimilarity measure for the heatmap. On the left side of the heatmap the 1,000 CpG sites are clustered into two 
main clusters.
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using Nexus Copy Number set at 25%. A total number of 164 CNAs (144 gains, 20 losses) differed between CCC 
and MC, 208 CNAs (168 gains, 40 losses) between EC and CCC, 145 CNAs (133 gains, 12 losses) between EC and 
MC, 543 (485 gains, 57 losses) between HGSC and CCC, 660 CNAs (625 gains, 35 losses) between HGSC and EC, 
540 CNAs (483 gains, 57 losses) between HGSC and MC.

Figure 2.  Relative distribution of DNA methylation patterns. Column charts showing the relative distribution 
of methylation patterns across genomic regions and regions surrounding CpG islands in CCC tumors compared 
with EC, MC and HGSC, respectively (a), EC as case (b), HGSC as case (c) and MC as case (d). Beta values 
greater than or equal to 0.2 denotes hypermethylated differentially methylated probes (DMPs) and beta values 
less than or equal to -0.2 denotes hypomethylated DMPs (Benjamini-Hochberg adjusted P value<0.05). The 
Promoter region refers to 200bp-1500bp upstream of transcriptional start sites, 1st exon and 5′ UTR.
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Figure 3.  DNA copy number alteration patterns and genomic imbalances. Heatmap (a) showing probes 
(n = 6,651) spanning regions of DNA copy number alterations (CNAs) in at least 35% of the patient samples. 
All histotypes were distributed across both main clusters (clusters 1 and 2). Moreover, no clear differences in 
CNA patterns were found in the two main clusters (clusters 1 and 2). Gains are denoted in green color and 
losses in red color. Gray color denotes missing values (NAs). Canberra distance measure was used to calculate 
the distance between probes and the Ward method was applied for hierarchical clustering of the histotypes 
(colored bar at the top of the heatmap). RDI plot (b) showing the average number of CNA per patient sample 
in the respective histotypes, with the greatest mean identified for MC (101.6, range: 83–120) followed by HGSC 
(100.0, range: 69–121), CCC (97.9, range: 59–124) and EC (94, range: 80–123). All comparisons were non-
significant, except for the comparison between EC and HGSC CNAs (Wilcoxon P value<0.05). Black open 
circles distributed horizontally represent raw data probes and the surrounding colored beans depict smoothed 
densities thereof. Genome-wide frequency plots (c) showing CNAs identified in the patient cohort as a whole 
(top frequency plot) and stratified by histotype (CCC, EC, HGSC, and MC). Chromosomes 1 to 22 are shown 
in alternating blocks of light blue. Genomic gains are illustrated in blue and genomic losses in red. Bar chart 
for chromothripsis-like patterns (CTLP) in ovarian carcinoma (d) showing the frequency of CTLPs (red). Blue 
bars show the respective sizes in Megabases (Mb) for chromosomes 1 to 22. Default settings were applied for 
the CTLPScanner with absolute threshold values for gains and losses set at 0.3. The highest frequency of CTLPs 
were identified on chromosomes 1, 3, 17 and 19.
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Genomic instability (chromothripsis-like patterns (CTLP)) was then evaluated using the CTLPScanner with 
CNA segments identified in ChAMP. CTLPs were defined as more than 20 CNA status changes and an absolute 
log2 ratio of 0.3 for genomic gains and losses. In total, 64 CTLPs, all of which were CNA gains, were identified 
in 33/91 (36%) tumor samples. Furthermore, CTLPs were most prevalent on chromosomes 1 (16%), 3 (14%), 
17 (9%) and 19 (9%) (Fig. 3d, Supplementary Table 3). On average, the CNA status changed 40 times (range, 
20–129 changes) and spanned 50.5 Mb (range, 30–133.3 Mb). The highest number of CTLPs were found in 
HGSC (n = 46), followed by CCC (n = 8), EC (n = 6), and MC (n = 4). In total, 224 different cancer-related genes 
were found to span the CTLPs, wherein MLF1 was most common in 7/64 CTLPs. In addition, well-established 
cancer-related genes spanning CTLPs included BRCA1, CCNE1, TP53 (identified in five CTLPs each), and 
ARID1A, MYC and PIK3CA (identified in four CTLPs each) (Supplementary Table 3).

