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Introduction
Alterations in nuclear shape and positioning are often associ-
ated with changes in the behavior of cells (Starr and Fridolfsson, 
2010). Recent studies proposed that tissue stiffness affects the 
levels of the nuclear lamina protein lamin A/C, resulting in 
altered transcriptional regulation (Simon and Wilson, 2011; 
Burke and Stewart, 2013; Zwerger et al., 2013; Fedorchak et al., 
2014; Swift and Discher, 2014).

Muscles exhibit inherently altered biomechanical proper-
ties and therefore should develop a specific strategy to keep nu-
clear morphology intact. Myonuclei in striated muscles face 
variable cytoplasmic strain exerted by the tightly associated sar-
colemma and the axial contractile forces. How the myonuclei 
resist these forces has yet to be elucidated.

Recent evidence has revealed the unique contribution of 
the microtubule (MT)-based cytoskeleton to nuclear shape and 
positioning in muscle fibers (Oddoux et al., 2013; Wilson and 
Holzbaur, 2015). In addition, various MT-associated proteins 
(MAPs), including dynein, kinesin, and MAP7/Esconsin, were 
shown to be essential for myonuclear positioning in striated  
muscles (Folker et al., 2012, 2014; Metzger et al., 2012; Wilson 
and Holzbaur, 2012). Furthermore, proteins of the linker of 
nucleoskeleton and cytoskeleton (LINC) complex, includ-
ing the Klarsicht, ANC-1, Syne homology (KASH) proteins 

MSP300 and Klar and the Sad1p, UNC-84 (SUN) protein 
Klaroid (Elhanany-Tamir et al., 2012), are critical for mainte-
nance of myonuclear positioning and shape. However, a direct 
connection between LINC proteins and the MT network has 
yet to be established.

In this work, we identify two additional cytoplasmic 
components, namely EB1 and Shot, that function together with 
MSP300 to maintain myonuclear morphology. Importantly, 
we show that the MSP300 protein exhibits elastic properties, 
helping the myonuclei to resist cytoplasmic strain. Finally, we 
demonstrate a link between the aberrant nuclear architecture 
detected in mutant muscles and altered levels of nuclear regula-
tory proteins.

Results and discussion
Identification of novel factors mediating 
myonuclear shape
To identify novel elements mediating nuclear positioning and 
shape in Drosophila melanogaster larval muscles, an RNAi-
based screen of 58 candidate genes expressed in myogenic 
tissues was performed using a muscle-specific driver. Results 
showed that relative to the control (Fig. 1 A), the myonuclei 

Muscle nuclei are exposed to variable cytoplasmic 
strain produced by muscle contraction and re-
laxation, but their morphology remains stable. 

Still, the mechanism responsible for maintaining myonu-
clear architecture, and its importance, is currently elusive. 
Herein, we uncovered a unique myonuclear scaffold in 
Drosophila melanogaster larval muscles, exhibiting both 
elastic features contributed by the stretching capacity of 
MSP300 (nesprin) and rigidity provided by a perinuclear 
network of microtubules stabilized by Shot (spectraplakin) 

and EB1. Together, they form a flexible perinuclear shield 
that protects myonuclei from intrinsic or extrinsic forces. 
The loss of this scaffold resulted in significantly aberrant 
nuclear morphology and subsequently reduced levels of 
essential nuclear factors such as lamin A/C, lamin B, and 
HP1. Overall, we propose a novel mechanism for main-
taining myonuclear morphology and reveal its critical link 
to correct levels of nuclear factors in differentiated muscle 
fibers. These findings may shed light on the underlying 
mechanism of various muscular dystrophies.
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Shot protein was previously shown to cross-link MTs 
with the actin-based cytoskeleton (Lee and Kolodziej, 2002; 
Applewhite et al., 2010). However, our analysis reveals that in 
muscles, Shot does not function as an MT-actin cross-linker, 
but rather contributes to recruiting MTs and excluding F-actin from 
the perinuclear region. A recent report demonstrated that Shot 
N-terminal CH-actin–binding domain is auto-inhibited by its  
C-terminal GAS2 domain when bound to EB1 (Applewhite  
et al., 2013). Consistent with this report, the perinuclear Shot–
EB1–MT complex might inhibit interaction of Shot with F-actin 
at this region.

