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Abstract 

Background: Ascites is a major complication of decompensated liver cirrhosis. Intraabdominal hypertension and 
structural alterations of parenchyma involve decisive changes in hepatosplanchnic blood flow. Clearance of indo‑
cyanine green (ICG) is mainly dependent on hepatic perfusion and hepatocellular function. As a consequence, plasma 
disappearance rate of ICG (ICG‑PDR) is rated as a useful dynamic parameter of liver function. This study primarily 
evaluates the impact of large‑volume paracentesis (LVP) on ICG‑PDR in critically ill patients with decompensated 
cirrhosis. Additionally, it describes influences on intraabdominal pressure (IAP), abdominal perfusion pressure (APP), 
hepatic blood flow, hemodynamic and respiratory function.

Methods: We analyzed LVP in 22 patients with decompensated liver cirrhosis. ICG‑PDR was assessed by using nonin‑
vasive LiMON technology  (Pulsion® Medical Systems; Maquet Getinge Group), and hepatic blood flow was analyzed 
by color‑coded duplex sonography.

Results: Paracentesis of a median volume of 3450 mL ascites evoked significant increases of ICG‑PDR from 3.6 
(2.8–4.6) to 5.1 (3.9–6.2)%/min (p < 0.001). Concomitantly, we observed a raise in “ICG‑Clearance” from 99 (73.5–124.5) 
to 104 (91–143.5) mL/min/m2 (p = 0.005), while circulating blood volume index was unchanged [2412 (1983–3025) 
before paracentesis vs. 2409 (1997–2805) mL/m2, p = 0.734]. Sonography revealed a significant impact of paracentesis 
on hepatic blood flow: Hepatic artery resistance index dropped from 0.74 (0.68–0.75) to 0.68 (0.65–0.71) (p < 0.001) 
and maximum flow velocity in hepatic vein increased from 24 (17–30) to 30 (22–36) cm/s (p < 0.001). Consistent with 
previous studies, paracentesis caused significant decreases in IAP from 19.0 (15.0–20.3) to 11.0 (8.8–12.3) mmHg 
(p < 0.001) and central venous pressure from 22.5 (17.8–29.0) to 17.5 (12.8–24.0) mmHg (p < 0.001) with inverse 
increases in APP from 63.0 (56.8–69.5) to 71.0 (65.5–78.5) mmHg (p < 0.001). Changes in ICG‑PDR were concomitant 
with changes in IAP (r = − 0.602) and APP (r = 0.576). Moreover, we found a substantial improvement in respiratory 
function. By contrast, hemodynamic parameters assessed by transpulmonary thermodilution, serum bilirubin and 
international normalized ratio did not change after paracentesis.

Conclusion: Critically ill patients with decompensated cirrhosis and elevated IAP showed dramatically impaired 
ICG‑PDR. Paracentesis evoked an improvement in ICG‑PDR in parallel with a decreased IAP and an increased APP, 
while conventional parameters of liver function did not change. This effect on ICG‑PDR is mainly referable to a relief of 
intraabdominal hypertension and changes in hepatosplanchnic blood flow.
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Background
Decompensated liver cirrhosis implies serious conse-
quences for affected patients. Ascites is one major and 
highly frequently emerging complication [1, 2]. Intraab-
dominal hypertension (IAH) is associated with poor 
prognosis and high mortality [3, 4]. Increased intraab-
dominal pressure (IAP) involves multiple organ dys-
function regarding cardiovascular, respiratory, renal and 
abdominal impairment [5–8]. In particular, IAH inter-
feres with proper abdominal perfusion, including hepato-
splanchnic blood flow [9, 10].

Furthermore, advanced cirrhosis is accompanied by 
structural alterations leading to increased intrahepatic 
vascular resistance [11, 12]. Restrictions of intrahepatic 
blood flow cause portal hypertension, further aggra-
vated by compensatory splanchnic arterial vasodilation 
[13]. Moreover, cirrhosis provokes impairment of blood 
flow in hepatic veins as well as increases in hepatic artery 
resistance index [14, 15]. Color-coded duplex sonogra-
phy provides a subjective, but noninvasive diagnostic 
approach regarding vascular disorders in advanced liver 
disease [16].

