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Simple Summary: Musashi–1 (MSI1) is an RNA–binding protein that promotes stemness properties.
It was initially discovered as a regulator of neuronal development and oocyte maturation in flies and
frogs. Due to its specific expression pattern with high levels during development and in a variety of
cancers, MSI1 evolved as an interesting target for cancer therapy. In cancer cells, the protein mainly
promotes an undifferentiated state enhancing cancer growth and therapy resistance. In this review,
we summarize previous findings from development of other organisms, outline MSI1′s expression
and function in different cancer entities and highlight the development of MSI1–directed inhibitors.

Abstract: The RNA–binding protein Musashi–1 (MSI1) promotes stemness during development and
cancer. By controlling target mRNA turnover and translation, MSI1 is implicated in the regulation
of cancer hallmarks such as cell cycle or Notch signaling. Thereby, the protein enhanced cancer
growth and therapy resistance to standard regimes. Due to its specific expression pattern and diverse
functions, MSI1 represents an interesting target for cancer therapy in the future. In this review we
summarize previous findings on MSI1′s implications in developmental processes of other organisms.
We revisit MSI1′s expression in a set of solid cancers, describe mechanistic details and implications
in MSI1 associated cancer hallmark pathways and highlight current research in drug development
identifying the first MSI1–directed inhibitors with anti–tumor activity.
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1. Introduction

RNA–binding proteins (RBPs) control all aspects of post–transcriptional gene expres-
sion, including RNA splicing and editing, transport and localization, mRNA turnover and
translation as well as miRNA biogenesis [1,2]. Therefore, they play essential roles during
development, but also serve essential roles in tumor biology by modulating essentially all
hallmarks of cancer [2,3]. De–regulation of RBPs is associated with a variety of human
malignancies, including solid cancers, and targeting their expression or functions provides
alternative strategies for cancer therapy [4–6].

One of the RBPs with solid diagnostic and therapeutic potential is Musashi–1 (MSI1).
MSI1 is strongly associated with stemness properties of cancer cells and de–regulated in a
variety of solid cancers including gliomas. Here, we discuss functions and mechanisms
directed by MSI1 in stemness and signaling, highlight its disturbed expression as well as
prognostic value in solid cancers and summarize recent literature on promising targeting
approaches with prospects in cancer therapy.
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2. Musashi–1—A Conserved Stemness RBP with Unique Functions
2.1. Structure, Interactions and Function of MSI1 in Guiding RNA Fate

Musashi–1 (MSI1) is a member of the Musashi RNA–binding protein family consisting
of two orthologs in humans and mice. Its strong expression pattern in the nervous sys-
tem [7] and its primary protein structure is conserved among species including nematodes
(C. elegans) [8], flies (Drosophila) [9] and vertebrates [10,11], with the human and mouse
proteins sharing sequence identity on the protein level. MSI1 comprises two RNA recogni-
tion motifs (RRMs) in the N–terminal region, each containing a nuclear localization signal
(NLS, Figure 1) [12,13]. RNA–binding studies revealed preferentially association to poly(G)
and moderate binding to poly(U) [13]. The majority of target mRNA–binding is facilitated
by RRM1 harboring preference for the consensus motif G/AU1–3AGU [13–16]. RRM2
was proposed to mainly stabilize protein–RNA complexes by associating to UAG [17].
The consensus motif(s) are suggested to mainly occur in single stranded, partially bulged
hairpin structures, located preferentially within the 3′UTR (3′ untranslated region) of target
transcripts [16].
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Created with www.BioRender.com (accessed on 29 April 2021).

The proper function in guiding RNA fate involves a variety of protein interactions
proposed for MSI1. In embryonic stem cells (ESCs), MSI1 was reported to interact with
LIN28B via its C–terminal region, resulting in elevated nuclear localization of LIN28B [18].
This was proposed to promote inhibition of let–7 miRNA maturation by LIN28B and foster
self–renewal as well as pluripotency in ESCs. In HEK293T cells and Xenopus oocytes,
MSI1 was shown to associate with both (Figure 1), the poly(A) binding protein PABP
and the cytoplasmic poly(A) polymerases GLD–2 (TENT2 in human), via a domain C–
terminal of RRM2 [19,20]. In the human cell models, MSI1 was proposed to compete with
eIF4G–binding of PABP, resulting in impaired translation of target mRNAs in translation
competent cell extracts [19]. In addition, MSI1 was proposed to recruit GLD2 to target
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mRNAs in Xenopus oocytes, resulting in elevated cytoplasmic poly–adenylation to induce
and foster protein synthesis as well as mRNA stability (Figure 1) [20]. This dual role in
translational repression or activation largely relies on cellular context and external cues
such as progesterone promoting GLD–2 association [21]. Prospectively, studies on MSI1′s
role in translational regulation in cancer cells needs to consider this dual function and
external guidance cues, requiring further in–depth investigation.