Collectively, these results indicate that the Shot–EB1 com-
plex maintains nuclear morphology by mediating the assembly 
of the MT perinuclear network and repressing the assembly of 
sarcomeric F-actin in this region.

Perinuclear distribution of MSP300 
depends on Shot function
MSP300 is essential for the organization of the MT network 
(Elhanany-Tamir et al., 2012). We therefore proceeded to exam-
ine whether a functional link between Shot and MSP300 exists. 
Co-staining of wild-type (WT) larval muscles with anti-Shot 
and anti-MSP300 antibodies showed partial overlap in the peri-
nuclear region (Fig. 3, A–C). It is noteworthy that the monoclo-
nal anti-Shot (mAbRod1; Lee et al., 2003) may only detect a 
subset of all 22 annotated isoforms (Fig. S2), explaining the 
discrepancy in staining patterns between polyclonal (Fig. 1 E) 
and monoclonal (Fig. 3 A) anti-Shot antibodies. Furthermore, 
muscles of double-heterozygous Msp3003/shotSF20 larvae showed 
specific defects in myonuclear shape and spacing relative to 
control heterozygous Msp3003/CyO or shotSF20/+ muscles 
(Fig. 3, D–F; and Fig. 1 I‴), which indicates functional coopera-
tion between both gene products.

Further analysis revealed that the distribution of MSP300 at 
the nuclear ring and between proximal nuclei was severely im-
paired in shot-KD muscles (Fig. 3, G–L), whereas its localiza-
tion at the Z-bands was still prominent (Fig. 3 J and Fig. S1). This 
might reflect a differential sensitivity of distinct protein isoforms 
of MSP300 to Shot activity. In a reciprocal experiment, Shot 
perinuclear distribution was examined in mutant larvae of the  
hypomorphic Msp300MB00410 allele, which was used to eliminate 
possible secondary effects from the severely defective muscles of 
Msp3003. In these muscles, Shot perinuclear distribution was 
partially detected, but its typical perinuclear filamentous distri-
bution vanished (Fig. 3, M–R). Collectively, these results sug-
gest that MSP300 perinuclear distribution is stabilized by Shot 
function, whereas Shot association with the nuclear membrane is 
partially independent of MSP300, and is possibly maintained by 
its interaction with the perinuclear MT and EB1.

Myonuclear morphology is maintained 
during application of external force  
on larval muscles
Muscles are exposed to variable cytoplasmic strain during  
contraction–relaxation waves. To address the contribution of 
MSP300 and Shot to myonuclear morphology under strain, we 
tested the effect of tensile stresses on nuclear morphology. For a 

in both short stop (shot) and Eb1 knockdown (KD) larvae ex-
hibited abnormal shape reminiscent of Msp300 mutants (Fig. 1,  
B–D). In shot-RNAi larvae, 90% (n = 80 muscles) of the ds-RNA 
line JF02971 and 86.2% (n = 80 muscles) of the ds-RNAi line 
GL01286 exhibited defective nuclear positioning, abnormal shape, 
or both. In Eb1-RNAi lines, 63.11% (n = 507 muscles) of ds-RNA 
line HM05093 and 51.5% (n = 240 muscles) of ds-RNAi line 
GL00559 exhibited abnormal nuclear shape phenotype. In com-
parison, a control using UAS-VALIUM10-luciferase displayed 
only 5.2% (n = 487 muscles) aberrant nuclear morphology.