Finally, end-stage liver disease is associated with pro-
gressive loss of functional liver capacity. Conventional 
laboratory assessment of liver function is mainly based 
on liver enzymes, bilirubin and the coagulation param-
eter international normalized ratio (INR) [17]. Dynamic 
tests of liver function at bedside might be more precise 
and objective relating to actual, short-term functional 
status [18]. Promising experiences were achieved with 
noninvasive measurement of plasma disappearance rate 
of indo-cyanine green (ICG-PDR). ICG is injected intra-
venously, distributed via blood circulation and excreted 
hepatobiliary [19]. ICG-PDR reflects both hepatos-
planchnic blood flow and hepatocellular and excretory 
function [20, 21]. Some previous data described an inter-
action of ICG-PDR with intraabdominal pressure level 
[22–24]. Recently, one of these studies affirmed that ICG-
PDR correlates inversely with IAP, suggesting that IAH 
restrains hepatosplanchnic and sinusoidal perfusion [25]. 
The abdominal perfusion pressure (APP), defined as dif-
ference between mean arterial pressure (MAP) and IAP, 
was positively correlated with ICG-PDR.

The accumulation of ascites is a typical complica-
tion of decompensated cirrhosis with elevated IAP and 
restricted organ perfusion [2, 10]. The evacuation of 
ascites by large-volume paracentesis (LVP) is one of the 

few nonsurgical treatment options [26]. ICG-PDR was 
already labeled as an accurate test for prediction of sur-
vival in advanced cirrhosis [27]. So far, none of the pre-
vious studies focused on the impact of LVP on dynamic 
liver assessment by ICG-PDR in this patient population. 
Consequently, the aim of our study was to investigate the 
effect of LVP on ICG-PDR in critically ill patients with 
decompensated liver cirrhosis (primary endpoint). This 
evaluation was supplemented by analyses of IAP, APP, 
hepatic blood flow by sonography, respiratory function as 
well as hemodynamic monitoring by using transpulmo-
nary thermodilution.

Methods
Study design
This observational study was approved by the institu-
tional review board (Ethikkommission Technische Uni-
versität München; Fakultät für Medizin; Project Number 
5384/12), and informed consent was obtained by all 
patients.

Between April 2016 and July 2017, a total of 29 criti-
cally ill patients with decompensated liver cirrhosis on 
our university hospital general ICU were screened for the 
feasibility of LVP, analyses of ICG-PDR, IAP and hemo-
dynamic monitoring via transpulmonary thermodilution. 
LVP was performed irrespective of the study based on 
the indication made by the treating ICU physician. We 
released a maximum of mobilizable ascites in each indi-
vidual case of LVP; laboratory analyses of ascites revealed 
a cell count < 500/μL and polymorphonuclear neutro-
phils < 250/μL in every single patient. Due to potential 
influences on hepatosplanchnic blood flow, analysis was 
considered feasible only in patients without terlipressin 
treatment, portal vein thrombosis or transjugular intra-
hepatic portosystemic stent shunt. Therefore, 6 patients 
with terlipressin-treatment, 1 patient with portal vein 
thrombosis and 2 patients with portosystemic stent were 
restrained from the study. Finally, we analyzed a total of 
22 critically ill patients with decompensated liver cirrho-
sis and tense ascites.

Techniques
Assessment of ICG‑PDR, BVI, CBI and laboratory tests
ICG-PDR, circulating blood volume index (BVI) and 
“ICG-Clearance” (CBI) were analyzed immediately 
before and after paracentesis by using noninvasive 
LiMON technology  (Pulsion® Medical Systems; Maquet 
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Getinge Group) via a disposable finger color sensor as 
previously described [28]. We used ICG solubilized in 
distilled water and injected via a central venous cath-
eter at a dose of 0.5 mg/kg of ICG-solution for measure-
ment of ICG-PDR and additional assessment of BVI and 
CBI. Normally, ICG-PDR amounts to 18–25%/min [20]. 
Measurements of BVI and CBI were performed in paral-
lel with ICG-PDR after manual input of current cardiac 
output and automatically indexed according to manufac-
turer’s recommendations.

Main laboratory tests of excretory liver function and 
synthesis (Bilirubin, INR) were analyzed once a day—cor-
responding to current standard in our intensive care unit. 
Overall time interval between blood sampling was 24 h.