Next to the modulation of mRNA translation, MSI1 has also been implicated in the
regulation of mRNA turnover [22,23]. Most recently, the protein was demonstrated to
impair CD44 mRNA turnover in a 3′UTR–dependent manner by limiting miRNA–mediated
decay [23]. Under stress conditions such as hypoxia or platinum–based therapy, MSI1 was
shown to re–localize from the nucleus to the cytoplasm, suggested to promote its oncogenic
function(s) [22]. In the cytoplasm, MSI1 was proposed to either stabilize or destabilize
target mRNAs in complex with AGO2 depending on complex binding in the coding region
or 3′UTR, respectively [22] (Figure 1). This regulation was proposed for MSI1–directed
degradation of CDKN1A (p21/WAF) and TP53 as well as stabilization of CDK4 and
CCND1 (cyclin D1) transcripts. Notably, this guidance cue dependent functional plasticity
supports the aforementioned observations in translational control [20,21]. Prospectively,
MSI1–directed post–transcriptional control of gene expression could become even more
complex involving RNA modifications, such as m6A (N6–methyladenosine), becoming
more critical for cancer development [24]. In this view, it was previously shown that MSI1
promotes cancer stem cell properties of glioblastoma cells via upregulation of the m6A
reader YTHDF1 (YTH N6–methyladenosine RNA–binding protein 1) [25].

MSI1 is a dual compartment protein, localized to the nucleus and cytoplasm and shut-
tling was reported under stress conditions [22]. Consistent with its ample, proposed roles in
guiding (m)RNA fate, MSI1 is recruited to stress granules (SGs), like many RBPs [19,26–28].
Surprisingly, however, the RBDs are dispensable for SG–localization of MSI1, suggesting
the N– and C–terminal regions to promote SG–recruitment of MSI1 [26,28]. If MSI1 affects
SG formation and if SG–recruitment is linked to its roles in controlling cytoplasmic mRNA
fate, however, remains largely unknown and requires further investigations.

2.2. Role in Development

The RNA binding protein Musashi–1 (MSI1) was originally discovered as a key player
in asymmetric cell division, stem cell function and cell fate determination in Drosophila [7].
Already in 1994, Namamura and colleagues discovered in Drosophila that dMsi was essential
for the development of the adult sensory organ in Drosophila and has been shown to be a
prerequisite for the asymmetric division of sensory organ precursor cells (SOPs) [9]. While
in dMsi wild type animals, two second order precursors were developed (a neural and a
non–neuronal), the neuronal lineage was missing in dMsi mutants. Due to the increase in
the non–neuronal lineage, more socket and/or shaft cells gave rise to the typical “double
bristle” phenotype comparable to two Samurai swords that were eponymous for the
protein [9]. Mechanistically, this phenotype was explained by the translational repression
of the tramtrack mRNA by dMsi [15,29]. Tramtrack encodes for a BTB–ZF transcriptional
repressor essential for photoreceptor development, repressing the neuronal lineage in
the Drosophila eye and enteroendocrine cell specification in Drosophila intestinal stem cell
lineages [30,31]. Later on, tramtrack was identified as human PLZF transcription factor
(ZBTB16) [32]. While tramtrack mRNA was present in both SOPs, the protein was only
found in the non–neuronal lineage in dMsi wild type animals, suggesting a translational
repression for which an interaction to pRB was proposed [15,33].