Shot, the only Drosophila spectraplakin (Suozzi et al., 
2012), and EB1 are both MAPs that were previously shown to 
form a protein complex where EB1 is an MT plus end–binding 
protein, and Shot contains N-terminal calponin homology  
(CH) domains and C-terminal MT and EB1 binding domains 
(Subramanian et al., 2003; Slep et al., 2005; Alves-Silva et al., 
2012). The distance between myonuclei in shot-KD, but not in 
Eb1-KD muscles, was decreased so that the nuclei often formed 
aggregates (Fig. 1, C and I; compare with Fig. 1 I), which is 
reminiscent of Msp300 (Fig. 1 B, I) and klar mutant muscles 
(Elhanany-Tamir et al., 2012). In addition, whereas the sarco-
meric organization of shot-KD muscles was relatively normal, 
Eb1-KD muscles exhibited irregularity in the distances between 
Z-bands (Fig. 1 D and Fig. S1, A and B).

Examination of the relative spatial distribution of Shot, 
EB1, and the MT network showed unequivocal colocalization 
of Shot and EB1 at the perinuclear region (Fig. 1, E–H). The 
MT exhibited an elaborate perinuclear network and both Shot 
and EB1 distributions overlapped along the nuclear envelope. 
These results implicated Shot and EB1 as essential components 
required for the maintenance of myonuclear shape in muscles.

Shot and EB1 are required to maintain 
the perinuclear MT network and to inhibit 
perinuclear F-actin distribution
Further analysis of the nuclear shape indicated that in contrast 
to the flat and oval shape of control myonuclei, both Eb1-KD 
and shot-KD muscles contained nuclei that on average were 
significantly more spherical and exhibited a high degree of 
variability in their dimensions (Fig. 2, A and B). Examina-
tion of the MT perinuclear network revealed that in both Eb1-
KD and shot-KD muscles, MT distribution was disarranged  
(Fig. 2, C–E). In these muscles, fewer MT filaments were  
detected and individual MT filaments often appeared bent (Fig. 2,  
C–E and L). The disruption in the perinuclear MT network in 
both mutants correlated with the degree of abnormality in nu-
clear morphology.

This suggests that MTs play a dual role in controlling 
muscle nuclei: to maintain nuclear shape, which depends on 
both Shot and EB1 function, and to regulate nuclear position 
within the muscle fiber, requiring Shot but not EB1 function.

Interestingly, in both shot-KD and Eb1-KD muscles, in-
tense accumulation of ectopic sarcomeric F-actin was observed 
in the vicinity of the myonuclei (Fig. 2, F–H; and Fig. S1 C). 
This indicates that Shot and EB1, as well as the perinuclear MT 
organization, inhibit sarcomeric actin distribution at the vicinity 
of the myonuclei.

http://www.jcb.org/cgi/content/full/jcb.201408098/DC1
http://www.jcb.org/cgi/content/full/jcb.201408098/DC1


531Nesprin cooperates with spectraplakin and EB1 • Wang et al.

Figure 1.  Shot and EB1 are essential to maintain myonuclear morphology. (A–D) Larval muscles labeled with phalloidin (red) and laminDm0 (green) in 
control (A), Msp3003 (B), muscle-specific knockdown of shot (C) or Eb1 (D) using Mef2-Gal4 driver; maximal projections are shown. (E–H) Single optical 
sections of larval muscles triple-labeled with anti-Shot (E and H, green), anti–-tubulin (F and H, red), and anti-EB1 (G and H). Bars, 10 µm. Yellow arrow-
heads indicate aberrant distance between Z-bands (see also Fig. S1 B). (I–I‴) Measurements of internuclear distances in Msp3003 (green versus control 
in blue), shot-KD (violet versus control in beige), Eb1-KD (red versus control in yellow), and Msp3003/shotSF20 trans-heterozygotes (gray versus control 
Msp3003/CyO heterozygotes in green) are given.

http://www.jcb.org/cgi/content/full/jcb.201408098/DC1
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its distribution was slightly reduced in stretched larvae, possibly 
due to a limited degree of freedom induced by muscle stretch-
ing. Nuclear resistance to stretching implies the existence of 
a mechanism that protects and maintains nuclear morphology 
during the application of external force.