LVP, IAP, abdominal compliance, APP and CVP
LVP was performed ultrasound guided after bringing 
the patient in supine position [29]. IAP was determined 
by intravesical measurement using a home-made tech-
nique according to The Abdominal Compartment Soci-
ety (WSACS), and IAH was defined as IAP ≥ 12 mmHg 
[30, 31]. Abdominal compliance was expressed as the 
change of ascites volume per change in IAP (delta IAP) 
before and after paracentesis [32]. APP was calculated as 
MAP minus IAP by using concomitantly obtained values 
as explained previously [25, 31]. Substitution of albumin 
followed current guidelines and was performed after 
the final analyses [33]. Central venous pressure (CVP) 
was measured via jugular central venous catheters at 
end-expiration.

Ventilator setting and respiratory function
Patients with spontaneous breathing received a demand-
based application of oxygen. Mechanical ventilation was 
performed using the routine ventilator device EVITA 
XL of our ICU (Dräger, Lübeck, Germany). Parameters 
were set according to current ARDSNet recommenda-
tions, especially regarding positive end-expiratory pres-
sure (PEEP) [34]. Ventilator setting was based on medical 
assessment by the treating ICU physician irrespective of 
the study. The EVITA XL ventilator continuously moni-
tored levels of airway pressures and corresponding vol-
umes. Routine ventilatory parameters such as PEEP, tidal 
volume (TV), mean airway pressure, dynamic respiratory 
system compliance  (Cdyn) and fraction of inspired oxygen 
 (FiO2) were recorded at baseline and at the end of LVP. 
 PaO2 and  PaCO2 were derived from a fully automatic 
blood gas analysis device (Rapid Point 400, Siemens 
Healthcare Diagnostic GmbH, Eschborn, Germany). 
Blood gas analysis and ventilatory parameters were used 
for calculation of Horowitz-index  (PaO2/FiO2) and oxy-
genation index (OI = FiO2 * mean airway pressure * 100/
PaO2) [35].

Hemodynamic monitoring
With the exception of only a single subject, all patients 
were under hemodynamic monitoring irrespective of the 
study, by using transpulmonary thermodilution with the 
PiCCO-2-device (Pulsion Medical Systems SE, Maquet 
Getinge Group) as described previously [36]: A 5 Fr ther-
mistor-tipped arterial line (Pulsiocath,  Pulsion® Medi-
cal Systems; Maquet Getinge Group) inserted through 
a femoral artery and a hemodynamic monitor (PiCCO-
2,  Pulsion® Medical Systems, Maquet Getinge Group) 
served to derive and analyze the thermodilution curve 
after injection of a cold indicator bolus (15  ml of saline 
cooled down to 4  °C) through a jugular central venous 
catheter. Measurements were done in triplicate, averaged 
and automatically indexed according to manufacturer’s 
recommendations.

Color‑coded duplex sonography
Transabdominal ultrasound examination was accom-
plished noninvasively at the bedside in a supine position 
of the patients. All analyses were performed by a single 
physician with 6  years of institutional experience in the 
field of abdominal ultrasound. We used the mobile ultra-
sound scanner ACUSON X300 (Siemens Healthcare 
GmbH, Erlangen, Germany) and a convex 3.5 MHz trans-
ducer with color Doppler capacity. The transducer was 
placed in the right intercostal space due to the intraab-
dominal fluid accumulation. Doppler-analyses of blood 
flow were performed of the portal vein, hepatic artery 
and right hepatic vein; middle hepatic vein was chosen 
only when analysis of right hepatic vein was insufficient 
[14].

Data collection
Clinical and laboratory parameters for the calculation 
of APACHE II-, SOFA-, MELD- and Child–Pugh scores 
were recorded on the day of paracentesis. Measurements 
of ICG-PDR, BVI and CBI were done immediately before 
and after LVP, with a median time interval of 210 (180–
255) min. Ventilatory parameters, hemodynamic profiles 
as well as IAP-assessment and ultrasound examinations 
were performed immediately before as well as after the 
maximal mobilizable release of ascites.