The binding motif GU3–6G/AG of dMsi was determined by SELEX (Systematic Evolu-
tion of Ligands by EXponential Enrichment) [15]. SELEX is a screening technique selecting
specific targets from a large combinatorial pool of RNA or DNA oligonucleotides by several
reiterative rounds of selection and amplification [34]. The method can be applied to several
RNA/DNA binding molecules including proteins and peptides, drugs, small molecules
or even metal ions [35]. The motif thus obtained and its function in translational control
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was validated by luciferase reporter assays [15]. However, it remains still unsolved why
dMsi represses tramtrack translation in the neuronal but not non–neuronal lineage, since
the dMsi protein is present in both precursor types. Post–translational modifications and a
context dependent switch of functions were thereby considered [21,36].

In Xenopus, MSI1 was shown to promote translation of the serine/threonine kinase and
proto–oncogene MOS [37], an essential activator of the MAPK activator MEK (MAP2K1,
mitogen–activated protein kinase kinase 1) in frogs and higher vertebrates [38]. Thereby,
MSI1 impacts the strict temporal order of maternal mRNA translation required for meiotic
cell cycle progression in oocytes [37]. The translational activation of MOS relies on MSI1
association with the polyadenylation response element in the MOS 3′UTR containing the
consensus motif G/AU1–3AGU [14,37]. This was subsequently shown to recruit the poly(A)
polymerase GLD–2 to promote polyadenylation, which in turn activates translation [20].
Furthermore, these studies provided initial evidence that MSI1′s function can be modulated
on the post–translational level by external cues, resulting in a context dependent switch of
function from a translational repressor to an activator or mRNA stabilizer [22,23,37].

In the mammalian system, MSI1 was identified as a marker for neuronal stem cells
(NCSs) together with RBPs of the ELAVL family [39]. Subsequently, it was shown that
these proteins are not only co–expressed but functionally connected, since ELAVL1 (HuR)
promoted MSI1 expression [40]. A consensus binding motif G/A)UnAGU for MSI1 in
the mammalian system, identified by SELEX, revealed high similarities to the Drosophila
motif [14,15]. This motif is present in the 3′UTR of murine NUMB mRNA. Consistent with
co–expression of MSI1 and NUMB in NSCs, it was demonstrated by a set of techniques that
MSI1 regulates NUMB mRNA translation [14]. By repressing NUMB, MSI1 was suggested
to promote Notch signaling in stem cells essential for the maintenance but not generation
of neural stem cells [9,16,41]. This suggested a function in stem cell renewal which was
subsequently validated by loss– and gain–of–function assays in cancer cells (e.g., [41–45]).
Notably, the consensus motif identified by Imai and colleagues in the NUMB mRNA
3′UTR is utilized to identify MSI1 directed small molecule RNA–binding inhibitors such as
gossypol [46].

In HEK293 cells, MSI1 was shown to modulate cell cycle progression, specifically
G2/M transition, by inhibiting CDKN1A (p21/WAF) expression [47]. As for NUMB,
translational repression via association of MSI1 to the CDKN1A 3′UTR was proposed.
However, CDKN1A mRNA levels changed upon perturbing MSI1 abundance [47], suggest-
ing contribution of secondary regulation or control of mRNA turnover. In support of this
notion, up–regulation of both CDKN1A and NUMB upon MSI1 depletion was observed
in bladder carcinoma cells [27]. Likewise, CDKN1A up–regulation upon MSI1 depletion
in P19 mouse embryonal carcinoma cells promoted neuronal differentiation, rescued by
additional CDKN1A depletion [47]. Despite controversy on molecular mechanisms, these
findings are concise with a role of MSI1 in promoting a stem cell–like, pluripotent state in
neural cells and a role in neuronal development [11,17,36].

