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THEBIGGER PICTURE Organoids are 3D lab-grownmodels that mimic the structure of human tissues, mak-
ing them incredibly useful for etiological research and testing drug effects. Unlike traditional 2D cell cultures,
structural characteristics of organoids aremore complex and require advanced techniques, many resources,
and significant time to analyze accurately. Tomake this process easier, we developed VONet, a deep learning
AI software trained on simulated organoid images. VONet offers a faster and more accurate way to analyze
the 3D structure of organoids compared to current methods. This breakthrough helps us better understand
organoids, advancing research in medicine and drug development.
SUMMARY
Organoids and 3D imaging techniques are crucial for studying human tissue structure and function, but tradi-
tional 3D reconstruction methods are expensive and time consuming, relying on complete z stack confocal
microscopy data. This paper introduces VONet, a deep learning-based system for 3D organoid rendering that
uses a fully convolutional neural network to reconstruct entire 3D structures from aminimal number of z stack
images. VONet was trained on a library of over 39,000 virtual organoids (VOs) with diverse structural features
and achieved an average intersection over union of 0.82 in performance validation. Remarkably, VONet can
predict the structure of deeper focal plane regions, unseen by conventional confocal microscopy. This inno-
vative approach and VO dataset offer significant advancements in 3D bioimaging technologies.
INTRODUCTION

Organoids are miniature organ-like cell clusters produced by the

in vitro self-organization of stem cells. They are similar to their

in vivo counterparts in terms of biological and molecular traits,

physiological characteristics, cellular composition, and three-

dimensional (3D) architecture.1 Therefore, organoids are a useful

model for studying human development and therapeutics, such

as personalized and regenerative medicine.1 The 3D structure of

organoids replicates the biological and physiological states of

their corresponding tissues in terms of cellular composition,

cell-cell interactions, and microenvironments.2,3 The specific

biological conditions of each tissue can be investigated by

observing the morphology and microanatomical structure of

organoids.4 In addition, various extrinsic factors, including
Patterns 5, 101063, Octo
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signaling molecules in the culture medium, extracellular matrix

composition, and physical properties of the hydrogel, can affect

the morphology of organoids.2,5,6 Consequently, how extrinsic

factors such as drugs or toxic substances affect the physiolog-

ical state of organoids may be predicted by observing the

morphological changes in organoids over time. For this, system-

atic studies to investigate how intrinsic cellular and extrinsic fac-

tors affect organoid structure determination are essential.

The quantitative characterization of cellular morphology has

helped elucidate the function and behavior of the intracellular

components associated with tissue development and pathogen-

esis.7 Although conventional two-dimensional (2D) image ana-

lyses offer valuable information for quantifying biological fea-

tures in adherent cell cultures, they fail to comprehensively

capture the diversemorphological characteristics and structures
ber 11, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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of 3D biological models. Furthermore, the utilization of 2D image

analysis techniques for classifying and labeling intracellular

and extracellular components, such as cytoplasm or nuclei,

within the structure of 3D tissues presents several limitations.5

Confocal fluorescence microscopy is the most widely used opti-

cal technique for observing the 3D structures of biological sam-

ples. As the pinhole of the confocal microscope eliminates out-

of-focus signals by spatially filtering volumetric data, a confocal

image displays biological information contained in a single focal

plane with minimum ambient interference.8 Furthermore, ad-

vancements in modern computer science have enabled the

reconstruction of 3D structures of biological specimens using z

stack imaging, a technique that acquires cross-sectional images

of biological samples along the z axis using confocal micro-

scopy. This technique also facilitates the quantitative analysis

of cellular and intercellular components within 3D tissues.9

Therefore, the integration of high-resolution single-plane fluores-

cence imaging techniques, such as confocal microscopy, with

3D image rendering technologies is considered the most rational

approach for investigating the structural and physiological char-

acteristics of 3D tissues, including organoids.

Image-based high-content screening (HCS), a recent develop-

ment in high-throughput screening (HTS), facilitates quantifying

various biological features. Given the aforementioned character-

istics, organoids hold immense promise as a suitable model for

HCS-based discovery of toxicants and therapeutic candidates

when optimized for HTS analysis platforms.10,11 Despite the su-

perior characteristics of organoid models, there are significant

challenges that need to be addressed for the commercialization

of organoid-based HCS analysis, as most current HTS and HCS

analysis platforms primarily utilize 2D cultured cells. The most

significant limitation lies in the 3D nature of organoid models,

which necessitates the acquisition of multiple z stack images

to capture comprehensive information across the entire orga-

noid volume, unlike conventional 2D cell models where single-

plane microscopy images suffice for data extraction. Although

contemporary 3D bioimaging technology has advanced, obtain-

ing complete z stack images remains time-consuming. For

example, reconstructing the 3D structure of a single organoid

with a height of 500 mm from 100 single-plane confocal micro-

scopic images along the z axis takes >5 min. While HCS tests

are conducted in 96-, 384-, or 1,536-well array formats, obtain-

ing complete single-plane images from such a large number of

organoids is exceedingly time-consuming. This inefficiency

must be remedied to practically use organoid-based HCS.

As advanced imaging technologies such as HCS have been

developed to promptly acquire large numbers of accurate im-

ages, a high demand exists for analytical technologies that can

classify a large volume of images.12 Recently, deep learning

has exhibited superior performance in numerous disciplines,

including biological image processing. Image segmentation is

a fundamental prerequisite for accurately quantifying biological

images.13 U-net, a unique deep learning-based segmentation

technique devised by Ronneberger et al.,14 exhibited superior

performance over all non-deep learning segmentation algo-

rithms and distinguished objects by modifying the endpoint

channel and training the network with appropriate datasets. Cur-

rent image analysis applications of U-net include cell segmenta-

tion research,15 computed tomography image segmentation,16
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retinal blood vessel identification,17 and neurite detection.18 To

train deep learning networks, the embedding/diffusion proced-

ure requires a vast quantity of training data. For example, the

Stable Diffusion network has been trained on a dataset of 2.3

billion images.19 Despite the potential of deep learning-powered

image analysis techniques to revolutionize biological research,

their widespread adoption is hindered by the substantial data re-

quirements; the complexities and costs associated with image

acquisition; ethical, safety, and privacy concerns; and the het-

erogeneity of experimental protocols.