Statistical analysis and primary endpoint
For primary outcome analysis, we investigated ICG-PDR 
at the end of LVP compared to baseline. All analyses 
and graphs were generated using GraphPad Prism 7.0 
(GraphPad Software, La Jolla, CA, USA). Correlations 
were calculated using Pearson`s correlation coefficient r 
and linear regressions using the coefficient R2. Continu-
ous variables are expressed as median and interquartile 
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range (IQR). Categorical variables are expressed as per-
centages. To compare continuous variables, we used 
nonparametric Wilcoxon test for paired samples. Signifi-
cance was assumed at a p value < 0.05.

Results
Patients’ baseline characteristics
Patients’ baseline characteristics and clinical scores are 
presented in Table 1.

We performed LVP procedures in a total of 22 patients 
(7 female, 15 male) with decompensated liver cirrhosis 
and tense ascites. APACHE-, SOFA-, MELD- and Child–
Pugh scores are explainable by advanced hepatic impair-
ment and critical illness. The etiology of cirrhosis was 
predominantly alcoholic-toxic. About 75% of patients 
were mechanically ventilated and about 25% were spon-
taneously breathing. Regarding mechanically ventilated 
patients, PEEP-setting was unchanged during LVP and 
study measurements.

LVP, ICG‑PDR, BVI, CBI and laboratory tests
Twenty-two LVP procedures with a median volume of 
3450 (3075–4700) mL removed ascites (≥ 3000  mL for 

every paracentesis) were analyzed. We noticed a median 
ascitic cell count of 180 (100–310)/μL (≤ 500/μL in all 
patients), with polymorphonuclear neutrophils < 250/μL 
in each patient to exclude spontaneous bacterial perito-
nitis and to justify a release of a maximum of mobilizable 
ascites volume.

ICG-PDR at baseline was decreased substantially to 
3.6 (2.8–4.6)%/min compatible with dramatic hepatic 
impairment of advanced liver cirrhosis. LVP provoked a 
significant increase of ICG-PDR to 5.1 (3.9–6.2)%/min 
(p < 0.001) (Fig.  1). Median change of ICG-PDR (delta 
ICG-PDR) induced by LVP was 1.2 (1.0–2.1)%/min.

Circulating blood volume index (BVI) was unchanged 
after LVP [2412 (1983–3025) before paracentesis vs. 2409 
(1997–2805) mL/m2, p = 0.734], while “ICG-Clearance” 
(CBI) increased from 99 (73.5–124.5) to 104 (91–143.5) 
mL/min/m2 (p = 0.005) (Fig. 2).

In comparison, main laboratory tests of liver function 
showed no significant changes after an overall time inter-
val of 24 h: Parameter of liver excretion function bilirubin 
as well as plasmatic coagulation parameter INR remained 
stable (Table 2).

IAP, abdominal compliance, APP and CVP
Paracentesis caused a distinct relief of IAH: At the end 
of LVP, pressure levels of IAP had lowered from 19.0 
(15.0–20.3) to 11.0 (8.8–12.3) mmHg (p < 0.001). Grading 
of IAH before and after LVP is listed in Table 3, according 
to the definition established by the WSACS [31]. Median 
abdominal compliance based on paracentesis of 3450 
(3075–4700) mL was 461 (383–659) mL/mmHg.

Consecutively, we noticed a marked improvement 
of APP from 63.0 (56.8–69.5) to 71.0 (65.5–78.5) 

Table 1 Patients baseline characteristics and  clinical 
scores

APACHE acute physiology and chronic health evaluation, SOFA sequential organ 
failure assessment, MELD model of end-stage liver disease, PEEP positive end-
expiratory pressure, FiO2 fraction of inspired oxygen

Patients characteristics

Male sex [n/total (%)] 15/22 (68%)

Age (years) 55 (52–69.3)

Body weight (kg) 82.5 (70–100)

Body height (cm) 180 (170–183)

APACHE II 24 (19–29.3)

SOFA 12 (9.8–16)

MELD 27.5 (23.8–36.3)

Child–Pugh 12 (10–13)

Child C [n/total (%)] 19/22 (86%)

Etiology of cirrhosis [n/total (%)] Alcoholic 16/22 (72%)

Viral 3/22 (14%)

Cryptogenic 3/22 (14%)