Underexpression was prominent in ovarian carcinoma compared to normal ovarian tis-
sue.  The expression profiles for 95 early-stage ovarian carcinomas were analyzed using transcriptome-wide 
RNA-seq data. Hierarchical clustering, performed using the 1,000 transcripts with the highest variance across the 
cohort (log2 ratio of ovarian carcinoma compared to normal ovarian tissue), showed that expression was gen-
erally lower in ovarian carcinomas compared to normal ovarian samples (Fig. 4a). In addition, the patients were 
clustered into two main clusters (clusters 1 and 2), wherein cluster 1 was mainly comprised of HGSC samples, 
whereas cluster 2 contained all histotypes. Samples classified as CCC clustered together, with the exception of two 
samples in cluster 2.1. Samples classified as EC were distributed over both clusters. The 1,000 transcripts were also 
clustered into two main clusters (top and bottom clusters), wherein the top cluster comprised genes with overex-
pression in neoplastic tissue compared with normal ovarian tissue. Interestingly, two genes (AC244035.3 (small 
nucleolar (sno) RNA) and AL157931.1 (long non-coding (lnc) RNA)) were highly expressed in ovarian carci-
noma (all histotypes) with log2 ratios above 4. These genes were also specific for CCC overexpression (wherein 
all genes had log2 ratios>4) in cluster 2.1, along with two additional genes (AL356277.2 (lncRNA), LINC01320 
(lncRNA)). Furthermore, statistically significant differences in expression patterns (RNA-seq raw counts) for the 
1,000 most variable transcripts were found between the histotypes (Fig. 4b).

The differential expression analysis identified the highest number of differentially expressed genes (DEGs) 
between HGSC and CCC, and the lowest number of DEGs between EC and MC (Benjamini-Hochberg adjusted 
P value<0.05). More specifically, 3,061 DEGs (1,447 over-, 1,614 underexpressed) between CCC and MC, 2,764 
DEGs (1,476 over-, 1,288 underexpressed) between EC and CCC, 792 DEGs (376 over-, 416 underexpressed) 
between EC and MC, 4,990 DEGs (2,882 over-, 2,108 underexpressed) between HGSC and CCC, 1,430 DEGs 
(736 over-, 694 underexpressed) between HGSC and EC, and 3,685 DEGs (2,037 over-, 1,648 underexpressed) 

Figure 4.  RNA expression analysis. Heatmap (a) displaying expression patterns for the 1,000 most variable 
transcripts across the patient cohort (n = 95). The RNA-seq raw counts (log2 scale) were compared with 
normal ovarian carcinoma samples downloaded from the Cancer Genome Atlas (TCGA), TCGA-OV data 
collection. An expression value of log2 ratio>0.58 (i.e. 1.5 fold change) was set for overexpression (red) and 
log2 ratio<−0.58 (i.e. 1.5 fold change) for underexpression (blue). In general, the expression levels for ovarian 
carcinomas were lower in comparison with normal ovarian samples for the 1,000 genes with the highest 
variance. Canberra distance measure was used to calculate the distance between raw count values. Two main 
clusters (clusters 1 and 2) were formed using hierarchical clustering (Ward’s method), wherein cluster 1 mainly 
comprised of HGSC (two EC samples were also included). The majority of CCC samples clustered together in 
cluster 2.1, whereas cluster 2.2 comprised all histotypes. RDI plot (b) for corresponding input data set as in (a) 
displaying the expression differences between histotypes (CCC, EC, HGSC, MC) for the 1,000 most variable 
genes in terms of variance (RNA-seq counts compared with normal ovarian samples (log2)). Black open circles 
distributed horizontally represents RNA-seq raw counts and the surrounding colored beans depict smoothed 
densities thereof. The average values of expression (average expression values of around -6) and bean densities 
seem rather similar for all histotypes. However, statistical significance was found for all RNA expression 
comparisons using Wilcoxon test (CCC vs MC: P value<0.05; CCC vs HGSC: P value<0.001; CCC vs EC, EC 
vs HGSC, EC vs MC and HGSC vs MC P values<0.0001).
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between HGSC and MC. Overall, 212 genes and 139 genes were overexpressed and underexpressed, respectively, 
in all HGSC comparisons. In the EC comparisons, 57 genes and 13 genes were overexpressed and underexpressed, 
respectively, and in the MC comparisons 229 genes and 82 genes were overexpressed and underexpressed, respec-
tively. Ingenuity Pathway Analysis (IPA) revealed an association with cancer including top biological processes 
related to molecular and cellular functions such as cellular movement, molecular transport, lipid metabolism, and 
cell death and survival (Supplementary Table 4).