High-resolution analysis of MSP300 distribution before 
stretching revealed reiterated dots evenly spaced along thin fila-
ments (Fig. 4, F, G, and H). Since the antibody for MSP300 was 
raised against a region with multiple spectrin repeats (Fig. S2; 
Volk, 1992), we reasoned that these dots might represent reiter-
ated spectrin-repeat epitopes distributed along filaments of 
MSP300 oligomers (see scheme in Fig. 4 E). Strikingly, after 

stress test, intact larvae were stretched to up to 1.5-fold their nor-
mal length and analyzed (see Materials and methods for details).

Fig. 4 shows that the distribution of the perinuclear MT 
network in stretched muscles was similar to that of control 
muscles (Fig. 4, A and B). In contrast, the perinuclear ring 
of MSP300 expanded in the direction of muscle stretching, re-
flecting the anisotropic strain applied on the nucleus (Fig. 4,  
A and B, arrowheads). This suggested that whereas perinuclear 
MSP300 responds to external strain, the perinuclear MT net-
work retains its position. Comparison of nuclear dimensions of 
stretched versus nonstretched larvae (Fig. 4 C) revealed no sig-
nificant alternations in the aspect ratio of myonuclei, although 

Figure 2.  Shot and EB1 recruit a perinuclear MT scaffold and inhibit perinuclear sarcomeric F-actin. (A and B) Quantification of nuclear sphericity (A) and 
nuclear dimensions (B) in control, Eb1-KD, and shot-KD muscles. (C–E) Perinuclear MT in control (C), muscle-specific Eb1-KD (D), or shot-KD (E) colabeled with 
anti–-tubulin (white) and anti-lamin B/Dm0 (blue). Yellow arrows indicate aberrant MT distribution. (F–K) Ectopic sarcomeric F-actin labeled with phalloidin 
(white) in control (F and I), Eb1-KD (G and J), and shot-KD (H and K) muscles; the nuclei are labeled with anti-lamin B/Dm0 (blue). I, J, and K are orthogonal 
views of F, G, and H. Yellow arrowheads indicate ectopic actin. (L) Quantification of MT filaments per nuclear area. Bars, 10 µm. ***, P < 0.001.
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force insulation for the myonuclei during muscle contraction 
(see model in Fig. 5).

Because Msp3003 mutant larvae were too fragile, it was 
technically unfeasible to assess the effect of muscle stretching 
on their myonuclear morphology. Instead, we analyzed this ef-
fect in shot-KD muscles. In these muscles, the perpendicular 
MSP300 filaments emerging from the nuclear envelope were 
partially missing (Fig. 4, N and O), and therefore the elastic 
shield of MSP300 was removed. The nuclear dimensions were 
variable even before larval stretching and were not signifi-
cantly altered after stretching (Fig. 4 D, blue versus green dots).  
Collectively, these results indicate that the combination of 

Figure 3.  MSP300 perinuclear distribution 
depends on Shot function. (A–C) WT myo-
nucleus double-labeled with Shot (A, green) 
and MSP300 (B, red) and their overlay (C) de-
tected in a single optical section. (D–F) Larval 
muscles labeled with phalloidin (red) and Lamin 
B/Dm0 (green) of shot/CyO heterozygote (D), 
Msp300/CyO heterozygote (E), and shot/
Msp300 trans-heterozygous larvae (F). (G–Q) 
Larval muscles labeled with anti-MSP300 (red; 
G, H, I, J, K, and L) and LaminDm0 (green), or 
with anti-Shot (red; M, N, O, P, Q, and R) and 
LaminDm0 (green) of control (G, H, I, I, M, N, 
O, and O), shot-muscle KD (J, K, L, and L), or 
Msp300 hypomorphic alleles (Msp300MB00410; 
P, Q, R, and R). Corresponding orthogonal 
sections are shown in H, K, N, and Q, respec-
tively. (I–R’) Higher magnifications of single 
nucleus; black and white images are corre-
sponding images of either MSP300 (I and L) 
or Shot (O and R). Bars, 10 µm.