Admission diagnoses [n/total (%)] Sepsis/Pneumonia 10/22 (45%)

Acute kidney failure 7/22 (32%)

Hepatic encephalopathy 5/22 (23%)

Mode of ventilation [n/total (%)] Spontaneous breathing 6/22 (27%)

Pressure‑supported 6/22 (27%)

Pressure‑controlled 10/22 (46%)

Ascites volume (mL) 3450 (3075–4700)

Total cell count (n/μL) 180 (100–310)

PEEP‑level  (cmH2O) 8 (8–10)

Baseline  FiO2 (%) 45 (35–60)
Fig. 1 ICG‑PDR at baseline and after large‑volume paracentesis (LVP), 
depicted as box plots (median and IQR, min to max) and showing all 
individual points



Page 5 of 10Mayr et al. Ann. Intensive Care  (2018) 8:78 

mmHg (p < 0.001). Pressure levels of IAP and APP are 
depicted in Fig.  3. In parallel with the decline of IAP, 
LVP induced a significant decrease of CVP from 22.5 
(17.8–29.0) to 17.5 (12.8–24.0) mmHg (p = 0.001).

Median changes in IAP (delta IAP) and APP (delta 
APP) caused by paracentesis were -8.0 (− 5.0 to 
− 10.0) mmHg and 8.5 (5.8–10.3) mmHg, respectively. 

Furthermore, LVP provoked a median change in CVP 
(delta CVP) of − 5.0 (− 3.0 to − 7.0) mmHg.

Correlations and regression plots
Analyses according to Pearson as well as linear regressions 
are illustrated in Fig. 4. Paracentesis of a median volume 
of 3450 (3075–4700) mL in a total of 22 patients provoked 
concomitant changes of ICG-PDR (delta ICG-PDR) with 
changes in IAP (panel A, r = − 0.602, p = 0.003). In paral-
lel, delta ICG-PDR correlated significantly with delta APP 
(panel B, r = 0.576, p = 0.005). In contrast, delta ICG-PDR 
was not significantly associated with evacuated ascites 
volume (panel C, r = 0.281, p = 0.205). Concerning con-
comitant changes of IAP and CVP after LVP, correlation 
analyses outlined an association of delta IAP and delta 
CVP (panel D, r = 0.637, p = 0.001).

Color‑coded duplex sonography
By sonographic examination, we registered a signifi-
cant impact of LVP on hepatic blood flow: Hepatic 
artery resistance index dropped from 0.74 (0.68–0.75) to 
0.68 (0.65–0.71) (p < 0.001). This reduction was mainly 
reflected in an increase of diastolic hepatic arterial flow 
velocity, while systolic arterial flow velocity was steady. 
Furthermore, LVP provoked an increase of maximum 
hepatic vein flow velocity. In contrast, maximum flow 
velocity in portal vein was mainly unaffected by paracen-
tesis (Table 4).

Respiratory and ventilatory parameters
Respiratory function improved by paracentesis without 
changes of PEEP-level, outlined in Table  5. Horowitz-
index  (PaO2/FiO2) increased and oxygenation index (OI) 
improved. Furthermore, we registered a significant raise 
in TV and  Cdyn. We also recorded a decrease in respira-
tory rate and  PaCO2, but results were not statistically 
significant.

Hemodynamic parameters
Hemodynamic assessment by transpulmonary ther-
modilution and pulse contour analysis revealed overall 
unchanged parameters of hemodynamic function after 
LVP: Mean arterial pressure MAP, cardiac Index CI, 
cardiac output CO, global end-diastolic volume index 
GEDVI, extravascular lung water index EVLWI and sys-
temic vascular resistance index SVRI did not change sig-
nificantly (Table 6).