The development of techniques that can significantly reduce the

time and resources required for reconstructing the 3D structure of

organoids using deep learning could significantly accelerate the

commercialization of organoid-based HCS technology, as dis-

cussed previously. However, a major hurdle to this advancement

lies in the nascent field of deep learning-based organoid analysis.

To develop deep learningmodels, a substantial amount of training

images with comprehensive annotations representing specific

experimental conditions is required. However, because organoids

are a relatively nascent researcharea, there is insufficient accumu-

lation of image data obtained under consistent experimental con-

ditions, resulting in a critical issue of absolute data scarcity. To

address this data scarcity issue, proposals have emerged sug-

gesting the use of synthetic images to replace themassive training

datasets typically required for deep learning models. Recently

developed artificial intelligence (AI)-based image synthesis tech-

niques may be used to address the issue of insufficient data.

Deep learning software, including DALL-E,20 Midjourney (https://

www.midjourney.com/), and novelAI (https://novelai.net/), can

generate images from text and perform segmentation and basic

object detection. These tools are based on the iterative diffusion

of a noise-like image formed from vector-embedded words and

sentences. In fact, we used Midjourney to create an image based

on the text ‘‘bright-field microscopic image of colon cancer orga-

noid,’’ but we obtained results that were different from those ob-

tained through actual experiments (data not shown). It demon-

strates that popular generative AI models lack sufficient data to

understand organoid structures. For this reason, many challenges

remain in deep learning network training for organoid research.

Here, we developed a deep learning-based organoid 3D

rendering system to analyze organoid morphology with a mini-

mal number of z stack images to address the fundamental bottle-

neck of imaging speed, a major hurdle impeding the commer-

cialization of organoid-based HCS. Due to the scarcity of

publicly available organoid image datasets specifically designed

for structural characterization studies, we created tens of thou-

sands of synthetic virtual organoids (VOs) based on the growth

properties of cultured organoids. Our VO data comprised z stack

images reflecting random survival rates for each VO. We trained

our deep learning network, VONet, using a VO dataset and per-

formed cross-validation. VONet generated a precise 3D struc-

ture of a real organoid (RO) from a small number of z stack im-

ages, comparable to that constructed using 64 z stack images.

RESULTS

Generation of synthetic VOs
To accurately model the organoid structure using the deep

learning network, we investigated organoid morphology and

https://www.midjourney.com/
https://www.midjourney.com/
https://novelai.net/
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Figure 1. Synthetic VOs simulating the

growth pattern of cultured organoids

(A) Bright-field images showing the distinct

morphology of the cultured normal colon and

cancer organoids compared to tracheal organo-

ids. Scale bar, 200 mm.

(B) The 3D images of the synthetic VOs generated

using the VO construction technique. Synthesized

VOs comprised multiple ovals that were randomly

created.

(C) Perspective drawing showing the internal

structure of the VOs. Synthetic VOs comprised a

hollow lumen surrounded by thin walls.
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growth patterns. Colon organoids show diverse shapes during

cultivation21 compared with other organoids.22,23 The organoids

that we cultured under conventional conditions showed different

sizes and shapes (Figure 1A), including thick-walled spherical,

budding tubular, thin-walled bubble-like, and compact globular

shapes. To identify key characteristics among the various

structural features of organoids, we traced the morphological

changes during their growth. While growing, superficial lumps

with various dimensions and random intruding cavities were

formed on the organoids, resulting in organoids with several spe-

cific morphologies (Figure S1).

We virtually generated various organoids by considering their

morphological changes, including structure, and the intensity

values in bright-field images. To reflect the expected growth

patterns, multiple ovals were generated and superimposed to

mimic randomly generated blobs in organoids (Figures 1B,

1C, and S2). Our VOs also presented some cavities (Figure 1C).

We restricted the maximum number of ovals in an organoid to

20 to balance the cost and resolution of the output data. With

50 ovals, the computation took 2,252 s, whereas with 10 ovals,

the computation took 47 s. Furthermore, as the number of

ovals increases, the additional synthesis time required is signif-

icantly increased. However, the morphological changes in the

newly endowed organoids are very subtle. With several ovals

in a narrow area, overlap will increase, generating a smooth

and simple shape while decreasing structural diversity in

the dataset (Figure S3A). Furthermore, if the maximum oval

radius is too small, the VO would present as scattered ovals

with a simplified structure (Figure S3B). We randomly gener-

ated 39,466 VOs (50 of them are shown in Figure S2) that simu-
P

lated the various shapes and sizes of or-

ganoids based on experimental growth

patterns.

Dataset of synthetic VOs and deep
learning network training
The mesh data generated from the VOs

were transformed into voxel data. We

assumed the location of the nucleus using

a 3D shape of the mesh data and synthe-

sized the z stack imageswith survival rates

referred to in the confocal images of

ethidium homodimer-1 (EthD-1)-stained

organoids. We utilized EthD-1-stained or-

ganoid images to incorporate realistic
cell death representation into our synthetic images. The nuclei

of dead cells within organoids exhibit distinct differences in size

and morphology compared to healthy cell nuclei. This character-

istic was crucial for our objective of generating synthetic images

that accurately reflect the presence of dead cells within the orga-

noid structure. Each VO had a different live/dead rate, which was

randomly determined and applied to the nucleus status (Fig-

ure 2A). With low survival rates, the organoid border in the z stack

images contained dead nuclei (Figure 2A). The dead nuclei were

set to fall off from the organoid and randomly float in VOs; this

was similar to the behavior of the dead nuclei in cultured organo-

ids (Figure 2B). In conclusion, the morphological information of an

organoid completely disappears when the number of live cells is

<0.2% of the total number of cells; therefore, the live/dead rate

of a VO was randomly set between 1 and 0.2.