Integrative genomics profiling identifies molecular features associated with early-stage ovar-
ian carcinoma histotypes.  Integrative analyses were performed to assess the effect of DNA methylation 
and CNA patterns on gene expression. Cluster-of-cluster analysis (COCA) was then performed using the coca 
R package with the RNA-seq, DNA methylation and CNA data (Supplementary Fig. 2)12. Two COCA clusters 
(1 and 3) corresponded with purely HGSC samples, whereas cluster 2 comprised all histotypes, and cluster 3 a 
mix of CCC, EC and HGSC samples. Putative genetic markers in ovarian carcinoma were further identified. A 
total of 49 genes were found to be either overexpressed, hypomethylated and showed genomic gain (46/49 puta-
tive oncogenes), or underexpressed, hypermethylated and showed genomic loss (3/49 putative tumor suppressor 
genes) when comparing the histotype groups (CCC vs MC, EC vs CCC, EC vs MC, HGSC vs CCC, HGSC vs EC, 
HGSC vs MC) (Table 1). The highest number of deregulated genes was found in HGSCs compared with CCCs 
(n = 23). LINC00578 was found to be overexpressed, hypomethylated and showed genomic gain in all HGSC 
comparisons, and CLMN was overexpressed, hypomethylated and showed genomic gain in two comparisons (EC 
vs CCC, HGSC vs CCC). No genes were found to be deregulated in all three methods when comparing EC with 
MC. Overexpression, hypomethylation and genomic gain was demonstrated for CCNE1 on chromosome 19 in 
the HGSC vs EC comparison (Supplementary Fig. 3, Table 1). Further genomic gains was also highlighted for 
COL14A1 and MTBP and genomic loss for ELP3 on chromosome 8. Seventeen of 49 biomarkers were found in 
enhancer regions (Table 1). The presence of mutations in the identified putative oncogenes and tumor suppressor 
genes was examined (Supplementary Table 5). The mutation frequency in the MTBP gene was the highest with 
a frameshift insertion in 9.5% of the patient samples, whereas the remaining mutation frequencies were rela-
tively low (1.1–2.1%). Further putative oncogenes/tumor suppressor genes were altered with at least two mech-
anisms, i.e. overexpressed and hypomethylated, overexpressed and showed genomic gain, underexpressed and 
hypermethylated, or underexpressed and showed genomic loss (Benjamini-Hochberg adjusted P value<0.05, 
Supplementary Table 6, Supplementary Fig. 4).

Discussion
Ovarian cancer is a rare disease with 541 patients diagnosed in 2016 in Sweden. In comparison, 8,923 female 
breast cancer patients were diagnosed in the same year in Sweden13. Early-stage ovarian carcinoma is less fre-
quently diagnosed in comparison with later stages (stage I + II: 36%, stage III + IV: 62%)14. Hence, large ovarian 
carcinoma patient cohorts, especially early-stage cohorts, are difficult to achieve. Previous studies have primarily 
focused on single histotypes, e.g. HGSC in TCGA ovarian carcinoma cohort, and CCC in an epigenome-wide 
analysis of CCC-specific DNA methylation patterns4,15. Therefore, it may be difficult to compare between different 
histotype-specific studies due to e.g. differences in patient diagnosis and treatment protocols, and experimental 
conditions and technologies used. Moreover, few ovarian carcinoma studies have integrated omics-wide analy-
ses, e.g. the integration of high-throughput technologies of genetic, epigenetic and transcriptomic alterations. A 
recent report classified DNA methylation patterns associated with histotypes (70 HGSC, 6 LGSC, 30 serous low 
malignant potential (LMP) carcinomas, 16 MC, 33 EC, 7 CCC) in all stages (I-IV)7. Furthermore, a subset of the 
tumors were also analyzed using CNA analysis (47/162 samples, 180 K-feature aCGH assay), and gene expression 
analysis using NanoString assay (61/162 samples) but was limited to only HGSC samples. In total, only 13 tumor 
samples (HGSC) were analyzed using all three methods. Hence, the current study is, to the best of our knowledge, 
the first to present a comprehensive genome- and transcriptome-wide analysis of DNA methylation, CNA and 
RNA-seq data (on the same patient cohort) from primary invasive early-stage ovarian carcinoma samples (n = 96) 
constituting multiple histotypes (CCC, EC, HGSC, MC).

It is well known that aberrant DNA methylation (e.g. hypomethylation/hypermethylation of genes and gene 
regulatory elements) affects gene expression16. Here, the DNA methylation analysis revealed a higher relative 
distribution of unmethylated CpG sites in promoters, enhancers and exons, as well as in CpG islands and shores. 
It has been shown that not only promoter and gene body methylation, but also enhancer methylation can lead 
to altered gene expression, highlighting the importance of examining methylation patterns in other genomic 
regions outside of promoter and gene body regions17. Unique DNA methylation patterns were revealed for each 
histotype, wherein CCC had the highest mean distribution of methylated probes and a higher relative distribution 
of hypermethylated DMPs in comparison with the other histotypes (EC, HGSC and MC). HGSC showed the 
lowest mean distribution of methylated probes, and HGSC and MC were generally hypomethylated compared to 
CCC and EC. These findings are in line with previous reports showing promoter hypermethylation in CCC and 
hypomethylation in HGSC, but DNA methylation patterns for MCs are largely unknown6. Hierarchical clustering 
of the 1000 most variable probes revealed the heterogeneous nature of HGSC, where one cluster contained only 
HGSC samples and the other cluster was a composite of all four histotypes.

