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A B S T R A C T   

In the frames of a One Health strategy, i.e. a strategy should be able to predict susceptibility to infection in both 
humans and animals, developing a SARS-CoV-2 mutation tracking system is a goal. We observed that the 
phylogenetic proximity of vertebrate ACE2 receptors does not affect the binding energy for the viral spike 
protein. However, all viral variants seem to bind ACE2 better in many animals than in humans. Moreover, two 
observations highlight that the evolution of the virus started at the beginning of 2020 and culminated with the 
appearance of the variants. First, codon usage analysis shows that the B.1.1.7 (alpha), B.1.351 (beta) and 
B.1.617.2 (delta) variants, similar in the use of codons, are also similar to a virus sampled in January 2020. 
Second, the host-specific D614G mutation becomes prevalent starting from March 2020. Overall, we show that 
SARS-CoV-2 undergoes a process of molecular evolution that begins with the optimization of codons followed by 
the functional optimization of the spike protein.   

1. Introduction 

A strategy to identify the host animal (‘reservoir’) of SARS-CoV-2 
stands on the analysis of how the virus uses codons (‘codon usage’). 
The codon usage pattern of SARS-CoV-2 is similar to that of bat and 
human SARS-CoVs, although some (membrane protein-coding) genes 
are more similar to pangolin virus P1E [1], while others (orf1ab, spike, 
and nucleocapsid) show a codon usage pattern more similar to RaTG13 
[1,2]. Spike and membrane protein-coding genes also undergo different 
evolutionary pressures [1]. Notably, the E gene of SARS-CoV-2 has the 
highest codon usage bias and appears to be under natural selection [3]. 

Most of the SARS-CoV-2 high-frequency codons end in A or T [2,4]. 
In addition, SARS-CoV-2 uses pyrimidine-rich codons more smoothly 
[4]. Also, SARS-CoV-2 has significantly lower GC compared to humans 
but, notably, its codon composition strongly correlates with that of some 
human genes expressed in the lung, suggesting that the GC content is 
crucial for adaptation to (a) specific host tissue(s) [4,5]. Adaptation to 
the human host is also supported by dinucleotide analysis: UG and CA 
dinucleotides are found to be preferred in SARS-CoV-2; in contrast, CG 

dinucleotide is avoided [6]. 
Besides similarity in codon usage, the binding energy between 

Receptor-Binding Domain (RBD) and Angiotensin-Converting Enzyme 2 
(ACE2) also deserves attention. Computational methods have been used 
to estimate binding energy and similarity between ACE2 and RBD, from 
both human and vertebrates, with a focus on RaTG13 and Pangolin-CoV 
Spike proteins [7–9]. 

In these frames, we used a docking method whereby the N501Y 
mutation is predicted to increase ACE2 binding energy by ~ − 20 Kcal/ 
mol [10]. The prediction is now confirmed by both experimental and 
epidemiological data. In fact, N501Y influences protein S affinity for the 
receptor enhancing infectivity of the virus and, possibly, virulence 
[11,12], and all the most widespread variants in mid-2021 (June 2021), 
i.e., B.1.1.7 (alpha), B.1.351 (beta) and P.1 (gamma) show the N501Y 
mutation, despite their distinct geographical origin (United Kingdom, 
South Africa, and Brazil, respectively). However, at the end of 2021 
(November 2021), the most common variant is B.1.617.2 (delta). This 
variant does not have the amino acid substitution N501Y but exhibits 
two other substitutions: L452R and T478K. As reported by an in vitro 
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neutralizing assay performed with pseudo-typed viruses, L452R in-
creases resistance to some monoclonal antibodies [13], while in-field 
observations suggest that administering one dose of the BNT162b2 
vaccine produces 5.8 times lower neutralizing activity for variant 
B.1.617.2 (delta) than for variant B.1.1.7 (alpha). On the other hand, the 
administration of two doses restores the neutralizing effect [14]. 
Moreover, the two mutations also increase the binding affinity between 
ACE2 and RBD [15]. Following this line of reasoning, another mutation 
functionally emerges in B.1.617.2 (delta) variant, i.e. P681R, which 
instead of operating on ACE2 receptor binding seems to primarily act on 

S1/S2 cleavage by furin [16]. 
Another amino acid variation of the spike protein, which appeared in 

mid-2020 and then became prevalent, is D614G [17,18]. Present in 
B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma) and B.1.617.2 (delta) 
variants, it correlates with increased viral replication in the human lung 
epithelium, but it does not influence antibody-based neutralization 
[19,20]. 