3. Expression in Human Cancers
3.1. Expression in Human Tissue

According to its function as stemness modulator and in contrast to its homolog MSI2
that shows a more ubiquitous and persistent expression [48], MSI1 is highly abundant
during murine (not shown) and human embryonal development (Figure 2A, brain; from
https://www.brainspan.org/, accessed on 30 March 2021) in various organs and expres-
sion declines towards birth. In accord with its expression in Drosophila and Xenopus, MSI1 is
highly abundant in stemness niches in the CNS (central nervous system) and reproductive
tissue of the adult human body. MSI1 mRNA and protein is found in CNS progenitor cells,
including neural stem cells [49]. Co–expression with neuronal and astrocyte intermediate
filament proteins Nestin and GFAP suggest MSI1 expression in neuronal and astrocyte pro-
genitor cells, but the protein was also reported in GFAP negative glia cells [49,50]. Notably,
MSI1 was only observed in multipotent neural precursor cells, but not in newly generated
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postmitotic neurons, supporting its proposed roles in maintaining stem/progenitor cell
properties [51]. Within fetal and adult rat testis, MSI1 is expressed in Sertoli cells sup-
porting germ cell development [52]. In fetal and adult rat ovaries, Msi1 was detected in
granulosa cells and their precursors promoting oocyte maturation and hormone produc-
tion [52]. Surprisingly, Msi1 is expressed in both proliferating and nonproliferating Sertoli
and granulosa cells, suggesting additional, post–mitotic roles of MSI1 in these cell types.
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(C) expression values of MSI1 and MSI2 for tumor (T; TCGA, red) and non–tumor (NT; TCGA and GTEx, gray) tissues as well
as fold changes (FC) of tumor vs. non–tumor tissue were obtained from the Gepia2 database (http://gepia2.cancer--pku.cn,
accessed on 30 March 2021). Association of MSI1 with overall survival (B; OS) indicated as hazardous ratio (HR) was
determined by KM plotter (https://kmplot.com/, accessed on 30 March 2021). The association of MSI1 positively correlated
genes with cancer hallmark related KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways was determined using
the R2 database (https://hgserver1.amc.nl/, accessed on 30 March 2021). Top 10 of conserved associated pathways are
shown as bubble diagram and heatmap (D) with number indicating ranking. The percentage of altered KEGG pathways
(top 10) for the respective tumor entities is shown as heatmap (B, KEGG). BLCA, Bladder Urothelial Carcinoma; BRCA,
Breast invasive carcinoma; CESC, Cervical squamous cell carcinoma and endocervical adenocarcinoma; COAD, Colon
adenocarcinoma; ESCA, Esophageal carcinoma; GBM, Glioblastoma multiforme; HNSC, Head and Neck squamous cell
carcinoma; KIRC, Kidney renal clear cell carcinoma; LGG, Brain Lower Grade Glioma; LIHC, Liver hepatocellular carcinoma;
LUAD, Lung adenocarcinoma; OV, Ovarian serous cystadenocarcinoma; PAAD, Pancreatic adenocarcinoma; PRAD, Prostate
adenocarcinoma; SKCM, Skin Cutaneous Melanoma; STAD, Stomach adenocarcinoma; THCA, Thyroid carcinoma; UCEC,
Uterine Corpus Endometrial Carcinoma.
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This specific expression pattern together with its de–regulation and functional role
in a set of human cancers puts MSI1 in row with other bona fide oncofetal RBPs such as
IGF2BP1 and 3, LIN28B or MEX proteins, representing diagnostic markers with therapeutic
potential for cancer treatment [4,53–56].

3.2. Expression and Prognostic Value in Solid Human Cancers

In contrast to MSI2, for which oncogenic potential and expression was predominantly
reported in leukemia, MSI1 expression was shown in a variety of human cancers, primarily
solid cancers [57]. The reinvestigation of MSI1/2 expression in 18 human cancer transcrip-
tomes (TCGA, The Cancer Genome Atlas; https://cancergenome.nih.gov/, accessed on
30 March 2021) and corresponding normal tissue (TCGA and GTEx; https://gtexportal.org,
accessed on 30 March 2021) via the Gepia2 database [58,59] revealed selective expression of
MSI1 in some cancer tissues (Figure 2B). The most prominent and significant upregulation
of MSI1 is observed in low–grade glioma (LGG) and glioblastoma (GBM), and ovarian
(OV) and endometrial cancers of the uterine corpus (UCEC) (Figure 2B,C). Despite variable
significance of survival analyses on mRNA basis by KM plotter [60], a strong association
of elevated MSI1 protein expression and adverse patient outcome was reported for all
these cancers [50,51,61–64]. Mild yet not significant up–regulation of MSI1 mRNA is also
seen in bulk RNA–Seq data of prostate (PRAD), esophageal (ESCA), liver (LIHC) and
bladder (BLCA) cancer (Figure 2B). In support of protein–centered studies in these cancer
entities [65–68], elevated expression of MSI1 is associated with an unfavorable prognosis
in these malignancies, as well.