larval stretching, the distance between these dots increased by 
1.2-fold (Fig. 4, I, J, K, and F), indicating that the MSP300 fila-
ments exhibit elastic properties, extending in response to strain 
(Fig. 4 E). Of note, mammalian Nesprin isoforms contain mul-
tiple spectrin repeats (Lu et al., 2012; Rajgor and Shanahan, 
2013; Luxton and Starr, 2014), which might similarly exhibit 
elastic properties required for myonuclear protection during 
muscle contraction.

The MSP300 filaments were arranged as a tangential peri-
nuclear ring (Fig. 4 K, yellow curve) as well as radial filaments 
emanating from the nuclear membrane toward the ring (Fig. 4, 
L and M, yellow arrowheads). This organization might provide 
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the Msp300 mutants, whereas in klar they were slightly elevated. 
HP1 nuclear levels were dramatically decreased in klar (60% 
of control) as well as in both Msp300 alleles (35% of control 
in the strong and 75% in the mild allele; Fig. 5 A, data for 
Msp300MB00410 is not shown). Interestingly, in shot-KD muscles 
the HP1 level remained unchanged, whereas Lamin A/C and B 
levels were slightly increased (Fig. 5 J).

These results indicate that aberrant nuclear morphology 
leads to altered nuclear levels of essential regulatory fac-
tors. Significantly, mutants of both KASH proteins Msp300 
and klar exhibited a reduction in HP1 and lamin A/C levels, 
whereas in shot-KD muscles an opposite tendency was ob-
served. As a possible explanation, based on observed nuclear  
phenotypes, we postulate that in both klar and Msp300 mutant 
muscles the myonuclei lose their association with the sarco-
meres facing reduced cytoplasmic strain, leading to decreased 
lamin A/C and HP1 levels. However, in shot-KD muscles, 
the nuclei are partially attached to the sarcomeres facing el-
evated cytoplasmic strain, leading to the increased level of 
lamin A/C.

In summary, our results demonstrate a mechanistic strat-
egy in which musculature adapts to protect its nuclei from 

Shot-dependent perinuclear distribution of elastic MSP300 fila-
ments and the rigid MT network is indispensable for the main-
tenance of intact myonuclear morphology.

Aberrant myonuclear shape alters  
the nuclear distribution of Lamin  
A/C, Lamin B, and HP1
Next, we examined the relation between nuclear morphol-
ogy and the levels of the nuclear factors lamin A/C, lamin B 
(Dm0), and Heterochromatin Protein 1 (HP1), all of which 
contribute to the chromatin state of the nucleus. To assess nu-
clear distribution of these factors, mean levels of fluorescent 
intensity were calculated per nuclear area. We analyzed ho-
mozygous klar1–18 (null allele), strong (Msp3003) as well as 
mild Msp300 (Msp300MB00410) alleles, and shot-KD mutant 
muscles, all of which displayed variable degree of aberrant nu-
clear morphology. Representative examples are shown in Fig. 5  
(A–H). Our measurements revealed a decrease of lamin A/C 
levels in Msp300 as well as in klar mutants. The most severe 
reduction was observed in Msp3003. Interestingly lamin A/C  
appeared in aggregates in klar mutant muscles, implicating  
aberrant distribution (Fig. 5 F). Lamin B levels dropped only in 