In this study, we used codon analysis to compare human SARS-like 
(including SARS-CoV), and bovine, bat, and other mammalian viruses. 
The analysis included B.1.1.7 (alpha), B.1.351 (beta), and B.1.617.2 

Fig. 1. Binding energy estimation between ACE2 of vertebrates and RBD of SARS-CoV-2 and phylogenetic relationship between the ACE2 protein sequences. A) 
Phylogenetic tree showing the relationship between ACE2 of the selected vertebrates and binding energy between ACE2 proteins from vertebrates and RBD of SARS- 
CoV-2. B) Overall results obtained considering the reported class of vertebrates. 
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(delta) SARS-CoV-2. We used docking to investigate the relationships 
between phylogeny and the binding energy of RBD and ACE2. Docking 
simulations, initially performed using the RBD of SARS-CoV-2 (WT, 
Wuhan strain, S lineage), were extended using the RBD of the variant 
viruses B.1.1.7 (alpha), B.1.351 (beta), and B.1.617.2 (delta). 

2. Methods 

Sequences were downloaded from NCBI or UniProt. We used MOD-
ELLER v.10.1 to model ACE2 [21]. ACE2 N-terminal signal sequence 
was predicted using SignalP v.5 [22] and eliminated from the models. 
Phylogenetic analysis was performed using MEGA X [23], while we used 
ClustalO to align sequences [24]. We used HDOCK [25] to run the 
docking simulations, using ACE2 models (‘receptor’) and three different 
types of WT RBD (‘ligands’) (6 M17, 6LZG, and 6M0J). FireDock [26] 
was used to calculate the free binding energy (Kcal/mol) defined as 
Global Energy Score (GES). For each receptor, mean and standard de-
viation (SD) were calculated. 

We performed a second set of simulation for the variant viruses. In 
this case we retrieved human RBD models from I-TASSER (B.1.1.7 and 

B.1.351) or RCSB (B.1.617.2, PDB ID: 7V7V). We modelled the inter-
action between ACE2 and RBD B.1.617.2 based on literature [15] (PDB 
ID: 6LZG). 

We used the Sequence Manipulation Suite [27] to count the codons 
for SARS-CoV-2 viruses (WT and variants), and the Kazusa database (htt 
ps://www.kazusa.or.jp/codon/) to count the codons of the other vi-
ruses. We used PAST to perform multivariate analysis for the codon 
usage data [28]. 

3. Results 

3.1. ACE2 phylogenetic diversity in vertebrates and affinity to SARS-CoV- 
2 spike protein 

According to the docking results (Fig. 1, Tables S1 and S2), 13 out of 
33 structures showed a better binding affinity with ACE2 proteins of 
vertebrates compared to the value obtained with human ACE2. The 
simulations included 2 proteins from Pan troglodytes (chimpanzee), 5 out 
of 6 proteins from Carnivora and 5 out of 9 proteins from Micro-
chiroptera. Primates showed better values, followed by Carnivora 

Fig. 2. A) Binding energy estimation between vertebrate ACE2 and SARS-CoV-2 RBD (WT and variant virus B.1.1.7, B.1.351 and B.1.617.2). B) Diffusion of D614D/ 
E/N/G substitution in bat, porcine and human coronavirus. (*) Sequences identified with BLAST. 
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(Caniformia and Feliformia) and Microchiroptera (Fig. 1). Domestic 
herbivorous, Megachiroptera and Reptilia showed values significantly 
worse than the panel average. 