The DNA methylation data could better classify the patients according to the histotypes compared to the CNA 
data. This may be explained by the detection of non-cancer related CNAs due to genomic instability, which may in 
turn affect accurate histotype classification. Moreover, tumor-specific CNAs may be diminished by contamination 
of normal cells and/or intratumor heterogeneity. In Nexus Copy Number, the default for recurrent CNAs is 25% 
and was used to compare identified CNAs in different histotypes. However, a cutoff of 35% was chosen to reduce 
the number of significant CNA changes identified in the ovarian carcinoma cohort. Interestingly, the highest 
average number of CNAs per patient was found for MCs. However, no significant statistical difference was found 
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Gene symbol
Genomic 
region Enhancer

Gene 
expressiona

DNA 
methylationb

DNA copy 
number 
alterationc

CCC case vs MC control

FAM20A 17q24.2-q24.3 NA overexpressed hypomethylated genomic gain

LAMB1 7q22.3-q31.1 NA overexpressed hypomethylated genomic gain

EC case vs CCC control

CLMN 14q32.13 NA overexpressed hypomethylated genomic gain

HGSC case vs CCC control

CACNA1A 19p13.13 yes overexpressed hypomethylated genomic gain

CACNB1 17q12 yes overexpressed hypomethylated genomic gain

CELF4 18q12.2 NA overexpressed hypomethylated genomic gain

CLMN 14q32.13 yes overexpressed hypomethylated genomic gain

COL14A1 8q24.12 yes overexpressed hypomethylated genomic gain

EBF4 20p13 NA overexpressed hypomethylated genomic gain

EHF 11p13 yes overexpressed hypomethylated genomic gain

HMGA2 12q14.3 yes overexpressed hypomethylated genomic gain

IDH3B 20p13 NA overexpressed hypomethylated genomic gain

KCNMB2 3q26.32 NA overexpressed hypomethylated genomic gain

LINC00578 3q26.32 yes overexpressed hypomethylated genomic gain

MAPK4 18q21.1-q21.2 NA overexpressed hypomethylated genomic gain

MEIS2 15q14 NA overexpressed hypomethylated genomic gain

MTBP 8q24.12 NA overexpressed hypomethylated genomic gain

MYLK2 20q11.21 NA overexpressed hypomethylated genomic gain

NRSN2 20p13 NA overexpressed hypomethylated genomic gain

PDYN 20p13 yes overexpressed hypomethylated genomic gain

PPP1R1B 17q12 yes overexpressed hypomethylated genomic gain

PROKR2 20p12.3 NA overexpressed hypomethylated genomic gain

RASSF2 20p13-p12.3 NA overexpressed hypomethylated genomic gain

RPL22L1 3q26.2 NA overexpressed hypomethylated genomic gain

TP63 3q28 NA overexpressed hypomethylated genomic gain

ELP3 8p21.1 NA underexpressed hypermethylated genomic loss

HGSC case vs EC control

AARD 8q24.11 NA overexpressed hypomethylated genomic gain

CCNE1 19q12 NA overexpressed hypomethylated genomic gain

CTCFL 20q13.31 NA overexpressed hypomethylated genomic gain

LINC00578 3q26.32 yes overexpressed hypomethylated genomic gain

LINC01532 19q12 NA overexpressed hypomethylated genomic gain

RBM38 20q13.31 yes overexpressed hypomethylated genomic gain

RSPO4 20p13 NA overexpressed hypomethylated genomic gain

UQCRFS1 19q12 NA overexpressed hypomethylated genomic gain

URI1 19q12 NA overexpressed hypomethylated genomic gain

PDE8B 5q13.3 NA underexpressed hypermethylated genomic loss

HGSC case vs MC control

ANKS1B 12q23.1 yes overexpressed hypomethylated genomic gain

COLEC10 8q24.12 yes overexpressed hypomethylated genomic gain

EGFEM1P 3q26.2 NA overexpressed hypomethylated genomic gain

KCNMB2-AS1 3q26.32 NA overexpressed hypomethylated genomic gain

LINC00578 3q26.32 yes overexpressed hypomethylated genomic gain

MYEF2 15q21.1 NA overexpressed hypomethylated genomic gain

PDYN 20p13 NA overexpressed hypomethylated genomic gain

RBFOX1 16p13.3 yes overexpressed hypomethylated genomic gain

SNAP25 20p12.3-p12.2 NA overexpressed hypomethylated genomic gain

STON2 14q31.1 yes overexpressed hypomethylated genomic gain

SULF1 8q13.2-q13.3 NA overexpressed hypomethylated genomic gain

TSHR 14q31.1 yes overexpressed hypomethylated genomic gain

TGFBR2 3p24.1 NA underexpressed hypermethylated genomic loss

Table 1.  Integrated RNA sequencing, DNA methylation and DNA copy number alteration(CNA) analysis. 
The table shows putative oncogenes and tumor suppressor genes that were found to be deregulated using three 
different methods (RNA-seq, DNA methylation, CNA analyses). Generally, the genes were overexpressed, 
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when comparing MC with the other histotypes. Little has previously been reported for CNA changes in MC 
tumors. One report demonstrated low numbers of CNAs in MC compared with the other main histotypes, how-