In all other cancer entities investigated, the MSI1 mRNA is barely expressed and/or
remains unchanged in tumor vs. normal tissue (Figure 2B). Notably, in these cancers, MSI1
expression shows no striking association with patient survival, suggesting that elevated
MSI1 expression is a conserved predictor of poor patient outcome in indicated cancers.
In contrast, previous findings suggested strong MSI1 expression with prognostic value
in some of these entities, including breast (BRCA), colorectal (COAD), lung (LUAD) or
cervical (CESC) cancers [69–75]. This discrepancy between bulk RNA–Seq and IHC data
could result from a minor presence of MSI1+ cancer stem cells (CSCs) in these tumors or a
potential cross–reactivity of the MSI1–directed antibodies with MSI2 [69,72–75].

Although only partially elevated in a variety of malignancies, e.g., SKCM, MSI2 abun-
dance is substantially higher in normal as well as tumor tissue when compared to MSI1.
This is in agreement with its ubiquitous expression in human and mouse development,
where MSI2 expression does not follow a strict oncofetal pattern (see Figure 2A,B). Thus,
the strong oncofetal expression of MSI1, its association with reduced overall survival prob-
ability and its pro–oncogenic properties suggest MSI1 as a potent marker and promising
therapeutic target in various solid cancers.

4. MSI1 as a Modulator of Cancer Hallmarks

The oncofetal expression of MSI1 in some cancers and its role in development as well
as stem cell fate suggested MSI1 as a promising candidate target in cancer therapy. Various
studies therefore aimed to evaluate its therapeutic value by exploring its role in cancer,
primarily cancer–derived cell lines. To this end, some studies analyzed MSI1–associated
RNAs based on RIP (RNA immunoprecipitation) and iCLIP (individual–nucleotide reso-
lution Cross–Linking and ImmunoPrecipitation) studies [16,64,76]. iCLIP is a method to
identify protein–RNA interactions using UV light to covalently cross–link protein–RNA
complexes. This allows a very stringent purification with reduced background associations.

The functional impact of MSI1 in cancer was studied on the basis of loss– as well as
gain–of function studies, including shRNA–, siRNA–, morpholino–directed impairment
of MSI1 abundance and its overexpression [14,19,22,23,25,47,65,69,75]. Despite technical
limitations and flaws of individual studies, there is an overarching agreement in that MSI1
is a potent regulator of various cancer hallmark pathways such as proliferation, apoptosis,
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anoikis resistance and self–renewal, migration, invasion and EMT (epithelial–mesenchymal
transition), as well as tumor growth in vivo.

4.1. Conserved Pathways in Solid Human Cancers

Aiming to revisit MSI1′s connection to “hallmarks of cancer” gene sets, we inves-
tigated the association of MSI1 correlated genes to KEGG signaling pathways from the
Kyoto Encyclopedia of Genes and Genomes in 19 TCGA RNA–Seq cohorts of solid cancers
using the R2 platform (https://hgserver1.amc.nl/, accessed on 30 March 2021) (Figure 2D).
This identified a strong conservation of KEGG pathways comprising genes characterized
by positive association with MSI1 expression in cancer (Figure 2D). In contrast, barely
any conservation was seen among genes with inverse expression to MSI1 in cancer (data
not shown). For KEGG: Cell_cycle and KEGG: Basal_cell_carcinoma, we found the high-
est conservation with significant associations in 11 out of 18 (61%) of analyzed cancer
entities and 100% or 75% conservation among the top four MSI1 de–regulated cancers
LGG, GBM, OV and UCEC (Figure 2B,C). KEGG: Fanconi_anemia and KEGG: Signal-
ing_pathways_regulating_pluripotency_of_stem_cells also showed a strongly conserved
association with MSI1 in ca. 45% of all 18 tumor types and 3 out of the top four MSI1
related cancers (Figure 2B,C). KEGG: Wnt (38%), Notch (27%) and Hedgehog (17%) signal-
ing pathways were associated with MSI1 expression; however, the conservation between
cancer entities is substantially less stringent. Notably, in OV, we found a significant MSI1–
correlation to genes from all top 10 KEGG pathways (Figure 2B). In GBM and LGG MSI1,
association to 70% or 50% of the KEGG pathways was identified (Figure 2B).