VONet, which was designed using a fully convolutional-neural

network structure, was trained using three data types in the VO

dataset: mesh, voxel, and imaging data (Figure 3A). The input

data of the synthetic images comprised 64 layers. Some layers

were filled with imaging data and others were blank. We trained

VONet using >39,000 VOs to reconstruct the 3D structural data

of an organoid from synthetic z stack images. Then, VONet

was automatically trained by backpropagation (Figure 3B). We

defined the loss function for backpropagation as follows:

L = JI+MAEðVres;VansÞ (Equation 1)

JI = IoU =
Vintersection

Vunion

=
VresXVans

VresWVans

=

PðVres ◎ VansÞP
MaximumðVres;VansÞ

(Equation 2)
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Figure 2. Synthesized VOs with cell survival

rate

(A) VO images and their z stack images with cell

survival rate values (0.939, 0.538, and 0.251).

Based on this input, the nucleus of live cells was

stained blue, whereas that of dead cells was

stained red.

(B) z Stack images of the VOs (left) and EthD-1-

stained ROs (right).
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Vres is the voxel data derived from VONet. Vans (‘‘answer data’’)

represents 3D voxel data for the VO structure, which is the target

data for training. Jaccard index (JI), also called the intersection

over union (IoU) criterion, is a useful index to measure the perfor-

mance of image processing algorithms and loss function for

deep learning network training. Letting the value of one voxel

in Vres be v1i and Vans be v2i, the mean absolute error was calcu-

lated as |v1i – v2i| (i % n), where n is the number of voxels in Vres.

The symbol ◎ denotes the element-wise multiplication of two

matrices of the same size (also known as the Hadamard prod-

uct). Maximum functions choose the larger value from two

matrices element-wise. Through these equations, the loss func-

tion L indicates by howmuch the volumetric data in Vres and Vans

differ. Subsequently, VONet was trained to minimize the value of

L. To ensure that VONet is not overfit, we performed 10-fold

cross-validation. The IoU score of each fold varies from 0.59 to

0.66 (Table S1). The final output was obtained by leaving only

those with a non-zero intensity value in Vres.

Application of the deep learning network to an RO
dataset
For cross-validation, we established an RO dataset comprising

the z stack images of 10 cultured organoids (Figure 4A). Each

set contained 64 z stack images. The 3D structural data were

generated by simply stacking all data in the z stack images

with intensities exceeding the threshold, represented as V64 (Fig-

ure 4B). The intensity threshold was set to 0.05, an empirically

determined value for denoising.

Figure 4B illustrates the 3D structure reconstructed from

stacking 64 z stack images (V64) of three ROs, and Figure 4C

shows the 3D structure predicted by VONet using n randomly

selected 11 z stack images (Vres) from the same ROs. As shown

by the reconstructed 3D structures of both groups, the 3D struc-

ture of the organoid predicted by VONet from 11 single-plane
4 Patterns 5, 101063, October 11, 2024
images is strikingly similar to the 3D struc-

ture reconstructed by stacking 64 single-

plane images (Figures 4B and 4C). Using

confocal microscopic z stack imaging,

data loss occurs due to the weakened

fluorescence signal intensity in the sin-

gle-plane images located at a deep focal

distance (when the z value is >45) (second

column of images in Figure 4A). Owing to

interference from the structural elements

of the organoids located at relatively

shallow focal distances, it is exceedingly

difficult to capture the fluorescence sig-

nals in regions of the sample at deep focal
distances (Figure 4A). Since organoids, with their closed struc-

tures, exhibit cellular structures even at deep focal distances,

the loss of fluorescent signals at deep focal distances is consid-

ered a limitation of conventional confocal microscopy-based

imaging techniques, particularly when imaging thick tissue sam-

ples. Interestingly, while the organoid 3D structures in V64 depict

all deep focal distance-associated organoid structures as empty

spaces, Vres predicts and reconstructs the deep focal distance-

associated organoid structures. These results underscore the

remarkable capability of VONet of not merely reconstructing

3D structures from input data but also of predicting and gener-

ating overall desirable 3D organoid structures.

Performance evaluation of the deep learning network
using limited organoid image resources
We evaluated the estimation performance of VONet using a

limited number of experimentally obtained images in the RO

dataset. To ensure a comprehensive interpretation, the perfor-

mance of VONet was validated using additional indicators (Fig-

ure S4): IoU over the whole voxel volume (IoUall), IoU of the cor-

responding volume (IoUcorr, sum of IoU for slices with a non-zero

value), and IoU of the bright portion of volume (IoUbright, sum of

IoU for slices with z values of <0.7 3 zmax). As the light source

of the confocal microscopy was beneath the organoid, IoUbright

was the average IoU value of segments with a z value less than

the threshold. From the RO dataset, we selected and placed

3–15 images of each organoid into an input array with the

same z axis spacing. Each voxel datum (Vres(k)) was generated

according to the number of images used (indicated by ‘‘k’’).

We analyzed three IoU values by varying k values in 10 cultured

organoids (Figures 5A–5C; raw data are shown in Tables 1, 2,

and 3). Vres(k) computed using VONet with k z stack images of

a cultured organoid showed a correlation with V64, as confirmed

by the three IoU indices. IoUall reached 74% (0.72 IoU) with only
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Figure 3. Schematic procedure of VONet

(A) Procedure for creating z stack images of VOs. The mesh data of the VO were transformed into voxel data to create synthetic z stack images.

(B) VONet structure and its training procedure. Single-plane images selected from the 64 z stack VO images were used as input data for VONet. During the data

input process for each organoid, 3–19 single-plane images from the whole image set were randomly selected and placed into an input array of the same size.
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11 images, which was sufficient for analyzing overall organoid

morphology (Figure 5A). IoUcorr and IoUbright of Vres(11) were

>82% (0.82 IoU), on average (Figures 5B and 5C). Notably,

Vres(7), Vres(9), and Vres(11) performed significantly better than

Vres(13) and Vres(15). The SD of Vres was 0.03–0.05, indicating

the robustness of the method.

We compared the voxel data of Vres(5), Vres(7), Vres(11),

Vres(15), and V64 for cultured organoid 608. In Figures 6A–6D,

the sky-blue data points represent regions where V64 has voxel

data but Vres does not, while the orange data points represent

the opposite. The green data points indicate regions where

both Vres and V64 contain data. Throughout the voxel data, the

sky-blue color was mainly observed on the surface of the orga-

noid. As the value of k increased, the area of this region

decreased, reaching a minimum at Vres(11) (Figure 6C). The or-
ange region significantly decreased when k R 7 and followed

a similar trend to the sky-blue region. The sky-blue and orange

regions primarily appeared in the upper portion with high

z values, and the number of voxels in the orange region was

approximately double that of the sky-blue region (Figure 6E).