ever the MC patient cohort (n = 14) was relatively small and no information regarding tumor stage was given8. 
The discrepancy between the studies may be explained by e.g. contamination of normal cells and/or intra-tumor 
heterogeneity affecting the detection of CNAs. The second highest average number of CNAs per patient was iden-
tified in HGSCs, which is in line with previous reports demonstrating a high frequency of CNA gains and losses 
in HGSCs18. Moreover, consistent with previous reports on genomic instability, the highest number of CTLPs 
was also revealed in HGSCs18. MC tumors showed the lowest number of CTLPs which may be explained by the 
identification of CNA changes in specific chromosomal regions, compared to rather widespread CNA patterns 
in the other histotypes.

In agreement with the DNA methylation data, RNA expression analysis was able to classify the different his-
totypes, thereby demonstrating significant differences between the histotypes. However, differences between the 
histotypes were more evident in the DNA methylation heatmap. To the best of our knowledge, we are the first to 
report high expression of snoRNA AC244035.3 and lncRNA AL157931.1 in ovarian carcinoma (all histotypes). 
Furthermore, these genes and additionally lncRNA AL356277.2 and lncRNA LINC01320 have not previously 
been reported to be highly expressed within CCC. The highest number of DEGs were identified when compar-
ing HGSC with CCC, and the lowest number when comparing EC with MC (Benjamini-Hochberg adjusted P 
value<0.05). The low number of DEGs between EC and MC may be explained by the fact that EC may comprise 
MC differentiation in the epithelial structure. Few studies have previously examined differences in gene expres-
sion patterns between the ovarian carcinoma histotypes, particularly in early-stages19,20. In a previous study using 
the same cohort presented here, we identified novel histotype-specific mutation profiles comprised of recurrent 
deleterious mutations (present in at least 30% of patients within each histotype (CCC, EC, HGSC, MC)) in 38 
genes. Moreover, the highest mutation frequency of e.g. TP53 was found in early-stage HGSC21.

Advances in molecular biology have shown that mechanisms affecting aberrant gene expression profiles lead-
ing to cancer initiation and progression cannot be explained by genetic alterations (mutations, DNA CNAs, inver-
sions, insertions or translocations) alone. Further changes, such as epigenetic aberrations also influence gene 
expression, highlighting the importance of integrative approaches in the identification of robust biomarkers22. In 
the current study, novel putative oncogenes and tumor suppressor genes (n = 49) associated with ovarian carci-
noma histotypes were identified using an integrative approach with DNA methylation, CNA and RNA-seq data. 
The majority of the identified genes were found to be overexpressed, hypomethylated and showed DNA gain. 
The highest number of putative oncogenes/tumor suppressor genes were found when comparing HGSC with 
CCC, which is not surprising since this comparison also generated the highest number of DEGs, and the second 
highest number of DMPs and CNAs, respectively. For 19 of the 49 putative oncogenes/tumor suppressor genes, a 
previous connection with ovarian carcinoma has been reported. For example, LAMB1 (CCC vs MC comparison), 
which encodes an extracellular matrix glycoprotein involved in cell adhesion and migration, was reported to be 
differentially expressed across a cohort of HGSC, EC and CCC tumors19. Moreover, high expression of HMGA2 
(HGSC vs CCC comparison), a transcription factor constituting an important part of the enhancesome, was 
reported in the proliferative HGSC subtype of the TCGA ovarian carcinoma cohort4. HMGA2 was upregulated in 
both early- and late-stage HGSC23. Multiple studies have associated CCNE1 (HGSC vs EC comparison), which is 
known to promote accelerated S phase entry and thereby promote genetic instability, with amplification in HGSC, 
which may also contribute to chemotherapy resistance24,25. The URI1 gene (HGSC vs EC comparison), involved 
in ubiquitination and transcription, spans the same genomic region as CCNE1, and has also been reported to 
be amplified in ovarian carcinoma and may contribute to tumorigenesis26. For the remaining identified putative 
oncogenes/tumor suppressor genes (30/49), no previous connection has been reported in connection with ovar-
ian carcinomas, but may be known to be involved in tumorigenesis of other cancer types e.g. MTBP (HGSC vs 
CCC comparison), which interacts with MYC to promote tumorigenesis, has been associated with overexpression 
in triple-negative breast cancer27,28.