Discussion
The present study shows that large-volume paracentesis 
(LVP) induced an improvement in ICG-PDR in critically 
ill patients with decompensated liver cirrhosis. This effect 
comes along with a relief of intraabdominal hypertension 

Fig. 2 Circulating blood volume index (BVI) and “ICG‑Clearance” (CBI) 
before and after large‑volume paracentesis (LVP), depicted as box 
plots (median and IQR, min to max)

Table 2 Main conventional laboratory parameters of  liver 
function before  and  after paracentesis (overall time 
interval of 24 h)

INR international normalized ratio

Conventional laboratory tests of hepatic function

Before paracentesis After paracentesis p value

Median (IQR) Median (IQR)

Bilirubin (mg/dL) 7.8 (3.3–19.0) 7.6 (2.5–21.4) 0.868

INR 1.8 (1.4–2.2) 1.8 (1.4–2.5) 0.094

Table 3 Grading of  intraabdominal hypertension 
before and after paracentesis

IAH intraabdominal hypertension, WSACS The Abdominal Compartment Society, 
LVP large-volume paracentesis, IAP Intraabdominal pressure

Grading of IAH according to WSACS definition

Before LVP After LVP

n/total (%) n/total (%)

No IAH, IAP ≤ 11 mmHg 1/22 (5%) 13/22 (59%)

IAH Grade I, IAP 12–15 mmHg 5/22 (23%) 6/22 (27%)

IAH Grade II, IAP 16–20 mmHg 11/22 (50%) 2/22 (9%)

IAH Grade III, IAP 21–25 mmHg 3/22 (13%) 1/22 (5%)

IAH Grade IV, IAP > 25 mmHg 2/22 (9%) 0/22 (0%)



Page 6 of 10Mayr et al. Ann. Intensive Care  (2018) 8:78 

(IAH) reflected in a decrease in intraabdominal pressure 
(IAP) and an inverse raise of abdominal perfusion pres-
sure (APP).

ICG-PDR represents a useful dynamic liver test in 
addition to conventional laboratory parameters [17]. 
On the one hand, ICG-PDR is dependent on hepato-
cellular function [18–20, 37, 38]. On the other hand, 
it is highly influenced by sufficient hepatosplanchnic 
blood flow and sinusoidal perfusion [18, 21, 39]. Nor-
mal range of ICG-PDR is between 18 and 25%/min. 
Advanced liver cirrhosis involves severe decreases of 
ICG-PDR with consecutively grave consequences on 
patients outcome [20].

This dramatic impairment of ICG-PDR in case of end-
stage liver disease is confirmed in our study. Median 
baseline ICG-PDR was reduced markedly to 3.6%/min. 
Large-volume paracentesis (LVP) provoked a signifi-
cant increase in ICG-PDR. Additionally, we noticed an 
increase in “ICG-Clearance” in contrast to unchanged 
circulating blood volume index, but data on the relevance 
of these parameters are rare so far. As opposed to this, 
paracentesis had no influence on main laboratory param-
eters of hepatic function. In this context, it should be 
pointed out that an earlier study found no correlation 

Fig. 3 Intraabdominal pressure (IAP) and abdominal perfusion 
pressure (APP) before and after large‑volume paracentesis (LVP), 
depicted as box plots (median and IQR, min to max)

Fig. 4 Pearson correlations and regression plots of changes caused by paracentesis per patient (n = 22). a delta ICG‑PDR correlated with delta IAP. b 
delta ICG‑PDR correlated with delta APP. c delta ICG‑PDR correlated with evacuated volume. d delta IAP correlated with delta CVP
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between ICG-PDR and standard laboratory liver tests 
[25].

The improvement in ICG-PDR is in parallel with a 
decline of IAP after evacuation of ascites. Correlation 
analyses revealed a statistically significant association of 
changes in ICG-PDR with changes in IAP. Previously, a 
few studies described a relationship between ICG-PDR 
and IAP. Some of them focused on the effect of prone 
positioning on IAP and ICG-PDR in patients with res-
piratory failure [22, 40, 41]. Two studies characterized 
the inverse correlation of ICG-PDR with the dimen-
sion of IAP in critically ill patients [24, 25]. Sakka pre-
sented a case of abdominal compartment syndrome 
with impaired ICG-PDR and a significant increase after 
surgical relief [42]. Not less interesting is another report 
from the same author describing the beneficial effect of 
paracentesis on ICG-PDR in a woman with ascites due 
to chronic heart failure; while IAP dropped from 18 to 
12  mmHg, ICG-PDR rose from 11.6 to 15.6%/min [23]. 
The basic rationale behind all these findings seems to be 
that IAH compromises APP and consecutively restrains 
hepatosplanchnic blood flow and sinusoidal perfusion 
[25]. According to this, decompression of abdomen 
with a decrease in IAP improves hepatic blood flow and 
increases ICG-PDR [23].