We evaluated the differences in the voxel data of Vres(11) and

V64 for the cultured organoids 602 and 603. Differences in the

structure of each organoid layer were indicated by the z values

from the z stack images, which is shown in Figure 6F. As ex-

pected, Vres(11) was better at estimating the organoid structure

than V64 was, based on several cross-sectional superposed

images of V64 and Vres(11) (Figure 6F). Notably, orange regions

(Vres only) are predominantly observed in data with z values

>40, corresponding to deep focal distances. In this range, sky

blue regions (V64 only) fail to adequately represent the closed
Patterns 5, 101063, October 11, 2024 5



Figure 4. RO dataset and reconstruction of three-dimensional (3D) structure of organoids

(A) z Stack images of the cultured ROs, 602, 605, and 608. As the focal depth of single-plane images increased, the brightness and morphology of the fluo-

rescently stained cell nuclei became increasingly blurred. Scale bar, 50 mm.

(B) The 3D images of these three organoids generated by stacking whole z stack images (64 images) of the cultured organoids (V64).

(C) The 3D images reconstructed using VONet (Vres). Eleven z stack images were used for simulation. The invisible area of the deep focal distance was re-

constructed via VONet simulation.
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structure of the organoids, while orange regions effectively com-

plement this representation. Meanwhile, VONet could not pre-

dict the floating nuclei inside the organoid for images of z = 34

and z = 38. We assumed that as the training VO dataset does

not contain any small fragments, including debris or a single nu-

cleus in the inner cavity area, VONet cannot estimate the metic-

ulous details of the inner organoid (indicated by arrows). In sum-

mary, VONet estimated organoid structural data with a limited

number of images, including the invisible area located at a

deep focal distance of the organoid, which would be challenging

without deep learning. However, VONet exhibited limitations in

accurately predicting uncommon structures within organoids,

such as floating nuclei.

DISCUSSION

Organoids, 3D cell culture models that closely mimic the struc-

ture and functionality of real tissues, have emerged as powerful

tools for HCS of drug efficacy and compound toxicity in realistic

tissue environments. Unlike conventional 2D cell cultures, orga-

noid models possess volume, necessitating the application of

3D imaging techniques, such as z stack imaging, to analyze their

morphological changes. However, traditional confocal micro-

scopy-based z stack imaging is time-consuming, even for single

sample acquisition, rendering large-scale HCS studies prohibi-
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tively expensive and time-consuming. Consequently, efficient

techniques are required to analyze organoid characteristics in

HCS platforms.

In this study, we present a deep learning-based 3D organoid

rendering system that can reconstruct the entire structure of

an organoid from a minimal set of single-plane images with arbi-

trary focal lengths. To overcome the limitation of insufficient or-

ganoid z stack image sets for training deep neural networks,

we synthesized around 40,000 organoid z stack images, called

VO, to serve as a training dataset. Our VO dataset was designed

based on the diverse shapes and growth patterns of cultured or-

ganoids and incorporated various components of 3D structure

and single-plane image information (mesh, voxels, viability,

and z stack image data). The deep learning network trained on

the VO dataset, VONet, demonstrated exceptional performance

in predicting the entire structure of organoids using a small num-

ber of randomly selected z stack images (9–11 images). The per-

formance was validated using a dataset of 10 RO images from

cultured samples, confirming its superior predictive ability.

To validate the superiority of VONet in predicting the entire or-

ganoid structure from a limited number of single-plane z stack

images, we directly compared its performance to traditional im-

age reconstruction methodswithout deep learning. We used two

widely used 3D voxel interpolation methods, bilinear interpola-

tion and second-order B-spline, to predict the 3D structure of
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Figure 5. Performance evaluation of the VONet using the IoU cri-

terion

(A) Whisker graph showing the IoUall result of the whole voxel volume.

(B) Whisker graph showing the IoUcorr result of the corresponding volume.

(C) Whisker graph showing the IoUbright result measured using z stacks <0.73

zmax. The x axis indicates the variable k value, and the y axis indicates each IoU

value. The illustration at right bottom describes the coverage of each IoU

criterion.
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ROs from a limited number of images (k = 11) and evaluated their

similarity to the actual structure using IoU scores. As shown in

Table 4, both methods without deep learning (bilinear and

B-spline) yielded significantly lower IoU scores compared to

our VONet predictions. These results demonstrate that tradi-

tional interpolation software is inadequate for 3D organoid struc-

ture prediction and highlight the necessity of developing

advanced techniques like VONet.

As previouslymentioned, conventional z stack image-based 3D

structure rendering systems require 60–120 images to reconstruct

a single organoid and demand significant processing time. In

contrast, VONet efficientlygenerates 3Dorganoidstructuresusing

only 9–11 single-plane z stack images,making it a valuable tool for

commercializing organoid-based HCS platforms. For instance, in

a 384-well plate HCS assay, traditional imaging methods would

require acquiring 64 single-plane images per organoid, totaling

24,576 images. However, VONet enables reconstruction of the

entire 3D organoid structure from only 3,456 images, reducing

resource and time consumption by over 85%. We believe this

research will significantly contribute to developing high-perfor-

mance organoid screening systems for novel drug discovery.

The performance of VONet exceeded our expectations in its

ability to handle depth-dependent fluorescence signal loss. As

shown in Figure 4, single-plane images acquired at deep focal

distances using conventional confocal microscopy often suffer

from information loss in fluorescence images due to the optical

characteristics of the microscope.8 Interestingly, VONet suc-

cessfully reconstructed the 3D structure of organoids even
when fluorescence signals were missing from deep focal dis-

tance images. Alternatively, one could view VONet as simulating

the missing z stack image data caused by the limited focal range

of confocal fluorescence microscopy. Figure 6 demonstrates

that VONet can reasonably infer the morphological features of

organoids in regions with missing fluorescence signals in the

3D organoid structure rendering results. We believe that utilizing

advanced techniques such as light sheet fluorescence micro-

scopy, which addresses light absorption or scattering issues

related to focal range limitations, could further enhance the per-

formance of 3D structure prediction software in future research.