To conclude, we have provided a comprehensive overview of histotype-specific molecular aberrations on the 
DNA and RNA level in early-stage ovarian carcinomas (n = 96). More specifically, we identified methylation 
patterns, CNAs and aberrant RNA expression relating to individual early-stage ovarian carcinoma histotypes 
(CCC, EC, HGSC, and MC). We integrated these data to identify novel putative oncogenes and tumor suppressor 
genes, which to the best of our knowledge have not previously been associated with early-stage ovarian carcinoma 
histotypes. Advantages of the study comprise the involvement of patients from multiple subtypes (4/5 of the main 
histotypes), i.e. not only the largest histotype group HGSC, but also the smaller and less studied histotypes such as 
MC. Further, the patients included in the study were subjected to the same diagnostic and treatment procedures 
according to national guidelines (staging and accurate debulking cytoreductive surgery), thereby reducing possi-
ble biases and enabling easier comparison across histotypes and molecular levels. Although a fairly large patient 
cohort, the main drawback is the difficulty in achieving even larger patient cohorts, especially for early-stage 
disease in the rarer histotype groups. Moreover, it is difficult to compare the histotypes with their respective true 
normal tissues since it is currently not known from where all histotypes originate, as well as few publicly available 
datasets on normal gynecological tissues, e.g. TCGA has publicly available data for normal ovarian tissue, but 

hypomethylated and showed genomic gain. A few genes were also underexpressed, hypermethylated and 
showed genomic loss. No biomarkers were found to be deregulated in all three methods when comparing EC 
with MC. aGene expression log2 ratios greater than 0.58 (i.e. 1.5 fold change) are indicated by overexpression 
and less than -0.58 (i.e. 1.5 fold change) by underexpression. bDNA methylation delta beta values greater than 
0.2 are indicated by hypermethylation and less than -0.2 by hypomethylation. cDNA copy number alteration 
values greater than 0.3 are indicated by genomic gain and less than -0.3 by genomic loss.
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not for fallopian tube tissue. Future functional analyses need to be performed to confirm the role of the putative 
oncogenes and tumor suppressor genes in ovarian carcinoma. Moreover, analyses on the protein level are needed 
to validate histotype-specific patterns using e.g. immunohistochemistry.

Methods
Patients and tumor samples.  A total of 96 early-stage (stage I and II) primary invasive ovarian carcinoma 
patients (diagnosed between 1994 and 2006) were included in the cohort. Fresh-frozen tumor samples were 
obtained from the tumor bank at the Sahlgrenska University Hospital Oncology lab (Gothenburg, Sweden). The 
tumors were reclassified to current WHO criteria for ovarian carcinoma histotypes by board certified pathologists 
using corresponding full-face formalin-fixed paraffin-embedded (FFPE) samples obtained from the Department 
of Clinical Pathology at Sahlgrenska University Hospital29. The reclassified tumor samples comprised 17 CCC, 
17 EC, 51 HGSC and 11 MC. Additional clinicopathological information for the cohort were obtained from the 
Cancer Registry at the National Board of Health and Welfare (Stockholm, Sweden) and the National Quality 
Registry at the Regional Cancer Center West (Gothenburg, Sweden) (Table 2, Supplementary Table 7). National 
treatment guidelines with protocols for standard surgery procedures (staging and adequate debulking cytore-
ductive surgery) were followed for all patients. The study was performed in accordance with the Declaration 
of Helsinki and approved by the Regional Ethical Review Board (Gothenburg, Sweden; case number 767–14). 
Moreover, the Regional Ethical Review Board further approved a waiver of written consent to use the tumor 
specimens. The percentage of neoplastic cells was assessed in all samples using touch preparation imprints stained 
with May-Grünwald Giemsa (Chemicon). Highly representative tumor samples comprising at least 50% neoplas-
tic cell content were included in subsequent analyses.

Number of patients (%)

P valueCCC (n = 17) EC (n = 17) HGSC (n = 51) MC (n = 11)

Patient age 0.95

Mean 63 64 63 61

Range 42–84 25–83 32–86 39–80

Overall Survival 0.45

0–2 y 2 (12) 1 (6) 2 (4) 3 (27)

2–5 y 3 (18) 5 (29) 17 (33) 2 (18)

5–10 y 7 (41) 5 (29) 19 (37) 3 (27)

>10 y 5 (29) 6 (35) 13 (25) 3 (27)

Cause of death 0.01

Ovarian carcinoma 10 (59) 3 (18) 33 (65) 2 (18)

Other cancer 0 (0) 3 (18) 7 (14) 3 (27)

Other 6 (35) 6 (35) 5 (10) 4 (36)