To identify the most conserved genes related to KEGG: Cell_cycle, we compared the
MSI1–correlated genes among all 11 associated cancer entities (Figure 3, red labels; please
refer to Supplementary Materials, Figure S1, for entire KEGG pathway map). This revealed
association of MSI1 with genes throughout the entire pathway. However, most genes with
significant positive association with MSI1 in cancer serve functions, primarily at G1/S
transition (Figure 3, red). This is in agreement with previous findings, demonstrating a
G1 arrest upon MSI1 depletion [75,77]. Interestingly, we also found CDK4 and CCND1
among the genes with highly conserved correlation to MSI1 (Figure 3) previously shown to
be stabilized by MSI1 association [22].

4.2. MSI1, a Stemness Factor in Brain Cancers

The expression and role of MSI1 in cancer was predominantly studied in brain cancers.
MSI1 was identified as marker of cancer stem cells (CSCs) arising from different brain
cancers including glioma, pediatric brain cancers, medulloblastomas or astrocytomas.
CSCs are thought to substantially promote cancer progression and therapy resistance to
radiation or chemotherapeutics such as temozolomide [44,78–82]. This is associated with
neurosphere formation of glioblastoma and medulloblastoma–derived cell lines and tumor
growth promoted by MSI1 in vitro and in vivo [22,25,43].

In agreement, MSI1 was shown to modulate cancer hallmark pathways, including
cell cycle control, Hedgehog and AKT signaling [16,43,83]. Cell cycle regulation by MSI1
was shown to involve next to CDKN1A (p21/WAF) a direct regulation of CDK4 and
CCND1 [22,47]. Thereby, a novel mechanism of MSI1–directed mRNA stability control was
proposed (refer to Figure 1). In medulloblastoma, MSI1 was associated with Hedgehog
signaling and its depletion sensitized cancer–derived cells toward Hedgehog blockade [43].
By promoting IL6 secretion forming a self–sustaining feedforward loop with the AKT
pathway, MSI1 was proposed to inhibit drug–induced apoptosis [83]. Thereby, the protein
regulates both cellular signaling and cytokine secretion to create an intra– and intercellular
niche for GBM to survive chemotherapy [83]. Similar mechanisms involving the de–
regulation of the AKT signaling was also reported in lung cancer–derived cell lines [84].
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In view of the spreading of glioblastoma cancer stem cells into surrounding brain tissue
escaping cancer therapy, MSI1 was shown to promote cell adhesion, migration and invasion.
This was at least partially facilitated via modulating the expression of adhesion molecules
including Tensin3, ICAM1, VCAM1 and CD44 by MSI1 in glioblastoma cells [23,76,85,86].
In agreement with its conserved association with the Fanconi anemia pathway, MSI1 is
also connected to DNA damage response (DDR). By promoting the hyperactivation of the
DDR by increasing homologous recombination repair (HR) and evading apoptosis, MSI1
is involved in radio–resistance in vitro and in vivo [87]. This seemed to depend on the
localization of the protein, since full–length but not NES/NLS–mutated MSI1 promoted
cisplatin resistance in vivo [22]. In this context, the formation of stress granules is suggested
to be involved in MSI1–mediated chemoresistance in refractory glioblastoma [28]. The
identification of MSI1–directed inhibitors such as Luteolin [23,88] could thus represent a
promising strategy to sensitize brain cancer cells for chemo– or radiotherapy.

4.3. A Cell Cycle Modulator in Colon Cancer

In colon cancer, MSI1 was reported as tumor marker with prognostic value [70,89].
Initially, MSI1 in the intestine was identified as a marker of crypt cells [90,91]. Along
these lines, its expression was up–regulated in colonspheres [77]. In colon cancer–derived
cells, MSI1 depletion suppressed the proliferation, colony formation, spheroid formation
and progression of implanted colonspheres [77]. A cell cycle arrest at G0/G1 phase with
upregulation of p21 expression was shown. The growth of cancer–derived xenografts
from colon [41] was diminished by MSI1–directed siRNA application. This reduced tumor
growth and induced apoptosis by a G2/M cell cycle arrest associated mitotic catastrophe.
Changes of p21 and Notch signaling were hereby reported. Accordingly, a transgenic mouse
model with forced intestinal MSI1 expression manifested a higher crypt size accompanied
by enhanced proliferation [87]. Comparative transcriptomics by RNA–seq revealed the
association of MSI1 with a gut stem cell signature, cell cycle, DNA replication, and drug
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metabolism. Therefore, CCND1, CDK6 and SOX4 were identified as MSI1 targets [92].
In cellulo, overexpression of MSI1 promoted the development of CD44+ stem cells and
triggered the resistance to 5–fluorouracil [26]. Finally, the first MSI1 directed small molecule
inhibitor (–)–gossypol was identified and validated in colon cancer–derived cells [46].