The results of our study reaffirmed previous trials con-
cerning a significant and immediate drop of IAP after 
LVP in patients with decompensated cirrhosis and tense 
ascites [27, 30, 43]. The relief of IAH is paralleled by a 
significant raise of APP, suggesting a substantial effect on 
hepatic perfusion. In the present study, we used color-
coded duplex sonography for analyses of liver blood flow. 
At baseline, we found an elevated hepatic artery resist-
ance index. This observation is in line with former ultra-
sound examinations showing increased resistance index 
in case of advanced liver fibrosis and cirrhosis [15, 44–
46]. The alterations of intrahepatic circulation in cirrhosis 
with endothelial dysfunction and increased vasoconstric-
tor activity are well established [13, 47]. We recognized 
a significant decrease in hepatic artery resistance index 
after LVP, mainly referable to a change in diastolic blood 
flow. The hypothesis behind this finding is that LVP 
reduces hepatic vascular resistance and enhances sinu-
soidal perfusion. Moreover, sonography revealed a raise 
in maximum blood flow velocity in hepatic vein after 
LVP. Damping of hepatic venous waveform is a frequent 
observation in advanced cirrhosis, but the significance 
of blood flow velocity in hepatic vein alone is not inves-
tigated so far [14, 48]. In contrast, there was no relevant 
change of portal vein flow after paracentesis, indicating 
an obvious portal hypertension in the studied population 
with advanced liver cirrhosis.

Table 4 Ultrasound examination of  hepatic blood flow 
by  color-coded duplex sonography of  hepatic artery, 
portal vein and hepatic vein before and after paracentesis

HARI hepatic artery resistance index, HAF maximum hepatic arterial flow 
velocity, PVF maximum portal vein flow velocity, HVF: Maximum hepatic vein 
flow velocity

Color‑coded duplex sonography of hepatic blood flow

Before 
paracentesis

After paracentesis p value

Median (IQR) Median (IQR)

HARI 0.74 (0.68–0.75) 0.68 (0.65–0.71) < 0.001

Systolic HAF (cm/s) 129 (115–145) 123 (114–140) 0.100

Diastolic HAF 
(cm/s)

35 (24–48) 40 (31–50) 0.009

PVF (cm/s) 20 (16–28) 21 (15–32) 0.753

HVF (cm/s) 24 (17–30) 30 (22–36) < 0.001

Table 5 Respiratory and  ventilatory parameters 
before and after paracentesis

OI oxygenation index, TV tidal volume, Cdyn dynamic respiratory system 
compliance, PaCO2 arterial partial pressure of carbon dioxide

Respiratory and ventilatory parameters

Before 
paracentesis

After paracentesis p value

Median (IQR) Median (IQR)

PaO2/FiO2 220 (126–271) 247 (138–321) < 0.001

OI  (cmH2O/mmHg) 8.0 (4.8–12.3) 5.8 (3.8–11.1) < 0.001

TV (mL) 491 (337–542) 530 (414–590) 0.001

Cdyn (mL/cmH2O) 41 (21–46) 49 (24–65) < 0.001

Respiratory rate 
 (min−1)

24 (18–26) 22 (16–26) 0.062

PaCO2 36.7 (32.6–46.4) 37.0 (32.7–41.2) 0.115

Table 6 Parameters of  hemodynamic monitoring 
before and after paracentesis

CI cardiac index, CO cardiac output, GEDVI global end-diastolic volume index, 
EVLWI extravascular lung water index, SVRI systemic vascular resistance index, 
CVP central venous pressure

Hemodynamic parameters assessed by transpulmonary 
thermodilution

Before 
paracentesis

After 
paracentesis

p value

Median (IQR) Median (IQR)

MAP (mmHg) 82 (76–91) 79 (74–91) 0.134

CI (L/min/m2) 4.5 (3.8–6.5) 5.0 (3.8–6.6) 0.522

CO (L/min) 8.9 (7.5–13.1) 10.3 (7.3–13.4) 0.579

GEDVI (mL/m2) 880 (788–1021) 902 (758–1021) 0.437

EVLWI (mL/kg) 12 (9.5–15) 12 (9.5–14.5) 0.918

SVRI (dyn * s *  
cm−5 * m−2)