Not available 1 (6) 0 (0) 0 (0) 0 (0)

Alive 0 (0) 5 (29) 6 (12) 2 (18)

Stage 0.15

I 14 (82) 11 (65) 29 (57) 9 (82)

II 3 (18) 6 (35) 22 (43) 2 (18)

Tumor grade EC NA

FIGO grade I NA 2 (12) NA NA

FIGO grade II NA 9 (53) NA NA

FIGO grade III NA 6 (35) NA NA

CA125 0.068

<35 6 (35) 7 (41) 9 (18) 5 (45)

35–65 1 (6) 0 (0) 29 (57) 2 (18)

>65 10 (59) 10 (59) 13 (25) 4 (36)

Not available 0 (0) 0 (0) 0 (0) 0 (0)

Ploidy 0.095

Near diploid 1 (6) 7 (41) 15 (29) 2 (18)

Aneuploid 16 (94) 9 (53) 36 (71) 8 (73)

Not available 0 (0) 1 (6) 0 (0) 1 (9)

Chemotherapy NA

Yes 17 (100) 17 (100) 49 (96) 11 (100)

No 0 (0) 0 (0) 0 (0) 0 (0)

Not available 0 (0) 0 (0) 2 (4) 0 (0)

Table 2.  Clinicopathological features for the patient cohort (n = 96). Significant values (P value<0.05) are 
marked in bold.
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DNA methylation analysis.  DNA was extracted from fresh-frozen tumor tissues from 91/96 tumors (15 
CCC, 16 EC, 50 HGSC and 10 MC) that had sufficient tumor material remaining in the tumor bank using the 
Wizard Genomic DNA extraction kit (Promega), and purified with phenol‐chloroform purification. All sam-
ples had 260/280 ratios greater than 1.8 as measured with Nanodrop ND-1000 spectrophotometer (Nanodrop 
Technologies). The purified genomic DNA was analyzed with Illumina Infinium MethylationEPIC BeadChips 
(MethylationEPIC, v. 1.0; genomic build, v. 37) at the SNP&SEQ Technology Platform (Uppsala, Sweden).

The DNA methylation analyses were performed in R/Bioconductor (v. 3.6.0). Raw data were processed using 
the R package ChAMP (v. 2.14.0)30,31. More specifically, raw intensity data were generated from IDAT files and 
subjected to ChAMP default filtering steps (e.g. probes with detection P value>0.01, non-CpG probes, single 
nucleotide polymorphism (SNP)-related probes presented elsewhere32, and probes located on chromosome X 
and Y, were removed), resulting in 694,299 CpG sites. The BMIQ normalization method was used to adjust for 
differences in probe type (probe I/II) and corrections were made for batch effects (array, slide) using the myCom-
bat function in ChAMP (n = 679,259 CpG sites) including the sva package (v. 3.32.1) (Supplementary Fig. 1)33. 
Probe information including e.g. chromosome, gene, type of genomic regions (promoter region (200bp-1500bp 
upstream of transcriptional start sites, 1st exon, 5′ untranslated region (5′ UTR)), gene body, 3′UTR, intergenic 
region (IGR) and exon) and regions surrounding CpG islands (CpG islands (genomic region >200 bp long with 
>50% G and C nucleotide content), CpG shores (0–2 kb from CpG islands), CpG shelves (2–4 kb from CpG 
islands) and open sea (>4 kb from CpG islands)) was retrieved using probe.features in ChAMP, and enhancer 
information was added from the methylation EPIC manifest file (MethylationEPIC_v-1-0_B4_ManifestFile.csv). 
Beta value density plots were generated before and after normalization, as well as after batch correction to exam-
ine possible outliers. The 1000 most variable probes in the cohort were identified by ordering the batch corrected 
probes according to the greatest variance. Histotype-specific DMPs were identified using the limma package (v. 
3.40.2) with Benjamini-Hochberg adjusted P value<0.05 and >1.5 fold change, and a Venn diagram was con-
structed to visualize unique and overlapping DMPs between the histotypes34.