The signal peptides also showed diversity in vertebrates. All se-
quences, but the reptilian Python bivittatus (Burmese python), exhibited 
a secretion signal (Fig. S1, Table S3). Two different cleavage sites were 
identified in many sequences: the cut occurring on S19 or A17 (ref. 
human ACE2). Fifteen sequences showed S19 as better cut site, while 9 
sequences showed A17. All the sequences with a S19 cut site showed a 
conserved domain ‘LSLVAVTAAQS’, suggesting that modification of this 
motif can influence the cut. This domain was present also in 5 out of 15 
proteins showing A17 as better site, but these 5 sequences showed a G in 
position 3, which can also influence the cut. According to this second set 
of docking simulations (Fig. 2A, Table S4), many species exhibited better 
GES values when the RBDs of variants B.1.1.7 (alpha) and B.1.351 (beta) 
were used. On the other hand, only 2 out of 10 [Suricata suricatta 
(meerkat), Rhinolophus sinicus (Chinese rufous horseshoe bat) (1)] spe-
cies exhibited worse values for B.1.1.7 and B.1.351 variants. The mul-
tiple alignments shown in Fig. S2 reveal that S. suricatta (meerkat), R. 
sinicus (Chinese rufous horseshoe bat) share the N-terminal sequence of 
ACE2 that forms the most important interaction interface between RBD 
and ACE2. Hence, changes in these interfaces almost certainly result in a 
reduction in binding energy. As for the data generated with variant 
B.1.617.2 (delta), ACE2 sequences from Felis catus (cat), Canis lupus 
familiaris (dog) and C. griseus (Chinese hamster) showed GES values 
comparable to that of human ACE2, while ACE2 sequences from all the 
other species showed less negative GES values. Specifically, F. catus 
(cat), C. lupus familiaris (dog), C. griseus (Chinese hamster) and H. sapiens 
ACE2 sequences have very similar N-terminal sequences considering the 
first 120 amino acids (Fig. S2C). 

3.2. The D614G mutation and its relationship with the reservoirs 

The first noteworthy mutation that became prevalent as early as mid- 
2020 is D614G. This mutation is interesting because an acidic amino 
acid (D) is replaced by an apolar-achiral amino acid (G). We compared 
various CoVs of the porcine, bat, human, and SARS origin using BLAST. 
We also analyzed the databases reported in two studies [17,18] on 
SARS-CoV-2. Notably, D614G is recorded for SARS-CoV and other 
human CoVs since 2004 (Fig. 2B) [29]. Furthermore, a basic amino acid 
was identified (N) in the porcine CoV, while the bat viruses exhibited an 
acidic amino acid (D or E). 

3.3. Codon analysis of the B.1.1.7 (alpha), B.1.351 (beta) and 
B.1.617.2 (delta) variants 

The Relative Codon Frequency [RCF (%), File S1] was used to 
calculate Pearson's correlation index (RCF of human as reference) 
(Table S5). The values obtained indicate a positive correlation that 
changes depending on the virus group considered. Bovine viruses had 
low values (>0.17), while bat viruses had variable values (0.15–0.39). 
Of the bat viruses with higher values, 4 were CoV (HKU5-1, HKU5-2, 
HKU5-3 and HKU5-5) and 3 SARS-CoV (HKU3-1, HKU3-2, and HKU3- 
3). Human SARS-CoVs showed Pearson's indices ranging from 0.26 to 
0.36, while civet SARS-CoVs exhibited high values (0.35 and 0.34), and 
the other two human CoVs exhibited very low values (0.18 and 0.06). 
Finally, the SARS-CoV-2 viruses exhibited values from 0.192 to 0.199 
and, in addition, they exhibited a trend for the strains considered: the 
WT viruses showed values lower (generally around 0.192) than the 
B.1.1.7 (alpha) (around 0.198–0.199), B.1.351 (beta) (around 
0.196–0.197) and B.1.617.2 (delta) (around 0.196–0.198) viruses. 