Building 3D voxel and mesh datasets is crucial for analyzing

and predicting the 3D morphological features of specific objects

using deep learning. However, previous organoid studies have

not attempted to construct such datasets. To develop an AI-

based organoid structure prediction model, we pioneered the

creation of a synthetic dataset representing 3D organoid struc-

tures. To ensure the reliability of the synthetic dataset, we

devised a method for quantitatively verifying the quality of the

synthetic VO used to train VONet. However, since techniques

for synthesizing virtual confocal fluorescence microscopy im-

ages are not widely established, no well-established standard

metrics exist. Therefore, we undertook the task of refining VO

quality by breaking down and evaluating image components

ourselves.

The VO dataset used in this study is the third iteration, devel-

oped through a process of trial and error. The initial VO version 1

lacked many elements necessary for realistic representation of

RO images. To enhance the realism of fluorescent microscopy

images of nuclei-stained organoids, we refined VO to incorpo-

rate various characteristics such as (1) morphological diversity

of stained nuclei, (2) speckling patterns of stained nuclei, and

(3) spatial distribution of nuclei according to organoid structure.

These characteristics were implemented with the same fre-

quency and quality as observed in RO staining images, culmi-

nating in the final VO version 3. The synthetic VO data exhibit

such a high degree of similarity to real RO data that non-experts

cannot distinguish between the two.

The quality of synthetic VO is also highly correlated with the

performance of VONet. VONet version 1, trained on the subpar

VO version 1, failed to achieve an IoU score of R0.65 in perfor-

mance evaluation using the RO dataset. However, VO version 3,

which incorporates techniques to enhance the quality of nuclei

such as diversifying nucleus shapes using Voronoi tessellation

and realistically replicating the speckling patterns of stained

nuclei, exhibits remarkable similarity to the morphological fea-

tures of ROs. As demonstrated in this paper, training VONet us-

ing VO version 3 resulted in an IoU score of 0.82 in performance

evaluation using the RO dataset. This clearly demonstrates that

the higher the quality of single-plane images of synthetic organo-

ids, the better the performance of VONet. It also serves as proof

that the quality of VO version 3, as presented in the paper, is suf-

ficient for realizing our technology.

We strongly believe, however, that establishing standardized

metrics for quantitatively evaluating the quality of synthetic

confocal fluorescence microscopy images is essential for

commercializing this technology. As a result, future research

related to VO should include investigations into methods for

standardizing and quantifying the quality of synthetic images.
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Table 1. IoUall derived from the organoid data

Image no. 599 600 601 602 603 604 605 606 607 608 Mean SD

3 0.525 0.591 0.601 0.494 0.532 0.576 0.669 0.729 0.567 0.563 0.585 0.070

5 0.414 0.341 0.427 0.398 0.490 0.500 0.409 0.419 0.357 0.371 0.413 0.052

7 0.659 0.721 0.734 0.668 0.728 0.702 0.775 0.800 0.629 0.703 0.712 0.052

9 0.675a 0.767a 0.755a 0.693a 0.777 0.754 0.795 0.812 0.654a 0.737 0.742a 0.052a

11 0.667 0.687 0.751 0.679 0.787a 0.810a 0.805a 0.814a 0.648 0.752a 0.740 0.065

13 0.601 0.688 0.694 0.573 0.628 0.623 0.724 0.726 0.586 0.695 0.654 0.058

15 0.605 0.690 0.696 0.575 0.628 0.623 0.725 0.721 0.595 0.702 0.656 0.056
aThe best result of each organoid.
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Despite the remarkable performance of VONet and the well-

crafted VO dataset, some intriguing questions remain unan-

swered. Our analysis reveals that VONet achieves its peak per-

formance when using 9 or 11 single-plane images of organoids.

While one might intuitively expect that increasing the number of

single-plane images put into VONet would lead to higher struc-

tural prediction accuracy, we observed that using 13 or 15 im-

ages tends to overestimate the structure of the organoid and

yields lower IoU scores compared to 9 or 11 images. The under-

lying cause of this phenomenon is difficult to pinpoint due to the

inherent nature of deep neural networks. However, we hypothe-

size that it could stem from the imperfections in our synthetic

VO data.

ROs, when cultured for extended periods, can undergo

morphological changes due to physical forces like gravity. For

instance, organoids cultured for a certain duration may exhibit

a flattened bottom resembling a mushroom due to gravitational

cell compaction. However, our VO dataset does not account

for such long-term culture-induced morphological variations,

making it an imperfect representation of ROs. We believe that

the observed decline in structural prediction accuracy under

high data input conditions arises from these imperfections in

VO data quality.

To address this issue, future research will focus on developing

VO data that more closely resembles ROs. We anticipate that by

refining VO quality, we can eliminate this anomaly and further

enhance the performance of VONet.

EXPERIMENTAL PROCEDURES

Construction of VOs

The VO recreated the microscopic image of a stained organoid nucleus, which

is useful for deriving structural information. The complete VO construction
Table 2. IoUcorr derived from the organoid data

Image no. 599 600 601 602 603 604

3 0.630 0.639 0.659 0.558 0.577 0.60

5 0.601 0.512 0.469 0.590 0.614 0.57

7 0.792 0.754 0.794 0.754 0.778 0.73

9 0.811 0.807 0.809 0.786 0.816 0.78

11 0.812a 0.817a 0.816a 0.800a 0.834a 0.82

13 0.726 0.724 0.747 0.680 0.720 0.74

15 0.731 0.725 0.746 0.681 0.720 0.74
aThe best result of each organoid.
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technique can be summarized as follows: (1) creating a random blob with an

irregular shape, (2) generating random-shaped nuclei per nucleus point, (3)

drawing confocal images according to a given z coordinate. Here, we outline

the steps in detail.

Blob generation

The typical structure of an organoid is a blob composed of multiple ellipsoids.