DNA copy number alteration analysis.  Unsegmented CNA data for single probe resolution was extracted 
from the batch corrected DNA methylation data (n = 91 patients) using the conumee package (v. 1.18.0) in R35. 
The CNA data was normalized using 52 control samples from healthy individuals in the CopyNumber450kData 
package (v. 1.8.0.) to correct for probe and sample bias36. Since the available control samples were from the 450k 
array, only common probes on the EPIC and 450k arrays could be evaluated, yielding 352,016 probes. Probe level, 
normalized CNA data was used as input to Nexus Copy Number (BioDiscovery, v. 7.5). CNAs were called based 
on the Rank segmentation algorithm (significance threshold 1.0E-5, maximum contiguous probe spacing 1000 
Kbp, minimum number of probes per segment 3), with log2 ratio thresholds for homozygous loss/deletion, het-
erozygous loss, gainset at ≤ −1, <−0.3, and >+0.3, respectively. Significant CNAs were below P value 0.05 and 
the differential threshold were set at 35% (i.e. the genetic aberrations were present in at least 35% of the tumor 
samples). DNA copy number variations (CNVs, i.e. 100% coverage between genomic regions and previously 
reported CNAs in the human genome) were further removed (n = 30). The CNA function in ChAMP was used to 
segment the CNA data. The CNA segments for each tumor sample were further evaluated for genomic instability 
related to chromothripsis-like patterns (CTLPs). CTLPs were detected using the web-based CTLPScanner (http://
cgma.scu.edu.cn/CTLPScanner/) with default settings (e.g. ≥20 copy number aberration status change times, ≥8 
log10 of likelihood ratio, ≥0.3 log2 ratio threshold for genomic gains, ≤-0.3 log2 ratio threshold for genomic 
losses)37,38. Known cancer genes within chromothripsis regions were identified using the Catalogue Of Somatic 
Mutations In Cancer (COSMIC)39.

Whole-transcriptome RNA sequencing analysis.  Aligned reads from NCBI Gene Expression Omnibus 
(http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE101108 were used for the RNA-seq analysis. 
One tumor sample (HGSC), had been removed due to poor mapping quality leading to an RNA-seq cohort of 95 
samples. The RNA-seq raw counts were converted to log2 scale and compared with the mean of normal ovarian 
samples (n = 30) downloaded from the Cancer Genome Atlas (TCGA), TCGA-OV data collection40. The normal 
ovarian carcinoma samples were processed in the same manner as the cohort RNA-seq raw counts21. The 1,000 
most variable transcripts across the cohort were identified by ordering the transcripts according to the great-
est variance. Differentially expressed genes (DEGs) between different histotypes were identified using DESeq. 2 
(v. 1.14.0) in R/Bioconductor41. Significant DEGs were set to Benjamini-Hochberg adjusted P value<0.05, and 
overexpression was set to log2 ratio>0.58 and underexpression to log2 ratio<−0.58. The molecular functions 
of the DEGs were examined using Ingenuity Pathway Analysis (IPA, Ingenuity Systems, Redwood City, USA). 
Mutations were identified using the Genome Analysis Toolkit (GATK) Best Practices protocol, subsequently 
annotated with ANNOVAR, and filtered with the 1000 Genomes Project dataset and dbSNP, as previously 
described21,42–44.

Integrative RNA sequencing, DNA methylation and DNA copy number alteration analyses.  
Differentially expressed genes between histotypes were used in the integrative analysis. The differentially meth-
ylated probe (DMP) function in ChAMP was used to identify statistically significant DMPs between histotypes 
(Benjamini-Hochberg adjusted P value<0.05). Genes spanning differential CNAs between histotypes were 
identified using Nexus Copy Number Discovery with a P value cutoff at 0.05 and a differential threshold set at 
25% (all CNVs were removed). For each dataset (RNA-seq, DNA methylation, DNA copy number alteration), 
a comparative analysis was performed between the following histotypes: CCC vs MC, EC vs CCC, EC vs MC, 
HGSC vs CCC, HGSC vs EC, and HGSC vs MC. The comparative analyses were then integrated to identify 
putative oncogenes (1. overexpressed, hypomethylated, and CNA gain, 2. overexpressed and hypomethylated or 
3. overexpressed and CNA gain) and tumor suppressors (1. underexpressed, hypermethylated, and CNA loss, 2. 
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underexpressed and hypermethylated or 3. underexpressed and CNA loss). CNA plots for chromosomes 1 to 22, 
and zoom-ins on specific chromosomes were generated with the conumee package, with copy number loss and 
copy number gain. Cluster-of-cluster analysis (COCA) integrating RNA-seq, DNA methylation and CNA data 
(same input data as for the hierarchical clustering) was performed using the coca R package (v. 1.0.2)12.

Statistical analysis.  The statistical analyses were performed in R/Bioconductor using two-sided P val-
ues<0.05. Heatmaps were constructed using pheatmap (v. 1.0.12)45. The Ward’s method was used for the hierar-
chical clustering of histotypes and Canberra distance measure was used to calculate the distance between different 
samples to examine the similarity between two samples. The yarr package (v. 0.1.5) was used to compile an RDI 
(Raw data, Descriptive, Inference statistics) plot to visualize the differences in DNA methylation and RNA-seq 
levels for the 1000 most variable transcripts/probes between the histotypes46.

Data availability
The datasets analyzed in this study can be found in the NCBI Gene Expression Omnibus (http://www.ncbi.nlm.
nih.gov/geo/) (GSE40744).
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