Pearson's index was also calculated between mean RCF values ob-
tained for 6 virus groups (B.1.1.7, B.1.351, B.1.617.2, Bat-CoV, Bovine- 
CoV, SARS-CoV) using as reference the values obtained for the SARS- 
CoV-2 WT (Table S5). Bovine CoVs exhibited the lowest value (0.89), 
SARS-CoV and Bat-CoVs exhibited similar values (0.952 and 0.955 

respectively), and the three strains B.1.1.7 (alpha), B.1.351 (beta), 
B.1.351 and B.1.617.2 (delta) a value greater than 0.997. Fig. S3 shows 
the average values calculated for each codon for the groups SARS-CoV-2 
(WT), B.1.1.7 (alpha), B.1.351 (beta), B.1.617.2 (delta), Bat-CoV, 
Bovine-CoV, SARS-CoV. Fig. S4 shows a violin plot considering all the 
databases and all the codons. The diversity of these groups of viruses is 
also shown by an NM-MDS using the Bray-Curtis index (Fig. 3A). 
Furthermore, the network plot (Fig. 3C) shows that Civet-CoV closely 
relates to SARS-CoV, while Bat-CoV RaTG13 closely relates to SARS- 
CoV-2. Two other network plots and an NM-MDS (Fig. S5) show the 
relationships between SARS-CoV-2 WT and the three variants B.1.1.7 
(alpha), B.1.351 (beta), and B.1.617.2 (delta). This plot shows that the 
variants are similar one another and different from the SARS-CoV-2, 
although a WT virus is more like variants. 

Comparing the values obtained by subtracting the RCF values of the 
B.1.1.7 (alpha), B.1.351 (beta), and B.1.617.2 (delta) viruses from the 
RCF calculated for the WT virus, it was evident that the RCF changes in a 
similar way for each codon (Fig. 3B). The Pearson's index calculated for 
the mean RCF values of the three viruses was >0.99. 

4. Discussion and conclusions 

The analysis of the use of codons has the advantage not only of 
considering both uncoded mutations and mutations that cause a change 
in the amino acid composition of proteins but also of providing infor-
mation on the adaptation of the virus to the host. The codon usage bias 
was related to some specific features during the infection; e.g., it was 
observed that the infection with SARS-CoV-2 reduces the translation 
rate of highly expressed host proteins that share the codon usage bias of 
the virus [30]. Also, codon usage varied rapidly during the pandemic [3] 
as well as for isolates from distinct geographic regions [2]. Our results 
demonstrate that codon analysis is a valuable tool for tracking virus 
adaptation. Likewise, some specific mutations can be used for this pur-
pose. The D614G is present in data referred to humans, for both SARS- 
CoV-2 and SARS-CoV. The same mutation is absent in bat, bovine and 
porcine viruses. This confirms D614G as a good marker to track viral 
evolution. The docking results reveal that carnivore ACE2 binds RBD 
with good energy. This confirms that some animals, including pets, can 
be hosts of SARS-CoV-2. Furthermore, the docking analysis for the 
variant form of the B.1.1.7 (alpha) and B.1.351 (beta) virus shows that 
the variants exhibit higher binding energy for almost all the animals 
considered. On the contrary, B.1.617.2 (delta) variant shows compara-
ble binding energy values with ACE2 sequences from human, F. catus 
(cat), C. lupus familiaris (dog) and C. griseus (Chinese hamster). These 
vertebrates also show a conserved N-terminal sequence suggesting that 
B.1.617.2 (delta) is well adapted to human ACE2. The docking data 
obtained in this study are consistent with the literature. E.g., the Rhi-
nolophus affinis (intermediate horseshoe bat) ACE2 is a functional re-
ceptor for SARS-CoV-2 [31]. 

Taken together, these data show how computational approaches can 
be useful for analyzing and monitoring the spillover and evolution of 
viruses of environmental origin by comparatively analyzing sets of virus 
variants and vertebrates. Codon analysis is more effective in measuring 
genetic variations that occur over short periods. On the other hand, the 
docking analysis can provide information on animal hosts. In this 
respect, this work is a proof-of-concept, which can be useful for the 
implementation of bioinformatics and functional comparative genomics 
strategies from a One Health perspective. All the methods here shown 
are fast, low-cost, and powerful, which implies possible costs savings as 
a major benefit again from a One Health perspective. Last but not least, 
our approaches could be used to develop new protocols for rapid 
screening, screening of environmentally sourced viruses, bioinformatic 
tools to predict structure-to-function relationships, etc. 
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