Figure 4.  The effect of muscle stretching on nuclear shape and MSP300 conformation. (A–B) Representative nuclei from nonstretched (A–A) versus 
stretched (B–B) larval muscle labeled with MSP300 (red; A, A, B, and B), anti–-tubulin (green; A, A, B, and B), and lamin B/Dm0 (blue). Deconvolu-
tion was applied to A–B. Arrowheads in A and B indicate the MSP300 nuclear ring. (C and D) Scatter plots of myonuclear dimensions of nonstretched 
(black/blue dots) and stretched (red/green dots) muscles of WT (C) and shot-KD (D). The slope (linear regression) of the dot plots indicates the aspect ratio: 
for control, neutral n = 334, stretched n = 335; for shot-KD, neutral n = 200, stretched n = 232. The assays were performed at least twice for each group. 
(G–O) High magnification of anti-MSP300 (white) staining pattern in nonstretched (G and H) versus stretched (I, J, and K) WT muscle. (F) Quantification of 
the distance between the dots of MSP300 spectrin repeat epitopes in neutral and stretched larvae (model in E). The mean distance increases from 634 ± 
4.09 nm to 759 ± 4.76 nm in stretched larvae (mean ± SEM, n = 605 each, P < 0.0001). Centered lines show the medians, box limits indicate the 25th 
and 75th percentiles as determined by R software, whiskers extend to the 5th and 95th percentiles, and outliers are represented by dots. Notches indicate 
95% confidence that two medians differ significantly. (L–O) Perpendicular MSP300 filaments emanate from the nuclear membrane to the peripheral 
MSP300 ring in WT (L and M) and shot-KD (N and O) myonuclei.
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absorbing the contractile cytoplasmic strain, thereby preserving 
nuclear morphology during muscle contractions. The mainte-
nance and assembly of these integral components are intercon-
nected, possibly through the MT network. In humans, the loss 
of either Nesprin 1 or 2 has been linked to several muscular 
dystrophies, including Emery-Dreifuss muscular dystrophy 
(EDMD; Zhang et al., 2007; Stewart-Hutchinson et al., 2008; 
Puckelwartz et al., 2009), cardiomyopathies (Puckelwartz et al., 
2010; Banerjee et al., 2014), arthrogryposis (Attali et al., 2009), 
and autosomal recessive cerebellar ataxia (ARCA1; Gros-Louis 

strain-induced damage; this consists of two distinct but inter-
dependent structural components (Fig. 5, K and L). The first 
is a rigid and dense nuclear-associated network of MTs that is 
stabilized by Shot-EB1, which physically wraps and protects 
each of the myonuclei and is less sensitive to extra nuclear 
strain. Such a network exhibits a limited capacity to change 
during contraction. The second exhibits elastic properties pro-
vided by perinuclear MSP300 filaments that emanate from the 
nuclear envelope and associate with the MSP300 perinuclear 
ring. Together, both components form a shield capable of 