4.4. A Signaling Regulator in Female Cancers

In breast cancer cells, MSI1 promotes spheroid growth and colony formation, as
well [42,69]. MSI1 was shown to drive progenitor cell expansion along the luminal and
myoepithelial lineages [42]. Its expression was associated with stemness markers CD133,
BMI1, SOX2, NANOG and OCT4 [69]. MSI1–directed proliferation is associated with a
reduction of the secreted Wnt pathway inhibitor dickkopf–3 (DDK3) as well as increased
secretion of the prolactin family member proliferin 1 (PLF1), promoting ERK activation
via the IGF2 receptor (IGF2R) [42]. Due to its enhancement of ERK kinase activity, MSI1
was suggested to modulate the cross–talk between MAPK, Notch and Wnt signaling by
an autocrine process that coordinates cell cycle entry. MSI1–directed cell cycle control
was also reported in endometrial cancer [75]. As for other cancers, such as prostate or
esophageal carcinomas [27,67], MSI1 depletion was associated with an arrest in the G1
phase accompanied by a de–regulation of CDKN1A (p21/WAF) and NUMB [75]. In breast
cancer cells, however, an alternative way to activate Notch signaling by MSI1 was proposed
to involve preventing the NFYA–26S proteasome axis from inactivating the NOTCH–ICD
(intra cellular domain) [93]. A de–regulation of Wnt signaling was also reported for liver
and cervical cancer [65,94], associated with a reduction of EMT markers such as SNAI1,
SNAI2, ZEB1 or VIM in cervical cancer–derived cell lines. A link between MSI1 and drug
resistance was shown in ovarian cancer–derived in which a MSI1 depletion abolished the
paclitaxel resistance of A2780–derived paclitaxel resistant cells [95].

4.5. Control of MSI1 Expression in Cancer

The oncofetal expression and role in pluripotent stem–like cells suggests a tight control
of MSI1 synthesis. However, how MSI1 expression is controlled in cancer remains largely
elusive. In metastatic colorectal cancer, MSI1 expression was enhanced by Notch signaling,
suggesting a feed–forward circuit, potentially involving KLF4, which was shown to bind
to the MSI1 promotor [96,97]. Several studies proposed substantial regulation of MSI1
expression at the post–transcriptional level, in particular by miRNAs, including miR–125
or miR–137, both associated to tumor progression in colon cancer [84,98–103].

5. Targeting Musashi–1 in Cancer

Although RBPs represent ideal targets for cancer treatment due to their, in some
cases, unique expression pattern, they were considered as hard to target by small molecule
inhibitors due to the lack of well–defined binding pockets and the lack of catalytic activity in
most RBPs. Moreover, the strong electrostatic attraction between negatively charged RNA
backbone and the positively charged RBDs of RBPs, along with large interacting surface,
makes it challenging to obtain small molecules inhibitors. However, drug screening and
modeling approaches have overcome these obstacles, identifying a number of compounds
that could prove effective in the future [6,104].

Recently, several synthetic small molecules and naturally occurring substances were
identified to modulate the RNA–binding capacity of the Musashi protein family. While
some of the compounds, such as Ro 08–2750 [105] or Aza–9 [106], were shown to inhibit
both MSI1 and MSI2, others were more specific to MSI1.

Using a fluorescence polarization assay, (–)–gossypol was the first natural compound
identified to disrupt MSI1 binding to the RNA–binding consensus motif [46]. In the past,
(−)–gossypol has been extensively investigated as a male contraceptive agent due to its
anti–steroidogenic activity but failed due to its high toxicity [107–109]. It was considered
as an inhibitor for a variety of molecules including PKC1, LDHA or BCL–2 [110–112].
Inducing apoptosis by inhibiting BCL–2 [113,114], (−)–gossypol and its derivative AT–101
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were evaluated in Phase II clinical trials for cancer treatment, including breast or prostate
cancer [115,116]. In colon cancer cell lines, (−)–gossypol binds to MSI1 with higher affinity
than to BCL–2 family members, repressing Notch/Wnt signaling in a MSI1–dependent
manner [46]. Subsequently, (−)–gossypol was found to induce apoptosis and autophagy,
reduce colon cancer cell proliferation and xenograft tumor growth in vivo [46].