978 (725–1254) 1064 (713–1236) 0.772

CVP (mmHg) 22.5 (17.8–29.0) 17.5 (12.8–24) 0.001
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Considered as secondary endpoints of this study, we 
analyzed the impact of LVP on respiratory and circula-
tory function in case of decompensated cirrhosis. We 
registered an overall beneficial effect on parameters of 
oxygenation and ventilation. Several studies underlined 
that respiratory improvement was particularly attribut-
able to decreases in IAP, enhanced ventilatory mechanics 
with increased compliance as well as alveolar recruit-
ment with increased end-expiratory lung volume [43, 
49–51]. Concerning hemodynamic function, previous 
studies yielded diverging results about the existing threat 
of paracentesis-induced cardiocirculatory dysfunction 
[52–54]. Nevertheless, a recent study demonstrated that 
LVP did not impair hemodynamic parameters assessed 
by transpulmonary thermodilution [43]. Our analyses 
via transpulmonary thermodilution reconfirmed this 
favorable situation with steady parameters of hemody-
namic function after LVP. However, we noticed a sig-
nificant decrease in central venous pressure after LVP, 
most probably due to the decrease in IAP and therefore 
extra-thoracic pressure level. In line with this, we found a 
significant association of changes in IAP with changes in 
central venous pressure.

Altogether, the present study emphasizes the inverse 
correlation of ICG-PDR with IAP and the far-reaching 
effects of IAH in critically ill patients with decompen-
sated cirrhosis. Hydropic decompensation evokes harm-
ful increases of IAP with negative effects on abdominal 
perfusion and liver blood flow. LVP immediately low-
ers IAP in combination with an increase in ICG-PDR. 
According to ultrasound examination, this beneficial 
effect on ICG-PDR is mainly referable to improved arte-
rial liver perfusion and decreased hepatic vascular resist-
ance. By implication, our study to some extent questions 
the significance of ICG-PDR for an exclusive evaluation 
of hepatocellular function in case of IAH.

Strengths and limitations
To our knowledge, this is the first study evaluating the 
effects of LVP on ICG-PDR in a characterized population 
of critically ill patients with decompensated cirrhosis and 
tense ascites. The study combines ICG-PDR with assess-
ments of IAP and APP, ultrasound examinations as well 
as respiratory and advanced hemodynamic monitoring. 
Despite the overall modest beneficial effect of paracente-
sis on ICG-PDR, the results are conclusive with high lev-
els of statistical significance.

However, this is a single-center study with consecu-
tively a very limited number of patients. Paracentesis was 
performed with a maximum release of mobilizable ascites 
instead of a stepwise release of predefined fluid amounts. 
Therefore, our data allowed only the calculation of an 

“overall” abdominal compliance with limited validity con-
sidering its evolution during progressive, stepwise evac-
uation of ascites [32]. Moreover, this study provides no 
further information about a possible influence of LVP on 
kidney function. In light of highly frequently occurring 
hepatorenal syndrome in case of decompensated liver 
cirrhosis, further studies would be interesting to inves-
tigate the impact of paracentesis on renal perfusion. In 
consideration of a relatively high baseline EVLWI in our 
patients, hemodynamic monitoring via transpulmonary 
thermodilution would have been even more accurate 
when performed with a higher saline bolus [55]. Ultra-
sound examinations via color-coded duplex sonography 
are operator-dependent and were performed only by one 
physician. Beside ICG-PDR, reliable data on additional 
parameters CBI and BVI provided by LiMON technology 
are rare.

Conclusion
Decompensated cirrhosis is associated with a marked 
decrease of dynamic liver test ICG-PDR, reflecting 
reduced hepatocellular capacity as well as impaired 
hepatosplanchnic blood flow. LVP evokes a modest but 
significant improvement in ICG-PDR, primarily referable 
to a decline in IAP and an inverse increase in APP. While 
conventional laboratory parameters of liver function did 
not change, the increase in ICG-PDR is mainly attribut-
able to changes in hepatic perfusion.

Moreover, LVP induced substantial improvement in 
respiratory parameters, while hemodynamic profiles 
remained stable.
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