We randomized the size, location, and thickness of each ellipsoid to avoid

overfitting. The following are the parameters of each ellipsoid used to generate

blobs:

N : number of ellipsoids in a blob ð1 % N % 20Þ

Ei : ith ellipsoid in a blob ð1 % i % NÞ

E0
i : cavity of the ith ellipsoid in a blob that corresponds to Ei

xi; yi; zi : x� ; y� ; z � coordinate of Ei ð--1:0 % xi; yi; zi % 1:0Þ

x0i ; y
0
i ; z

0
i : x� ; y� ; z � coordinate of E0

i : ðxi -- 0:3 % x0i ; % xi + 0:3; yi

-- 0:3 % y0i ; % yi + 0:3; zi -- 0:3 % z0i ; % zi + 0:3Þ

rxi; ryi; rzi : x
�
y
�
z � axis radius of Ei

�
0:5 % rxi; ryi; rzi % 1:0

�

r0xi; r
0
yi; r

0
zi : x

�
y
�
z � axis radius of E0

xi

�
ri 3 0:3 % r0xi; % rxi 3 0:8; ryi

3 0:3 % r0yi; % ryi 3 0:8; rzi 3 0:3 % rz
0
i ; % rzi 3 0:8

�

axi; ayi; azi : x
�
y
�
z � axis rotation angle of Ei

�
0 % axi; ayi; azi % 2p

�

a0
xi; a

0
yi; a

0
zi : x

�
y
�
z � axis rotation angle of E0

i

�
0 % a0

xi; a
0
yi; a

0
zi % 2p

�

Here, E0
i is the cavity corresponding to Ei, which expresses the empty space

in the RO. All parameters were randomized; however, the ranges of several pa-

rameters are dependent on other parameters to generate VO structures repre-

sentative of ROs. For instance, if r0xi is not dependent on rxi, the cavity be-

comes larger than an ellipsoid and cannot form the proper blob structure.
605 606 607 608 Mean SD

9 0.719 0.786 0.731 0.616 0.652 0.072

1 0.613 0.588 0.645 0.472 0.567 0.062

6 0.836 0.863 0.808 0.752 0.787 0.041

4 0.865 0.884 0.847 0.788 0.820 0.035

6a 0.871a 0.887a 0.856a 0.808a 0.833a 0.029a

8 0.778 0.792 0.809 0.737 0.746 0.038

8 0.776 0.790 0.807 0.744 0.747 0.037



Table 3. IoUbright derived from the organoid data

Image no. 599 600 601 602 603 604 605 606 607 608 Mean SD

3 0.590 0.611 0.642 0.500 0.537 0.576 0.716 0.791 0.734 0.609 0.631 0.091

5 0.489 0.356 0.485 0.413 0.506 0.502 0.462 0.483 0.473 0.418 0.459 0.048

7 0.743 0.748 0.809 0.685 0.737 0.702 0.845 0.874 0.819 0.774 0.774 0.062

9 0.758 0.798 0.829 0.712 0.784 0.754 0.861 0.886 0.844 0.814 0.804 0.054

11 0.769a 0.802a 0.842a 0.724a 0.809a 0.810a 0.872a 0.891a 0.852a 0.845a 0.822a 0.050a

13 0.688 0.702 0.752 0.621 0.633 0.623 0.784 0.799 0.771 0.758 0.713 0.069

15 0.685 0.703 0.746 0.621 0.633 0.623 0.779 0.790 0.768 0.758 0.711 0.067
aThe best result of each organoid.
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The upper and lower limits of each parameter were arbitrarily determined so

that each ellipsoid was randomly distributed but not completely separated

from the others. We utilized the Python pyVista module for blob generation

(https://docs.pyvista.org/).

Nucleus point generation

First, we determined the number of nuclei in an organoid and the central coor-

dinates of each nucleus (Figure S5). We assumed that the 3D space of an or-

ganoid mesh datum has (s, s, s) dimensions. We set the number of the grid

spaces to v 3 v 3 v = v3, where each space has an equal length of s
v and v

is a random integer between 26 and 48. A randomized v varies the size of a nu-

cleus so that our dataset covers a broad scale of confocal microscopic im-

ages. Each grid space that intersects with themesh data has only one nucleus,

and the initial coordinate of the nucleus point is at the center of the grid space.

We added random values dx and dy to the x, y coordinate values of each nu-

cleus point to avoid the shape and distance between the cells being identical,

which causes overfit during learning. Figure S5D shows the quasi-random dis-

tribution of the nuclei in the fourth process. A random z coordinate value was

applied later. The grid space was then voxelated into two voxels: Vi and V64. Vi

has the size of (2563 2563 64) and V64 has the size of (1283 1283 64). Vi was

converted to an image set, which was used as input data, and V64 was used as

the answer voxel data. This conversion allowed the handling of data as images,

simplifying further processing. Among the grid center points, those that did not

intersect with the mesh became dummy points and were used for the determi-

nation of the shape of the nucleus. After setting nucleus points, a live/dead

state was randomly imbued to each point. The live/dead rate of the organoid

was calculated as the number of live and dead nuclei.

Second, we applied Voronoi tessellation to draw the shape of the nuclei. For

every z axis value k (1 % k%64Þ, a voxel slice Svk of the size (512 3 512) was

extracted, and Voronoi tessellation was applied for each slice. Here, both

nuclei and dummy points participated in generating random convex blobs

that resembled the real nuclei. After tessellation, we applied Gaussian smooth-

ing-thresholding iteratively to generate a smooth-curved random 2D blob im-

age with certain fixed threshold values; the number of iterations can determine

the final size of the nucleus (Figure S5F). For live nuclei, smoothing-threshold-

ing was applied three times. As dead nuclei are smaller than live nuclei, we set

the number of iterations for dead nuclei to a random number between 5 and 7.

The resulting image was called Ibn, representing the nucleus image of the nth

cell. The overall process is shown in Figures S5A–S5F.

Confocal image drawing and answer voxel generation

According to Svoboda et al.,24 combining Perlin and fractal noise in one image

is adequate to mimic the inner structure of a nucleus (chromatin, lysosome,

and mitochondrion). After observing the nuclei, we generated an edge image

of Ibn to realistically simulate confocal microscopic images. Extracting the

edge from Ibn using the simple Sobel filter25 generates edge image Ien, which

represents the nucleus envelope. Then, both Ibn and Ien were multiplied with

a 2D Perlin noise and a 2D fractal image. Summing Ibn and Ien gave the final sin-

gle nucleus image Icn, which was randomly produced for every central nucleus

point. This process is shown in Figure S5G.