Gossypolone, a major metabolite of gossypol, was identified as a potent inhibitor of
MSI1, with more than 20–fold higher affinity than (−)–gossypol to disrupt MSI1 binding to
the consensus motif [117]. Gossypolone was shown to inhibit both MSI1 and MSI2. Due to
their low water solubility, PEGylated liposomes were introduced as a carrier to enhance
delivery and thus potency in cellulo and in vivo [117]. Gossypolone–Liposomes exhibited
a significant tumor inhibition efficacy and low systemic toxicity in mice. However, whether
Gossypolone–directed cytotoxicity depends on MSI1 or BCL–2 inhibition, or both, needs
further evaluation [118].

Luteolin was identified as the leading candidate of a 25,000–compound fluores-
cence polarization high–throughput screen (HTS), disrupting MSI1 binding to the con-
sensus motif [88]. A direct interaction between MSI1 and Luteolin was confirmed by
NMR [88]. The compound diminished MSI1′s positive impact on the expression of
pro–oncogenic target genes and reduced proliferation, cell viability, colony formation,
migration and invasion of glioblastoma cells. Luteolin, a common dietary flavonoid,
possesses anti–oxidative, anti–inflammatory and anti–apoptotic activities in cancer and
cardiovascular disease [119–124]. Due to its potent anti–tumor and anti–inflammatory ef-
fects, earlier studies and clinical trials on Luteolin had focused on cancer and inflammation
(https://clinicaltrials.gov/ct2/show/NCT03288298, accessed on 25 March 2021) [125]. Lu-
teolin treatment was found to inhibit epithelial–mesenchymal–transition (EMT) and promote
apoptosis by repressing CREB1 and BCL–2 expression in colorectal cancer cells [126,127].
Xenograft and tail vain injection models of gastric and breast cancer cells revealed that
Luteolin inhibits tumor growth, angiogenesis and metastasis by blocking Notch and VEGF
signaling [128–130]. In glioblastoma, the compound was shown to prevent EGFR–mediated
proliferation, promoting ROS–induced apoptosis [131].

MSI1 RNA–binding activity was also allosterically inhibited by ω−9 monounsatu-
rated fatty acids (e.g., oleic acid) [132]. Oleic acid is a fatty acid found in olive oil and other
plant oils. Moreover, it is the most abundant fatty acid in body fat, produced by mature
oligodendrocytes during myelination [133]. Inducing MSI1 conformational changes that
prevent MSI1–RNA association, oleic acid limits oligodendrocyte progenitor cell line prolif-
eration [132]. However, it remains unclear if oleic acid inhibits protein–RNA interactions
in general and which cellular mechanisms and pathways are modulated by this substance.
However, several studies have reported an inhibition in cell proliferation induced by oleic
acid in various tumor cell lines [134–137].

6. Conclusions

As an RNA–binding protein, MSI1 is a potent stemness factor with roles in tumor
biology implicated by expression and function. Although its binding motifs are well
defined in comparison to other RBPs, its mechanisms of action yet are not fully understood.
As a post–transcriptional regulator of gene expression, MSI1 controls mRNA turnover
and translation of target transcripts, modulating a variety of signaling pathways during
development and cancer progression. Prospectively, MSI1 could be implicated in RNA
modification as described for other RBPs, since it was shown to promote the expression
of m6A readers such as YTHDF1. Whether MSI1 binding to RNA is sensitive to RNA
modifications remains to be determined in the future. Besides its well–known roles in cell
cycle regulation and Notch/Wnt signaling, MSI1 has lately been shown to be relevant for
other pathways such as DNA damage response and repair. Although not highly specific
at present, a number of novel MSI1–directed inhibitors already show promising anti–
tumor potential. From this point of view, MSI1 solidifies its proposed role as a promising
target candidate for cancer therapy, potentially as part of a combination therapy in a
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set of strategies, including differentiation therapy, Notch/Wnt antagonists and CDK or
PARP inhibitors.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biology10050407/s1, Figure S1: Association of MSI 1 expression with KEGG_cell cycle.
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