Figure 5.  Aberrant nuclear morphology correlates with changes in HP1 and Lamins. (A–H) Representative myonuclei of control (A and E), klar (B and F), 
Msp300 (C and G), and shot-KD (D and H) labeled with HP1 (red) and DAPI (blue; A–D), or with anti-lamin A/C (green; E–J). Bars, 10 µm. (I and J) 
Quantification of the nuclear fluorescent intensities of HP1, lamin A/C, and lamin Dm0 in control, klar, and Msp300 (I) or in control and shot-KD (J) mutant 
muscles. The values are as follows. For HP1, WT 138.2 ± 2.070, n = 320; klar1-18 83.51 ± 1.803, n = 316; Msp3003 48.93 ± 1.724, n = 319; P < 
0.0001. For Lamin A/C, WT 142.8 ± 1.791, n = 287; klar1-18 128.0 ± 2.756, n = 295; Msp3003’ 94.72 ± 2.113, n = 298; P < 0.0001. For Lamin 
Dm0, WT 112.7 ± 2.147, n = 306; klar1-18 130.1 ± 1.782, n = 300; Msp3003’ 90.66 ± 1.532, n = 302; P < 0.0001. For HP1, WT 104.5 ± 1.526, 
n = 303; shot-KD 104.0 ± 1.523, n = 303; no significant difference. For Lamin A/C, WT 115.7 ± 1.444, n = 309; shot-KD 137.3 ± 2.070, n = 309;  
P < 0.0001; for Lamin Dm0, WT 113.2 ± 1.878, n = 303; shot-KD 139.5 ± 1.534, n = 304. P < 0.0001. ***, P < 0.0001. (K and L) A schematic 
model describing the cytoskeletal elements required for maintenance of myonuclear shape. (K) The lower half of the myonucleus facing the sarcomeric 
myofilaments, and surrounded by MSP300 nuclear ring attached to the nucleus through KASH–SUN interactions. (L) The upper half of the myonucleus, 
facing the sarcolemma, covered by a web of MTs associated with the outer nuclear membrane by Shot, EB1, and MSP300. The direction of contraction 
is indicated by the arrows.
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Secondary antibodies conjugated with Cy3, Cy5, and Cy2 raised 
against guinea pig, mouse, and rabbit were purchased from Jackson Immuno
Research Laboratories. Alexa Fluor 488 Phalloidin (Invitrogen) was used at 
1:200. DAPI (1 µg/ml; Sigma-Aldrich) was used for labeling of nuclei.

Microscopy and image analysis
Microscopic images were acquired at 23°C with confocal microscopes 
(LSM 710/780; Carl Zeiss) using ZEN 2012 software and the following 
lenses: Plan-Apochromat 20×/0.8 NA M27, C-Apochromat 40×/1.20 
NA W Korr M27, and Plan-Apochromat 63×/1.40 NA oil differential 
interference contrast (DIC) M27. Immersion medium Immersol W 2010 
(ne = 1.3339) and Immersion oil Immersol 518 F (ne = 1.518) were used, 
respectively. For quantitative analysis, photon-counting mode was applied. 
Images were analyzed with Fiji v1.48 (Schindelin et al., 2012). 3D decon-
volution was performed with Huygens Professional 14.06 Beta (Scientific 
Volume Imaging). Figure panels were finally assembled using CorelDRAW 
X4 (Corel Corporation).

Statistical analysis
Statistical analysis was performed using SPSS software (IBM SPSS for Win-
dows, Version 19) and GraphPad Prism 6 demo (GraphPad Software, 
Inc.). Measurements were evaluated using variance analysis followed by a 
two-tailed Student’s t test with Welch correction for post hoc comparison. 
Differences among multiple groups were analyzed by one-way ANOVA 
with a post hoc Bonferroni test. P-values <0.05 were considered statisti-
cally significant. Data are presented as mean ± SEM.

BoxPlotR was used to generate the notched box plots (Spitzer  
et al., 2014), in which the center lines show the medians, box limits indi-
cate the 25th and 75th percentiles as determined by R software, whiskers 
extend to the 5th and 95th percentiles, outliers (data points beyond the 
95% confidence intervals) are represented by dots, crosses represent 
sample means, and bars indicate 95% confidence intervals of the means. 
The notches are defined as ±1.58 × IQR/sqrt(n) and represent the 95% 
confidence interval for each median. Non-overlapping notches give 
roughly 95% confidence that two medians differ significantly. All experi-
ments were performed at least twice independently and in at least six 
randomly selected larvae.

Quantification of fluorescent intensity
For assessment of nuclear factor distribution, overall levels of nuclear fluor
escence intensity were calculated by Fiji in a single confocal section. Control 
and mutant samples were labeled simultaneously under identical conditions 
and visualized using the same microscopic setting; photon counting mode 
was chosen when applicable. Fluorescent intensity as detected by DAPI 
staining was measured per nuclear area in order to bypass nuclear size 
variation in the mutant muscles.