To create a realistic set of images, we slightly varied the center point coor-

dinate of each nucleus along the z axis and imbued the volumetric information.

The initial coordinate of one nucleus was Xn = { xn;yn;zng, where xn, yn, and zn
are integers. If a nucleus is alive, themodified coordinate becomes Xnl = { xn;yn;

zn +dzg, where dz is a random integer between �2 and 2.
In the case of an RO, a dead nucleus tends to fall off and float in the liquid

medium or sink to the bottom of the plate. To simulate this, the coordinate

of the dead nucleus Xnd became

Xnd = fxn + dx0 3 PfðXndÞ; yn + dy0 3 PfðXndÞ; zn
+ dz0 3 PfðXndÞg

�
dx2 + dy2 = rn

�

PfðXndÞ =

�
1 ðrndn % lrdÞ
0 ðrndn > lrdÞ

0 % rn % 803 lrd

0 % dz% k

Here, rndn is a random positive real number <1.0 that determines whether a

nucleus is alive or dead. If rndn is smaller than lrd, the nucleus is alive. rn indi-

cates the maximum distance of a dead nucleus from its initial position.

Next, we selected the height of each nucleus in Vi and made the plain nuclei

volumetric. According to our observations of organoid images, one live nu-

cleus appeared in 6–10 consecutive slices. We randomly imbued the height

value to each nucleus and filled the neighboring slice images to generate the

confocal microscopy image set using Icn. Suppose that we generate an image

of a slice with k = 48 (Sk) and the height of the nucleus corresponds to slice

number 7, then the image of the nucleus is scaled and copied to slices with

k0 ð45 % k0 % 51Þ, where k0 is a z value near slice Sk. To approximate an

oval shape, the image that will be copied to the neighbor slice becomes

Icnk0 = Scale ðs; Icn Þ

s =
1

k � k02

where the function Scale () is equal to function cv2.resize() of the openCV li-

brary (https://opencv.org/). The transformed image Icnk0 was drawn on Sk0 to

complete the voxel data. The process and its results are shown in Figure S6.

The final step is the answer voxel data and final confocal microscopic im-

ages generation. Suppose that we want to generate an image of a slice that

has three nuclei with different center coordinates. If the center of a nucleus

is on the plane of interest, then Icn or Icnk0 can be included in the slice image

without postprocessing. For nuclei on the left side, the z axis distance between

Sk and Sk0 is k – k
0 = 3.We adjusted theGaussian blur filter (k – k0 ) times on Icn to

mimic the out-focused confocal image. The process and resulting VO image

are shown in Figure S7.

We found that the mean intensity of the nuclei in real confocal microscopic

images linearly decreased to near 0 as the z value increased. To imitate this,

we multiplied all slice images by (1–0.0156k) (Figure S8).

The answer voxel data were obtained by resizing V to (128 3 1283 64) and

setting the intensity of all non-zero voxel points to 1, corresponding to V64. The

3Dvoxeldata require a largeamountofmemoryathigh resolutions. Forexample,

for 3Dvoxel data generated froma standard confocal image setwithout any pre-

processing, the size of input/output data becomes (512 3 512 3 64), which

cannot be handled by standard computing devices. We selected (128 3

128364) as the size of the final data,which is common for deep learningmodels
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using 3D voxel data. Although this size sacrifices some information, it remains

suitable for shape analysis. At this point, we used the synthesized confocal mi-

croscopy image set and 3D data to train a deep learning network.

Deep learning for organoid reconstitution

The main structure of our network is similar to U-net-like, but with fewer skip

connections owing due to the size disparity between the input and output.

We extracted only blue channel images for training as only live nuclei can sus-

tain the structure of an organoid.

Unlike other 3D data processing deep learning networks, we employed a

2D-convolutional network to predict the structure of an organoid from a stack

of several images, which requires height information for robust prediction per-

formance.We empirically demonstrated that simply stacking a fixed number of

images/adjusting several Siamese networks on images was ineffective. An

empty array A with dimensions (256 3 256 3 64) was created, and each slice

of the array was filled with a confocal microscopy image that had the same

z value. For example, suppose that you want to use three images as input

and the z value of each slice is 10, 30, and 50. We can then write each image

as Iz = 10, Iz = 30 I, and Iz = 50 and fill A as follows:

Az = 10 = Iz = 10

Az = 30 = Iz = 30

Az = 50 = Iz = 50

where Az = k denotes the slice of A that is located at k along the z axis. However,

setting up the input in this way creates large cavities that correspond to

(1 – k/64) 3 100% of A. For example, if you want to use only three images

as input, 95.3% of A has no data and 4.7% is planar. Considering the volume

covered by the 3D convolutional layer, adjusting 3D convolution on Awill make

the filter consider only the blank volume and fail to optimize the weight of the

model. In contrast, adjusting the 2D convolutional layer generates a 2D image

that has 64 color channels. In this case, the deep learning network always con-

siders non-zero data, ensuring the weights converge. The difference between

the 2D and 3D convolution is shown in Figure S9: the filter of the 3D convolution

refers to the volume that has no data, whereas the filter of the 2D convolution is

always able to utilize non-zero data.

The pre-processing of the input data and structure of the network are shown

in Figure S9. To enable the use of the network with an arbitrary number of im-

ages, we chose the number of images to upload at random. As the size of the

input was always 64, regardless of the number of images, no additional post-

processing programming was required. The number of images N ranged from

1 to 21, and the distance between adjacent slices was set to 64/N. We set N to

always be an odd number to ensure that data always exist in slices with z = 32.

The process of preparing the input array is shown in Figure S10.

We observed that input arrays with a fixed number of images never converge.

When the number of images is fixed, slices that lack an image in the input array

are left blank, resulting in N ring-shaped output data. We inferred that random-

izing the size of the space between slices prevents the network from over-

focusing on specific slices because our input setting dynamically alters the loca-

tionwheredata existwith respect toN, thereby assisting the network in adapting

to different input conditions. Insteadof using the Softmaxor Sigmoid function as

the final activation layer, which failed to converge, we used a truncated ReLU

function layer. Our final network contains 23.3 million weights.

Normal colon and cancer organoid cultures for benchmark dataset

After dissolving patient-derived normal colon and cancer organoids stored in

LN2, they were suspended in 9 mL washing medium containing DMEM/F12
Figure 6. Voxel data comparison between Vres (k) and V64

(A–D) Visualization of the derivation results overlapping the voxel data of Vres (k) a

Vres(11) vs. V64; and (D) Vres(15) vs. V64. The sky-blue region indicates the area with

green region denotes that both Vres and V64 have data.

(E) Graph showing the number of voxel data of Vres(k) of the organoid 608.

(F) Comparison between the voxel data of Vres (11) and V64 of the organoids 602 a

each z value. Right columns of each organoid show the cross-sectional images
(Corning, Corning, NY) supplemented with penicillin/streptomycin and

knockout serum (Gibco, Waltham, MA). The suspension was centrifuged at

450 3 g for 3 min. Following centrifugation, the supernatant was removed,

and the cell pellet was resuspended in Matrigel (Corning). The resuspended

cells were then seeded and solidified as a Matrigel droplet in a multi-well plate

at 37�C for 10 min.

After the Matrigel solidified, a colon organoid-specific culture medium was

added. This medium consisted of advanced DMEM/F12 with penicillin/strep-

tomycin, 13B27, N2, GlutaMAX, 10mMHEPES (Gibco), 10 mMnicotinamide,

1.25 mMN-acetyl-L-cysteine, 10 nM gastrin, 500 nM A83-01, 50 mg/mL genta-

micin (Sigma-Aldrich, St. Louis, MO), 50 ng/mL recombinant human (rh)

epidermal growth factor, 50 ng/mL fibroblast growth factor-basic, 1 mg/mL

rhR-spondin-1, 100 ng/mL rhNoggin (PeproTech, Hamburg, Germany),

100 ng/mL insulin-like growth factor 1 (BioLegend, San Diego, CA), 100 ng/

mL rhWnt3a (R&D Systems, Minneapolis, MN), 50 mg/mL Primocin (Invivogen,

Toulouse, France), and 10 mM ROCK inhibitor (Y-27632; PeproTech).

The medium was replaced every 2 days, and organoids were passaged

weekly. The 3D organoids were cultured for several days until they developed

a stable and diverse morphology. Images of the organoid growth patterns

were captured using a Primovert inverted microscope (Carl Zeiss, Oberko-

chen, Germany) and processed with Zen 3.0 software (Carl Zeiss).

Sampling and immunocytochemistry

To sample organoids, theMatrigel droplet containing the organoids was gently

pipetted to break it up and then carefully collected into a conical tube. The or-

ganoids were washed with cold PBS and resuspended in a cell recovery solu-

tion (Corning) to remove any remaining Matrigel. The collected organoids were

then fixed with 4% paraformaldehyde for 1 h. Next, they were permeabilized

with 0.1% Triton X-100 in Dulbecco’s PBS containing 0.2% BSA (Sigma-

Aldrich) for 15 min to prepare for nucleus staining.

The organoid nuclei were stained with DAPI (1:4,000, Thermo Fisher Scien-

tific, Waltham, MA) for 30 min at 25�C. After staining, the organoids were

washed three times with 0.1% PBST. Finally, the stained organoids were

transferred to a confocal dish for imaging.

Confocal imaging

Images of the organoids were captured using an LSM800 confocal micro-

scope (Carl Zeiss) and processed with Zen 3.0 software (Carl Zeiss). Full 3D

images of the nucleus-stained organoids were generated from a series of 64

single planes, each with a thickness of 2 mm, using a z stack imaging tool.

Dataset description and experimental setup

Our VO dataset had 39,633 organoids, and the total number of images

was 2.54 million, 95% of which were used in training and 5% in validation.

Image resolution was (512 3 512) and was resized to (256 3 256) for use as

input. The initial training rate was 0.001 and reduced by half per 5 epochs.

The network was trained for 100 epochs with Adam optimization and a

batch size of 8. We used Tensorflow (https://www.tensorflow.org/) and Keras

(https://keras.io/) for training, with 128 GB RAM and 32 GB VRAM (Nvidia

TeslaV100, Nvidia, Santa Clara, CA). Each training epoch took 4–5 h; the

amount of data was so large that we used a partial data load library imple-

mented as a Tensorflow Sequence library (https://www.tensorflow.org/api_

docs/python/tf/keras/utils/Sequence).

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be

fulfilled by the lead contact, Taehwan Kwak (taehwan.kwak@nextandbio.com).
nd V64 derived from the organoid 608. (A) Vres(5) and V64; (B) Vres(7) vs. V64; (C)

V64 data but without Vres data, and the orange region indicates the reverse. The

nd 603 organoids. Left columns of each organoid show the z stack images on

overlapping with the voxel data of Vres(11) and V64.
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Table 4. Comparison of VONet performance with existing 3D

structure prediction techniques

Organoid no.

IoU score

Bilinear Second-order B-spline VONet Vres(11)

599 0.448 0.449 0.769

600 0.420 0.420 0.802

601 0.444 0.444 0.842

602 0.395 0.398 0.724

603 0.448 0.455 0.809

604 0.439 0.447 0.810

605 0.445 0.443 0.872

606 0.445 0.444 0.891

607 0.417 0.417 0.852

608 0.381 0.378 0.845
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Materials availability

This study did not generate new unique reagents.

Data and code availability

All of the VONet code and image datasets for structure reconstruction and an-

alyses in this paper are publicly available online in a Zenodo repository.26 The

VO dataset used for training and validating VONet includes over 39,000 sam-

ples, making the dataset too large to be fully shared through a public reposi-

tory. Consequently, only 50 samples from the VO image set have been

made available in a public repository. Researchers wishing to access the com-

plete dataset should communicate with the lead contact via e-mail. Access to

the data stored on the institution’s web server will be granted, enabling the

download of the entire dataset.
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