For each allele, 300 myonuclei were measured from at least six 
individual animals for each condition. The same UAS-RNAi line without 
Mef2-Gal4 was used as a control.

Quantification of nuclear shape
To measure the shape of muscle nuclei, we stained larval body wall mus-
cles with LaminDm0 antibody along with phalloidin and selected confocal 
stacks with high resolution and low background. Then the LaminDm0 chan-
nel was converted into an 8-bit grayscale stack and automatic quantifica-
tions were performed by using the plugin “3D Objects Counter” of Fiji.

All nonmuscle nuclei and myonuclei on any edge of the stacks, in-
cluding incomplete nuclei, were discarded. Nuclear aggregates were not 
taken into account. The surface (An) and the volume (Vn) of each nucleus, 
namely the number of pixels forming the structures and its surface, respec-
tively, were used to calculate the sphericity () according to the mathemati-
cal definition  = ^(1/3)(6Vn)^(2/3)/An. For calculation of the aspect 
ratio, bounding box dimensions of single myonucleus were used.

Online supplemental material
Fig. S1 shows several aspects relevant to the results (for more details, see 
the figure legend). Fig. S2 illustrates the annotated isoforms of MSP300 
and Shot, as well as antibody epitopes mentioned in this work. Table S1 
lists information about all fly stocks that were used. Table S2 includes in-
formation about all the primary antibodies used in this study. Online sup-
plemental material is available at http://www.jcb.org/cgi/content/full/ 
jcb.201408098/DC1.

We thank the Bloomington Stock Centre for various fly lines and the DSHB. 
We thank the Transgenic RNAi Project at Harvard Medical School (National 
Institutes of Health/NIGMS R01-GM084947) for providing transgenic RNAi 

et al., 2007). We suggest that a primary defect in these diseases 
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Materials and methods
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ously (Schnorrer et al., 2010). Progenies were kept at 25°C and then 
transferred to 29°C to achieve a higher degree of knockdown. For verifica-
tion of each target gene, at least two stocks carrying independent dsRNA 
sequences were used.

All stocks used in this manuscript are listed in Table S1. The Msp3003 
strain (also known as Msp3003prime, FBal0218044) was a gift from S. Roth 
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cles (Fig. S1 C).
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Microscopy Sciences) and completely immersed in PBS. Next, the body 
cavity was opened with iridectomy scissors along the dorsal midline. All in-
ternal organs were removed and the body wall was spread apart and fixed 
with additional pins. The images of muscles 6 and 7 were analyzed.

Larval stretching
During the natural crawling process, Drosophila third instar larvae are 
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(Heckscher et al., 2012). To determine the mechanical stability of the de-
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Immunofluorescence
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applied in order to avoid destruction of native F-actin or chromosomal mor-
phology. To minimize damage to MTs, fixation time was limited to 20 min, 
followed by several cycles of washing with PBS with 0.1% Triton X-100 on 
a horizontal shaker with gentle agitation.

To preserve MTs for costaining, dissected larvae were fixed with 
cold methanol (20°C) twice for 5 and 10 min, respectively, then rehy-
drated in PBS and rinsed several times with PBS. Subsequently, the larvae 
were fixed with 4% paraformaldehyde. Image analyses were consistently 
performed on muscles 6 and 7.

All specimens were mounted in Thermo Scientific Shandon Immu-
Mount for microscopy (Thermo Fisher Scientific).

Antibodies
The following primary antibodies were obtained from the Developmental 
Studies Hybridoma Bank (DSHB): anti-Shot mAbRod1 (1:200 concentra-
tion; Lee et al., 2003), anti-laminC (LC28.26, 1:200 concentration; Riemer 
et al., 1995), and anti-HP1 (C1A9, 1:10 supernatant; James and Elgin, 
1986). Other antibodies used included guinea pig anti-MSP300 (Volk, 
1992), 1:200 guinea pig anti-Shot (Strumpf and Volk, 1998), 1:200 mono-
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